1932

Abstract

Throughout their lifetimes, messenger RNAs (mRNAs) associate with proteins to form ribonucleoproteins (mRNPs). Since the discovery of the first mRNP component more than 40 years ago, what is known as the mRNA interactome now comprises >1,000 proteins. These proteins bind mRNAs in myriad ways with varying affinities and stoichiometries, with many assembling onto nascent RNAs in a highly ordered process during transcription and precursor mRNA (pre-mRNA) processing. The nonrandom distribution of major mRNP proteins observed in transcriptome-wide studies leads us to propose that mRNPs are organized into three major domains loosely corresponding to 5′ untranslated regions (UTRs), open reading frames, and 3′ UTRs. Moving from the nucleus to the cytoplasm, mRNPs undergo extensive remodeling as they are first acted upon by the nuclear pore complex and then by the ribosome. When not being actively translated, cytoplasmic mRNPs can assemble into large multi-mRNP assemblies or be permanently disassembled and degraded. In this review, we aim to give the reader a thorough understanding of past and current eukaryotic mRNP research.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-biochem-080111-092106
2015-06-02
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/biochem/84/1/annurev-biochem-080111-092106.html?itemId=/content/journals/10.1146/annurev-biochem-080111-092106&mimeType=html&fmt=ahah

Literature Cited

  1. Gall JG. 1.  1956. On the submicroscopic structure of chromosomes. Brookhaven Symp. Biol. 8:17–32 [Google Scholar]
  2. Dreyfuss G. 2.  1986. Structure and function of nuclear and cytoplasmic ribonucleoprotein particles. Annu. Rev. Cell Biol. 2:459–98 [Google Scholar]
  3. Kumar A, Pederson T. 3.  1975. Comparison of proteins bound to heterogeneous nuclear RNA and messenger RNA in HeLa cells. J. Mol. Biol. 96:353–65 [Google Scholar]
  4. Beyer AL, Christensen ME, Walker BW, LeStourgeon WM. 4.  1977. Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell 11:127–38 [Google Scholar]
  5. Barrieux A, Ingraham HA, David DN, Rosenfeld MG. 5.  1975. Isolation of messenger-like ribonucleoproteins. Biochemistry 14:1815–21 [Google Scholar]
  6. Blobel G. 6.  1972. Protein tightly bound to globin mRNA. Biochem. Biophys. Res. Commun. 47:88–95 [Google Scholar]
  7. Bryan RN, Hayashi M. 7.  1973. Two proteins are bound to most species of polysomal mRNA. Nat. New Biol. 244:271–74 [Google Scholar]
  8. Evdokimova VM, Wei CL, Sitikov AS, Simonenko PN, Lazarev OA. 8.  et al. 1995. The major protein of messenger ribonucleoprotein particles in somatic cells is a member of the Y-box binding transcription factor family. J. Biol. Chem. 270:3186–92 [Google Scholar]
  9. Skabkin MA, Kiselyova OI, Chernov KG, Sorokin AV, Dubrovin EV. 9.  et al. 2004. Structural organization of mRNA complexes with major core mRNP protein YB-1. Nucleic Acids Res. 32:5621–35 [Google Scholar]
  10. Wagenmakers AJ, Reinders RJ, van Venrooij WJ. 10.  1980. Cross-linking of mRNA to proteins by irradiation of intact cells with ultraviolet light. Eur. J. Biochem. 112:323–30 [Google Scholar]
  11. Dreyfuss G, Choi YD, Adam SA. 11.  1984. Characterization of heterogeneous nuclear RNA–protein complexes in vivo with monoclonal antibodies. Mol. Cell. Biol. 4:1104–14 [Google Scholar]
  12. Mayrand S, Setyono B, Greenberg JR, Pederson T. 12.  1981. Structure of nuclear ribonucleoprotein: identification of proteins in contact with poly(A)+ heterogeneous nuclear RNA in living HeLa cells. J. Cell Biol. 90:380–84 [Google Scholar]
  13. van Eekelen CA, Riemen T, van Venrooij WJ. 13.  1981. Specificity in the interaction of hnRNA and mRNA with proteins as revealed by in vivo cross linking. FEBS Lett. 130:223–26 [Google Scholar]
