1932

Abstract

Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent -amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-062917-012921
2018-06-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/87/1/annurev-biochem-062917-012921.html?itemId=/content/journals/10.1146/annurev-biochem-062917-012921&mimeType=html&fmt=ahah

Literature Cited

  1. 1. CDC (Cent. Dis. Control Prev.) 2013. Antibiotic resistance threats in the United States, 2013 US Dept. Health Hum. Serv Washington, DC:
  2. 2.  Vollmer W, Blanot D, de Pedro MA 2008. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32:2149–67
    [Google Scholar]
  3. 3.  Typas A, Banzhaf M, Gross C, Vollmer W 2012. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 10:2123–36
    [Google Scholar]
  4. 4.  Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T 2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:6039222–25
    [Google Scholar]
  5. 5.  Bisson-Filho AW, Hsu Y-P, Squyres GR, Kuru E, Wu F et al. 2017. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science 355:6326739–43
    [Google Scholar]
  6. 6.  Kysela DT, Randich AM, Caccamo PD, Brun YV 2016. Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLOS Biol 14:10e1002565
    [Google Scholar]
  7. 7.  Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR 2015. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol. Rev. 39:2184–202
    [Google Scholar]
  8. 8.  Gautam S, Gniadek TJ, Kim T, Spiegel DA 2013. Exterior design: strategies for redecorating the bacterial surface with small molecules. Trends Biotechnol 31:4258–67
    [Google Scholar]
  9. 9.  Williams DB, Carter CB. 1996. The transmission electron microscope. Transmission Electron Microscopy: A Textbook for Materials Science Boston: Springer
    [Google Scholar]
  10. 10.  Yagi K. 1987. Reflection electron microscopy. J. Appl. Cryst. 20:147–60
    [Google Scholar]
  11. 11.  Vernon-Parry KD. 2000. Scanning electron microscopy: an introduction. III-Vs Rev 13:440–44
    [Google Scholar]
  12. 12.  Bartesaghi A, Merk A, Banerjee S, Matthies D, Wu X et al. 2015. 2.2 Å resolution cryo-EM structure of β-galactosidase in complex with a cell-permeant inhibitor. Science 348:62391147–51
    [Google Scholar]
  13. 13.  Formanek H, Formanek S 1970. Specific staining for electron microscopy of murein sacculi of bacterial cell walls. Eur. J. Biochem. 17:78–84
    [Google Scholar]
  14. 14.  de Pedro MA, Quintela JC, Höltje J-V, Schwarz H 1997. Murein segregation in Escherichia coli. J. Bacteriol. 179:92823–34
    [Google Scholar]
  15. 15.  Kuru E, Hughes HV, Brown PJ, Hall E, Tekkam S et al. 2012. In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent d-amino acids. Angew. Chem. Int. Ed. Engl. 51:5012519–23
    [Google Scholar]
  16. 16.  Chao Y, Zhang T 2011. Optimization of fixation methods for observation of bacterial cell morphology and surface ultrastructures by atomic force microscopy. Appl. Microbiol. Biotechnol. 92:2381–92
    [Google Scholar]
  17. 17.  Kühlbrandt W. 2014. Microscopy: cryo-EM enters a new era. eLife 3:e03678
    [Google Scholar]
  18. 18.  Matias VRF, Al-Amoudi A, Dubochet J, Beveridge TJ 2003. Cryo-transmission electron microscopy of frozen-hydrated sections of Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 185:206112–18
    [Google Scholar]
  19. 19.  Matias VRF, Beveridge TJ 2005. Cryo-electron microscopy reveals native polymeric cell wall structure in Bacillus subtilis 168 and the existence of a periplasmic space. Mol. Microbiol. 56:1240–51
    [Google Scholar]
  20. 20.  Lučić V, Rigort A, Baumeister W 2013. Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202:3407–19
    [Google Scholar]
  21. 21.  McIntosh R, Nicastro D, Mastronarde D 2005. New views of cells in 3D: an introduction to electron tomography. Trends Cell Biol 15:143–51
    [Google Scholar]
  22. 22.  Murphy GE, Leadbetter JR, Jensen GJ 2006. In situ structure of the complete Treponema primitia flagellar motor. Nature 442:71061062–64
    [Google Scholar]
  23. 23.  Diebolder CA, Koster AJ, Koning RI 2012. Pushing the resolution limits in cryo electron tomography of biological structures. J. Microsc. 248:11–5
    [Google Scholar]
  24. 24.  de Petris S 1967. Ultrastructure of the cell wall of Escherichia coli and chemical nature of its constituent layers. J. Ultrastruct. Res. 19:145–83
    [Google Scholar]
  25. 25.  Verwer RWH, Nanninga N, Keck W, Schwarz U 1978. Arrangement of glycan chains in the sacculus of Escherichia coli. J. Bacteriol. 136:2723–29
    [Google Scholar]
  26. 26.  Dmitriev BA, Toukach FV, Schaper K, Holst O, Rietschel ET, Ehlers S 2003. Tertiary structure of bacterial murein: the scaffold model. J. Bacteriol. 185:113458–68
    [Google Scholar]
  27. 27.  Gan L, Chen S, Jensen GJ 2008. Molecular organization of Gram-negative peptidoglycan. PNAS 105:4818953–57
    [Google Scholar]
  28. 28.  Hsu Y-P, Meng X, VanNieuwenhze MS 2016. Methods for visualization of peptidoglycan biosynthesis. Methods Microbiol 43:3–48
    [Google Scholar]
  29. 29.  Allison DP, Mortensen NP, Sullivan CJ, Doktycz MJ 2010. Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2:6618–34
    [Google Scholar]
  30. 30.  Ikai A. 2010. A review on: atomic force microscopy applied to nano-mechanics of the cell. Nano/Micro Biotechnology I Endo, T Nagamune 47–61 Berlin: Springer
    [Google Scholar]
  31. 31.  Yao X, Jericho M, Pink D, Beveridge T 1999. Thickness and elasticity of Gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181:226865–75
    [Google Scholar]
  32. 32.  Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ 2008. Cell wall peptidoglycan architecture in Bacillus subtilis. PNAS 105:3814603–8
    [Google Scholar]
  33. 33.  Dempwolff F, Moeller HM, Graumann PL 2012. Synthetic motility and cell shape defects associated with deletions of flotillin/reggie paralogs in Bacillus subtilis and interplay of these proteins with NfeD proteins. J. Bacteriol. 194:174652–61
    [Google Scholar]
  34. 34.  Dempwolff F, Wischhusen HM, Specht M, Graumann PL 2012. The deletion of bacterial dynamin and flotillin genes results in pleiotrophic effects on cell division, cell growth and in cell shape maintenance. BMC Microbiol 12:298
    [Google Scholar]
  35. 35.  Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soeldner R, Carballido-López R 2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:6039225–28
    [Google Scholar]
  36. 36.  Gregory JA, Becker EC, Pogliano K 2008. Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev 22:243475–88
    [Google Scholar]
  37. 37.  Jovanovic G, Mehta P, McDonald C, Davidson AC, Uzdavinys P et al. 2014. The N-terminal amphipathic helices determine regulatory and effector functions of phage shock protein A (PspA) in Escherichia coli. J. Mol. Biol. 426:71498–1511
    [Google Scholar]
  38. 38.  Lenn T, Leake MC, Mullineaux CW 2008. Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol. Microbiol. 70:61397–1407
    [Google Scholar]
  39. 39.  Li G, Brown PJB, Tang JX, Xu J, Quardokus EM et al. 2012. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol. Microbiol. 83:141–51
    [Google Scholar]
  40. 40.  Hell SW. 2007. Far-field optical nanoscopy. Science 316:58281153–58
    [Google Scholar]
  41. 41.  Huang B, Babcock H, Zhuang X 2010. Breaking the diffraction barrier: super-resolution imaging of cells. Cell 143:71047–58
    [Google Scholar]
  42. 42.  English BP, Hauryliuk V, Sanamrad A, Tankov S, Dekker NH, Elf J 2011. Single-molecule investigations of the stringent response machinery in living bacterial cells. PNAS 108:31E365–73