  14. Pinol-Roma S, Choi YD, Matunis MJ, Dreyfuss G. 14.  1988. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2:215–27 [Google Scholar]
  15. Roth MB, Murphy C, Gall JG. 15.  1990. A monoclonal antibody that recognizes a phosphorylated epitope stains lampbrush chromosome loops and small granules in the amphibian germinal vesicle. J. Cell Biol. 111:2217–23 [Google Scholar]
  16. Roth MB, Zahler AM, Stolk JA. 16.  1991. A conserved family of nuclear phosphoproteins localized to sites of polymerase II transcription. J. Cell Biol. 115:587–96 [Google Scholar]
  17. Zahler AM, Lane WS, Stolk JA, Roth MB. 17.  1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6:837–47 [Google Scholar]
  18. Long JC, Caceres JF. 18.  2009. The SR protein family of splicing factors: master regulators of gene expression. Biochem. J. 417:15–27 [Google Scholar]
  19. Zhong XY, Wang P, Han J, Rosenfeld MG, Fu XD. 19.  2009. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol. Cell 35:1–10 [Google Scholar]
  20. Boucher L, Ouzounis CA, Enright AJ, Blencowe BJ. 20.  2001. A genome-wide survey of RS domain proteins. RNA 7:1693–701 [Google Scholar]
  21. Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M. 21.  et al. 2011. Deep proteome and transcriptome mapping of a human cancer cell line. Mol. Syst. Biol. 7:548 [Google Scholar]
  22. Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J. 22.  et al. 2011. Global quantification of mammalian gene expression control. Nature 473:337–42 [Google Scholar]
  23. Sonenberg N, Morgan MA, Merrick WC, Shatkin AJ. 23.  1978. A polypeptide in eukaryotic initiation factors that crosslinks specifically to the 5′-terminal cap in mRNA. PNAS 75:4843–47 [Google Scholar]
  24. Sonenberg N, Rupprecht KM, Hecht SM, Shatkin AJ. 24.  1979. Eukaryotic mRNA cap binding protein: purification by affinity chromatography on sepharose-coupled m7GDP. PNAS 76:4345–49 [Google Scholar]
  25. Patzelt E, Blaas D, Kuechler E. 25.  1983. CAP binding proteins associated with the nucleus. Nucleic Acids Res. 11:5821–35 [Google Scholar]
  26. Rozen F, Sonenberg N. 26.  1987. Identification of nuclear cap specific proteins in HeLa cells. Nucleic Acids Res. 15:6489–500 [Google Scholar]
  27. Luo MJ, Reed R. 27.  1999. Splicing is required for rapid and efficient mRNA export in metazoans. PNAS 96:14937–42 [Google Scholar]
  28. Nagy E, Maquat LE. 28.  1998. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem. Sci. 23:198–99 [Google Scholar]
  29. Carter MS, Li S, Wilkinson MF. 29.  1996. A splicing-dependent regulatory mechanism that detects translation signals. EMBO J. 15:5965–75 [Google Scholar]
  30. Zhang J, Sun X, Qian Y, LaDuca JP, Maquat LE. 30.  1998. At least one intron is required for the nonsense-mediated decay of triosephosphate isomerase mRNA: a possible link between nuclear splicing and cytoplasmic translation. Mol. Cell. Biol. 18:5272–83 [Google Scholar]
  31. Kataoka N, Yong J, Kim VN, Velazquez F, Perkinson RA. 31.  et al. 2000. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6:673–82 [Google Scholar]
  32. Kim VN, Dreyfuss G. 32.  2001. Nuclear mRNA binding proteins couple pre-mRNA splicing and post-splicing events. Mol. Cells 12:1–10 [Google Scholar]
  33. Le Hir H, Izaurralde E, Maquat LE, Moore MJ. 33.  2000. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19:6860–69 [Google Scholar]
  34. Le Hir H, Moore MJ, Maquat LE. 34.  2000. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon–exon junctions. Genes Dev. 14:1098–108 [Google Scholar]
  35. Sauliere J, Murigneux V, Wang Z, Marquenet E, Barbosa I. 35.  et al. 2012. CLIP-seq of eIF4AIII reveals transcriptome-wide mapping of the human exon junction complex. Nat. Struct. Mol. Biol. 19:1124–31 [Google Scholar]