    [Google Scholar]
  43. 43.  Kim SY, Gitai Z, Kinkhabwala A, Shapiro L, Moerner WE 2006. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus. PNAS 103:2910929–34
    [Google Scholar]
  44. 44.  Niu L, Yu J 2008. Investigating intracellular dynamics of FtsZ cytoskeleton with photoactivation single-molecule tracking. Biophys. J. 95:42009–16
    [Google Scholar]
  45. 45.  Uphoff S, Reyes-Lamothe R, de Leon FG, Sherratt DJ, Kapanidis AN 2013. Single-molecule DNA repair in live bacteria. PNAS 110:208063–68
    [Google Scholar]
  46. 46.  Yao Z, Carballido-López R 2014. Fluorescence imaging for bacterial cell biology: from localization to dynamics, from ensembles to single molecules. Annu. Rev. Microbiol. 68:459–76
    [Google Scholar]
  47. 47.  Hammes WP, Neuhaus FC 1974. On the mechanism of action of vancomycin: inhibition of peptidoglycan synthesis in Gaffkya homari. Antimicrob. Agents Chemother. 6:6722–28
    [Google Scholar]
  48. 48.  Daniel RA, Errington J 2003. Control of cell morphogenesis in bacteria. Cell 113:6767–76
    [Google Scholar]
  49. 49.  Clarke-Sturman AJ, Archibald AR, Hancock IC, Harwood CR, Merad T, Hobot JA 1989. Cell wall assembly in Bacillus subtilis: partial conservation of polar wall material and the effect of growth conditions on the pattern of incorporation of new material at the polar caps. Microbiology 135:3657–65
    [Google Scholar]
  50. 50.  Tiyanont K, Doan T, Lazarus MB, Fang X, Rudner DZ, Walker S 2006. Imaging peptidoglycan biosynthesis in Bacillus subtilis with fluorescent antibiotics. PNAS 103:2911033–38
    [Google Scholar]
  51. 51.  Sizemore RK, Caldwell JJ, Kendrick AS 1990. Alternate Gram staining technique using a fluorescent lectin. Appl. Environ. Microbiol. 56:72245–47
    [Google Scholar]
  52. 52.  Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G et al. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. PNAS 111:11E1025–34
    [Google Scholar]
  53. 53.  Kocaoglu O, Carlson EE 2016. Progress and prospects for small-molecule probes of bacterial imaging. Nat. Chem. Biol. 12:7472–78
    [Google Scholar]
  54. 54.  Kuru E, Tekkam S, Hall E, Brun YV, VanNieuwenhze MS 2015. Synthesis of fluorescent d-amino acids and their use for probing peptidoglycan synthesis and bacterial growth in situ. Nat. Protoc. 10:133–52
    [Google Scholar]
  55. 55.  Lam H, Oh D-C, Cava F, Takacs CN, Clardy J et al. 2009. d-Amino acids govern stationary phase cell wall remodeling in bacteria. Science 325:59471552–55
    [Google Scholar]
  56. 56.  Lupoli TJ, Tsukamoto H, Doud EH, Wang T-SA, Walker S, Kahne D 2011. Transpeptidase-mediated incorporation of d-amino acids into bacterial peptidoglycan. J. Am. Chem. Soc. 133:10748–51
    [Google Scholar]
  57. 57.  Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P 2008. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32:2234–58
    [Google Scholar]
  58. 58.  De S, McIntosh LP 2012. Putting a stop to l,d-transpeptidases. Structure 20:5753–54
    [Google Scholar]
  59. 59.  Magnet S, Dubost L, Marie A, Arthur M, Gutmann L 2008. Identification of the l,d-transpeptidases for peptidoglycan cross-linking in Escherichia coli. J. Bacteriol. 190:134782–85
    [Google Scholar]
  60. 60.  Sanders AN, Pavelka MS 2013. Phenotypic analysis of Escherichia coli mutants lacking l,d-transpeptidases. Microbiology 159:91842–52
    [Google Scholar]
  61. 61.  van Heijenoort J 2011. Peptidoglycan hydrolases of Escherichia coli. Microbiol. Mol. Biol. Rev. 75:4636–63
    [Google Scholar]
  62. 62.  Hsu Y-P, Rittichier J, Kuru E, Yablonowski J, Pasciak E et al. 2017. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem. Sci. 290:30540–50
    [Google Scholar]
  63. 63.  Cserti E, Rosskopf S, Chang Y-W, Eisheuer S, Selter L et al. 2017. Dynamics of the peptidoglycan biosynthetic machinery in the stalked budding bacterium Hyphomonas neptunium. Mol. Microbiol. 103:5875–95
    [Google Scholar]
  64. 64.  Chen Y, Erickson HP 2005. Rapid in vitro assembly dynamics and subunit turnover of FtsZ demonstrated by fluorescence resonance energy transfer. J. Biol. Chem. 280:2322549–54
    [Google Scholar]
  65. 65.  Szwedziak P, Wang Q, Bharat TAM, Tsim M, Löwe J 2014. Architecture of the ring formed by the tubulin homologue FtsZ in bacterial cell division. eLife 3:e04601
    [Google Scholar]
  66. 66.  Yang X, Lyu Z, Miguel A, McQuillen R, Huang KC, Xiao J 2017. GTPase activity–coupled treadmilling of the bacterial tubulin FtsZ organizes septal cell wall synthesis. Science 355:6326744–47
    [Google Scholar]
  67. 67.  Boersma MJ, Kuru E, Rittichier JT, VanNieuwenhze MS, Brun YV, Winkler ME 2015. Minimal peptidoglycan (PG) turnover in wild-type and PG hydrolase and cell division mutants of Streptococcus pneumoniae D39 growing planktonically and in host-relevant biofilms. J. Bacteriol. 197:213472–85
    [Google Scholar]
  68. 68.  Bisicchia P, Noone D, Lioliou E, Howell A, Quigley S et al. 2007. The essential YycFG two-component system controls cell wall metabolism in Bacillus subtilis. Mol. Microbiol. 65:1180–200
    [Google Scholar]
  69. 69.  Doyle RJ, Chaloupka J, Vinter V 1988. Turnover of cell walls in microorganisms. Microbiol. Rev. 52:4554–67
    [Google Scholar]
  70. 70.  Tomasz A, McDonnell M, Westphal M, Zanati E 1975. Coordinated incorporation of nascent peptidoglycan and teichoic acid into pneumococcal cell walls and conservation of peptidoglycan during growth. J. Biol. Chem. 250:1337–41
    [Google Scholar]
  71. 71.  Johnson JW, Fisher JF, Mobashery S 2013. Bacterial cell-wall recycling. Ann. NY Acad. Sci. 1277:154–75
    [Google Scholar]
  72. 72.  Moulder JW. 1993. Why is Chlamydia sensitive to penicillin in the absence of peptidoglycan?. Infect. Agents Dis. 2:287–99
    [Google Scholar]
  73. 73.  Liechti GW, Kuru E, Hall E, Kalinda A, Brun YV et al. 2013. A new metabolic cell-wall labelling method reveals peptidoglycan in Chlamydia trachomatis. Nature 506:7489507–10
    [Google Scholar]
  74. 74.  Moulder JW, Novosel DL, Officer JE 1963. Inhibition of the growth of agents of the psittacosis group by d-cycloserine and its specific reversal by d-alanine. J. Bacteriol. 85:707–11
    [Google Scholar]
  75. 75.  Stephens RS, Kalman S, Lammel C, Fan J, Marathe R et al. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282:5389754–59
    [Google Scholar]
  76. 76.  McCoy AJ, Maurelli AT 2005. Characterization of Chlamydia MurC-Ddl, a fusion protein exhibiting d-alanyl-d-alanine ligase activity involved in peptidoglycan synthesis and d-cycloserine sensitivity. Mol. Microbiol. 57:141–52
    [Google Scholar]
  77. 77.  Patin D, Bostock J, Chopra I, Mengin-Lecreulx D, Blanot D 2012. Biochemical characterisation of the chlamydial MurF ligase, and possible sequence of the chlamydial peptidoglycan pentapeptide stem. Arch. Microbiol. 194:6505–12
    [Google Scholar]
  78. 78.  Kolb HC, Finn MG, Sharpless KB 2001. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40:112004–21
    [Google Scholar]
  79. 79.  Neuhaus FC, Hammes WP 1981. Inhibition of cell wall biosynthesis by analogues of alanine. Pharmacol. Ther. 14:3265–319
    [Google Scholar]
  80. 80.  Klein EA, Schlimpert S, Hughes V, Brun YV, Thanbichler M, Gitai Z 2013. Physiological role of stalk lengthening in Caulobacter crescentus. Commun. Integr. Biol. 6:4e24561
    [Google Scholar]
  81. 81.  Jiang C, Brown PJB, Ducret A, Brun YV 2014. Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature 506:7489489–93