  36. Singh G, Kucukural A, Cenik C, Leszyk JD, Shaffer SA. 36.  et al. 2012. The cellular EJC interactome reveals higher-order mRNP structure and an EJC–SR protein nexus. Cell 151:750–64 [Google Scholar]
  37. Ballut L, Marchadier B, Baguet A, Tomasetto C, Seraphin B, Le Hir H. 37.  2005. The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat. Struct. Mol. Biol. 12:861–69 [Google Scholar]
  38. Shibuya T, Tange TO, Sonenberg N, Moore MJ. 38.  2004. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11:346–51 [Google Scholar]
  39. Merz C, Urlaub H, Will CL, Lührmann R. 39.  2007. Protein composition of human mRNPs spliced in vitro and differential requirements for mRNP protein recruitment. RNA 13:116–28 [Google Scholar]
  40. Zhang Z, Krainer AR. 40.  2007. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. PNAS 104:11574–79 [Google Scholar]
  41. Palaniswamy V, Moraes KC, Wilusz CJ, Wilusz J. 41.  2006. Nucleophosmin is selectively deposited on mRNA during polyadenylation. Nat. Struct. Mol. Biol. 13:429–35 [Google Scholar]
  42. Sagawa F, Ibrahim H, Morrison AL, Wilusz CJ, Wilusz J. 42.  2011. Nucleophosmin deposition during mRNA 3′ end processing influences poly(A) tail length. EMBO J. 30:3994–4005 [Google Scholar]
  43. Okuwaki M. 43.  2008. The structure and functions of NPM1/nucleophsmin/B23, a multifunctional nucleolar acidic protein. J. Biochem. 143:441–448 [Google Scholar]
  44. Trcek T, Larson DR, Moldon A, Query CC, Singer RH. 44.  2011. Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell 147:1484–97 [Google Scholar]
  45. Bregman A, Avraham-Kelbert M, Barkai O, Duek L, Guterman A, Choder M. 45.  2011. Promoter elements regulate cytoplasmic mRNA decay. Cell 147:1473–83 [Google Scholar]
  46. Zid BM, O'Shea EK. 46.  2014. Promoter sequences direct cytoplasmic localization and translation of mRNAs during starvation in yeast. Nature 514:117–21 [Google Scholar]
  47. Vera M, Pani B, Griffiths LA, Muchardt C, Abbott CM. 47.  et al. 2014. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. eLife 3:e03164 [Google Scholar]
  48. Baltz AG, Munschauer M, Schwanhäusser B, Vasile A, Murakawa Y. 48.  et al. 2012. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol. Cell 46:674–90 [Google Scholar]
  49. Castello A, Fischer B, Eichelbaum K, Horos R, Beckmann BM. 49.  et al. 2012. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–406 [Google Scholar]
  50. Mitchell SF, Jain S, She M, Parker R. 50.  2013. Global analysis of yeast mRNPs. Nat. Struct. Mol. Biol. 20:127–33 [Google Scholar]
  51. Fairman-Williams ME, Guenther UP, Jankowsky E. 51.  2010. SF1 and SF2 helicases: family matters. Curr. Opin. Struct. Biol. 20:313–24 [Google Scholar]
  52. Jankowsky E, Gross CH, Shuman S, Pyle AM. 52.  2000. The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403:447–51 [Google Scholar]
  53. Tanaka N, Aronova A, Schwer B. 53.  2007. Ntr1 activates the Prp43 helicase to trigger release of lariat-intron from the spliceosome. Genes Dev. 21:2312–25 [Google Scholar]
  54. Kanai Y, Dohmae N, Hirokawa N. 54.  2004. Kinesin transports RNA: isolation and characterization of an RNA-transporting granule. Neuron 43:513–25 [Google Scholar]
  55. Hentze MW, Argos P. 55.  1991. Homology between IRE-BP, a regulatory RNA-binding protein, aconitase, and isopropylmalate isomerase. Nucleic Acids Res. 19:1739–40 [Google Scholar]
  56. Rouault TA, Stout CD, Kaptain S, Harford JB, Klausner RD. 56.  1991. Structural relationship between an iron-regulated RNA-binding protein (IRE-BP) and aconitase: functional implications. Cell 64:881–83 [Google Scholar]
  57. Hentze MW, Preiss T. 57.  2010. The REM phase of gene regulation. Trends Biochem. Sci. 35:423–26 [Google Scholar]