    [Google Scholar]
  82. 82.  Coltharp C, Xiao J 2012. Superresolution microscopy for microbiology. Cell Microbiol 14:121808–18
    [Google Scholar]
  83. 83.  Jennings PC, Cox GC, Monahan LG, Harry EJ 2011. Super-resolution imaging of the bacterial cytokinetic protein FtsZ. Micron 42:4336–41
    [Google Scholar]
  84. 84.  Rust MJ, Bates M, Zhuang X 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3:10793–96
    [Google Scholar]
  85. 85.  Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:57931642–45
    [Google Scholar]
  86. 86.  Biteen JS, Thompson MA, Tselentis NK, Bowman GR, Shapiro L, Moerner WE 2008. Super-resolution imaging in live Caulobacter crescentus cells using photoswitchable EYFP. Nat. Methods 5:11947–49
    [Google Scholar]
  87. 87.  Fu G, Huang T, Buss J, Coltharp C, Hensel Z, Xiao J 2010. In vivo structure of the E. coli FtsZ-ring revealed by photoactivated localization microscopy (PALM). PLOS ONE 5:9e12682
    [Google Scholar]
  88. 88.  Begemann I, Galic M 2016. Correlative light electron microscopy: connecting synaptic structure and function. Front. Synaptic Neurosci. 8:281–12
    [Google Scholar]
  89. 89.  Bock DD, Lee W-CA, Kerlin AM, Andermann ML, Hood G et al. 2011. Network anatomy and in vivo physiology of visual cortical neurons. Nature 471:7337177–82
    [Google Scholar]
  90. 90.  Lee WA, Bonin V, Reed M, Graham BJ, Hood G et al. 2016. Anatomy and function of an excitatory network in the visual cortex. Nature 532:370–74
    [Google Scholar]
  91. 91.  Zhou J, Ma H 2016. Design principles of spectroscopic probes for biological applications. Chem. Sci. 7:106309–15
    [Google Scholar]
  92. 92.  Daniel RA, Errington J 2003. Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell 113:6767–76
    [Google Scholar]
  93. 93.  Liang H, DeMeester KE, Hou C-W, Parent MA, Caplan JL, Grimes CL 2017. Metabolic labelling of the carbohydrate core in bacterial peptidoglycan and its applications. Nat. Commun. 8:15015
    [Google Scholar]
  94. 94.  Gautam S, Kim T, Shoda T, Sen S, Deep D et al. 2015. An activity-based probe for studying crosslinking in live bacteria. Angew. Chem. Int. Ed. Engl. 54:3610492–96
    [Google Scholar]
  95. 95.  Briggs MS, Burns DD, Cooper ME, Gregory SJ, Atáz EM et al. 2000. A pH sensitive fluorescent cyanine dye for biological applications. Chem. Commun. 20:232323–24
    [Google Scholar]
  96. 96.  Haidekker MA, Theodorakis EA 2010. Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 4:111
    [Google Scholar]
  97. 97.  Siegrist MS, Whiteside S, Jewett JC, Aditham A, Cava F, Bertozzi CR 2013. d-Amino acid chemical reporters reveal peptidoglycan dynamics of an intracellular pathogen. ACS Chem. Biol. 8:500–5
    [Google Scholar]
  98. 98.  Lebar MD, May JM, Meeske AJ, Leiman SA, Lupoli TJ et al. 2014. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. J. Am. Chem. Soc. 136:10874–77
    [Google Scholar]
  99. 99.  Fura JM, Kearns D, Pires MM 2015. d-Amino acid probes for penicillin binding protein-based bacterial surface labeling. J. Biol. Chem. 290:30540–50
    [Google Scholar]
  100. 100.  Pidgeon SE, Fura JM, Leon W, Birabaharan M, Vezenov D, Pires MM 2015. Metabolic profiling of bacteria by unnatural C-terminated d-amino acids. Angew. Chem. Int. Ed. Engl. 546158–62
  101. 101.  Pidgeon SE, Pires MM 2015. Metabolic remodeling of bacterial surfaces via tetrazine ligations. Chem. Commun. 51:10330–33
    [Google Scholar]
  102. 102.  Pilhofer M, Aistleitner K, Biboy J, Gray J, Kuru E et al. 2013. Discovery of chlamydial peptidoglycan reveals bacteria with murein sacculi but without FtsZ. Nat. Commun. 4:2856
    [Google Scholar]
  103. 103.  Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J et al. 2014. De novo morphogenesis in L-forms via geometric control of cell growth. Mol. Microbiol. 93883–96
  104. 104.  van Teeseling MCF, Mesman RJ, Kuru E, Espaillat A, Cava F et al. 2015. Anammox planctomycetes have a peptidoglycan cell wall. Nat. Commun. 6:6878
    [Google Scholar]
  105. 105.  Liechti G, Kuru E, Packiam M, Hsu Y-P, Tekkam S et al. 2016. Pathogenic Chlamydia lack a classical sacculus but synthesize a narrow, mid-cell peptidoglycan ring, regulated by MreB, for cell division. PLOS Pathog 12:e1005590
    [Google Scholar]
  106. 106.  Tocheva EI, Lopez-Garrido J, Hughes HV, Fredlund J, Kuru E, VanNieuwenhze MS et al. 2013. Peptidoglycan transformations during Bacillus subtilis sporulation. Mol. Microbiol 88:673–86
    [Google Scholar]
  107. 107.  Berezuk AM, Goodyear M, Khursigara CM 2014. Site-directed fluorescence labeling reveals a revised N-terminal membrane topology and functional periplasmic residues in the Escherichia coli cell division protein FtsK. J. Biol. Chem. 289:3423287–301
    [Google Scholar]
  108. 108.  Kerr CH, Culham DE, Marom D, Wood JM 2014. Salinity-dependent impacts of ProQ, Prc, and Spr deficiencies on Escherichia coli cell structure. J. Bacteriol. 196:61286–96
    [Google Scholar]
  109. 109.  Möll A, Dörr T, Alvarez L, Chao MC, Davis BM et al. 2014. Cell separation in Vibrio cholerae is mediated by a single amidase whose action is modulated by two nonredundant activators. J. Bacteriol. 196:223937–48
    [Google Scholar]
  110. 110.  Monteiro JM, Fernandes PB, Vaz F, Pereira AR, Ravares AC et al. 2015. Cell shape dynamics during the staphylococcal cell cycle. Nat. Commun. 6:18055
    [Google Scholar]
  111. 111.  Samal HB, Das JK, Mahapatra RK, Suar M 2015. Molecular modeling, simulation and virtual screening of MurD ligase protein from Salmonella typhimurium LT2. J. Pharmacol. Toxicol. Methods 73:34–41
    [Google Scholar]
  112. 112.  Williams M, Hoffman MD, Daniel JJ, Madren SM, Dhroso A et al. 2016. Short-stalked Prosthecomicrobium hirschii cells have a Caulobacter-like cell cycle. J. Bacteriol. 198:71149–59
    [Google Scholar]
  113. 113.  Dajkovic A, Tesson B, Chauhan S, Courtin P, Keary R et al. 2017. Hydrolysis of peptidoglycan is modulated by amidation of meso-diaminopimelic acid and Mg2+ in Bacillus subtilis. Mol. Microbiol. 104:6972–88
    [Google Scholar]
  114. 114.  Veiga H, Pinho MG 2016. Staphylococcus aureus requires at least one FtsK/SpoIIIE protein for correct chromosome segregation. Mol. Microbiol. 103:3504–17
    [Google Scholar]
  115. 115.  Yao Q, Jewett AI, Chang YW, Oikonomou CM, Beeby M et al. 2017. Short FtsZ filaments can drive asymmetric cell envelope constriction at the onset of bacterial cytokinesis. EMBO J 36:111577–89
    [Google Scholar]
  116. 116.  Eun Y-J, Zhou M, Kiekebusch D, Schlimpert S, Trivedi RR et al. 2013. Divin: a small molecule inhibitor of bacterial divisome assembly. J. Am. Chem. Soc. 135:269768–76
    [Google Scholar]
  117. 117.  Cameron TA, Anderson-Furgeson J, Zupan JR, Zik JJ, Zambryski PC 2014. Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. mBio 5:3e01219–14
    [Google Scholar]
  118. 118.  Fleurie A, Manuse S, Zhao C, Campo N, Cluzel C et al. 2014. Interplay of the serine/threonine-kinase StkP and the paralogs DivIVA and GpsB in pneumococcal cell elongation and division. PLOS Genet 10:4e1004275
    [Google Scholar]
  119. 119.  Fleurie A, Lesterlin C, Manuse S, Zhao C, Cluzel C et al. 2014. MapZ marks the division sites and positions FtsZ rings in Streptococcus pneumoniae. Nature 516:7530259–62
    [Google Scholar]
  120. 120.  Tsui H-CT, Boersma MJ, Vella SA, Kocaoglu O, Kuru E et al. 2014. Pbp2x localizes separately from Pbp2b and other peptidoglycan synthesis proteins during later stages of cell division of Streptococcus pneumoniae D39. Mol. Microbiol. 94:121–40
    [Google Scholar]
  121. 121.  Dörr T, Davis BM, Waldor MK 2015. Endopeptidase-mediated beta lactam tolerance. PLOS Pathog. 11:4e1004850
    [Google Scholar]
  122. 122.  Liu B, Persons L, Lee L, de Boer PAJ 2015. Roles for both FtsA and the FtsBLQ subcomplex in FtsN-stimulated cell constriction in Escherichia coli. Mol. Microbiol. 95:6945–70
    [Google Scholar]
  123. 123.  Möll A, Dörr T, Alvarez L, Davis BM, Cava F, Waldor MK 2015. A d,d-carboxypeptidase is required for Vibrio cholerae halotolerance. Environ. Microbiol. 17:2527–40
    [Google Scholar]
  124. 124.  Sundararajan K, Miguel A, Desmarais SM, Meier EL, Huang KC, Goley ED 2015. The bacterial tubulin FtsZ requires its intrinsically disordered linker to direct robust cell wall construction. Nat. Commun. 6:17281
    [Google Scholar]
  125. 125.  Schirner K, Eun Y-J, Dion M, Luo Y, Helmann JD et al. 2015. Lipid-linked cell wall precursors regulate membrane association of bacterial actin MreB. Nat. Chem. Biol. 11:138–45
    [Google Scholar]
  126. 126.  Tavares AC, Fernandes PB, Carballido-López R, Pinho MG 2015. MreC and MreD proteins are not required for growth of Staphylococcus aureus. PLOS ONE 10:10e0140523
    [Google Scholar]
  127. 127.  Yakhnina AA, McManus HR, Bernhardt TG 2015. The cell wall amidase AmiB is essential for Pseudomonas aeruginosa cell division, drug resistance and viability. Mol. Microbiol. 97:5957–73
    [Google Scholar]
  128. 128.  Jutras BL, Scott M, Parry B, Biboy J, Gray J et al. 2016. Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. PNAS 113:339162–70
    [Google Scholar]
  129. 129.  Manuse S, Jean NL, Guinot M, Lavergne J-P, Laguri C et al. 2016. Structure–function analysis of the extracellular domain of the pneumococcal cell division site positioning protein MapZ. Nat. Commun. 7:12071
    [Google Scholar]
  130. 130.  Mura A, Fadda D, Perez AJ et al. 2016. Roles of the essential protein FtsA in cell growth and division in Streptococcus pneumoniae. J. Bacteriol. 199:3e00608–16
    [Google Scholar]
  131. 131.  Pereira AR, Hsin J, Król E et al. 2016. FtsZ-dependent elongation of a coccoid bacterium. mBio 7:5e00908–16
    [Google Scholar]
  132. 132.  Ranjit DK, Young KD 2016. Colanic acid intermediates prevent de novo shape recovery of Escherichia coli spheroplasts, calling into question biological roles previously attributed to colanic acid. J. Bacteriol. 198:81230–40
    [Google Scholar]
  133. 133.  Yagüe P, Willemse J, Koning RI, Rioseras B, López-García MT et al. 2016. Subcompartmentalization by cross-membranes during early growth of Streptomyces hyphae. Nat. Commun. 7:12467
    [Google Scholar]
  134. 134.  Angeles DM, Liu Y, Hartman AM, Borisova M, de Sousa Borges A et al. 2017. Pentapeptide-rich peptidoglycan at the Bacillus subtilis cell-division site. Mol. Microbiol. 104:2319–33
    [Google Scholar]
  135. 135.  Botella H, Vaubourgeix J, Lee MH, Song N, Xu W et al. 2017. Mycobacterium tuberculosis protease MarP activates a peptidoglycan hydrolase during acid stress. EMBO J 36:4536–48
    [Google Scholar]
  136. 136.  Hamouche L, Laalami S, Daerr A, Song S, Holland IB et al. 2017. Bacillus subtilis swarmer cells lead the swarm, multiply, and generate a trail of quiescent descendants. mBio 8:1e02102–16
    [Google Scholar]
  137. 137.  Sugimoto A, Maeda A, Itto K, Arimoto H 2017. Deciphering the mode of action of cell wall-inhibiting antibiotics using metabolic labeling of growing peptidoglycan in Streptococcus pyogenes. Sci. Rep. 7:11129
    [Google Scholar]
/content/journals/10.1146/annurev-biochem-062917-012921
Loading
/content/journals/10.1146/annurev-biochem-062917-012921
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error