  58. Clingman CC, Deveau LM, Hay SA, Genga RM, Shandilya SM. 58.  et al. 2014. Allosteric inhibition of a stem cell RNA-binding protein by an intermediary metabolite. eLife 3:e02848 [Google Scholar]
  59. Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Gilbert WV. 59.  2014. Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells. Nature 515:143–46 [Google Scholar]
  60. Squires JE, Patel HR, Nousch M, Sibbritt T, Humphreys DT. 60.  et al. 2012. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res. 40:5023–33 [Google Scholar]
  61. Wang X, He C. 61.  2014. Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 11:669–72 [Google Scholar]
  62. Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB. 62.  et al. 2011. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 21:1160–67 [Google Scholar]
  63. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J. 63.  et al. 2014. From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res. 24:496–510 [Google Scholar]
  64. Tian B, Manley JL. 64.  2013. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38:312–20 [Google Scholar]
  65. Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. 65.  2013. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27:2380–96 [Google Scholar]
  66. Miura P, Shenker S, Andreu-Agullo C, Westholm JO, Lai EC. 66.  2013. Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res. 23:812–25 [Google Scholar]
  67. Mayr C, Bartel DP. 67.  2009. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138:673–84 [Google Scholar]
  68. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T. 68.  et al. 2006. Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes. Genome Res. 16:55–65 [Google Scholar]
  69. Aid T, Kazantseva A, Piirsoo M, Palm K, Timmusk T. 69.  2007. Mouse and rat BDNF gene structure and expression revisited. J. Neurosci. Res. 85:525–35 [Google Scholar]
  70. Greer PL, Greenberg ME. 70.  2008. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–60 [Google Scholar]
  71. Li Y, Song MG, Kiledjian M. 71.  2008. Transcript-specific decapping and regulated stability by the human Dcp2 decapping protein. Mol. Cell. Biol. 28:939–48 [Google Scholar]
  72. Rojas-Duran MF, Gilbert WV. 72.  2012. Alternative transcription start site selection leads to large differences in translation activity in yeast. RNA 18:2299–305 [Google Scholar]
  73. Sterne-Weiler T, Martinez-Nunez RT, Howard JM, Cvitovik I, Katzman S. 73.  et al. 2013. Frac-seq reveals isoform-specific recruitment to polyribosomes. Genome Res. 23:1615–23 [Google Scholar]
  74. Schweingruber C, Rufener SC, Zünd D, Yamashita A, Mühlemann O. 74.  2013. Nonsense-mediated mRNA decay: mechanisms of substrate mRNA recognition and degradation in mammalian cells. Biochim. Biophys. Acta 1829:612–23 [Google Scholar]
  75. McGlincy NJ, Smith CW. 75.  2008. Alternative splicing resulting in nonsense-mediated mRNA decay: What is the meaning of nonsense?. Trends Biochem. Sci. 33:385–93 [Google Scholar]
  76. Hamid FM, Makeyev EV. 76.  2014. Emerging functions of alternative splicing coupled with nonsense-mediated decay. Biochem. Soc. Trans. 42:1168–73 [Google Scholar]
  77. Bicknell AA, Cenik C, Chua HN, Roth FP, Moore MJ. 77.  2012. Introns in UTRs: why we should stop ignoring them. Bioessays 34:1025–34 [Google Scholar]
  78. Maniatis T, Reed R. 78.  2002. An extensive network of coupling among gene expression machines. Nature 416:499–506 [Google Scholar]
  79. Moore MJ, Proudfoot NJ. 79.  2009. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 136:688–700 [Google Scholar]
  80. Kyburz A, Friedlein A, Langen H, Keller W. 80.  2006. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol. Cell 23:195–205 [Google Scholar]
  81. Vagner S, Vagner C, Mattaj IW. 81.  2000. The carboxyl terminus of vertebrate poly(A) polymerase interacts with U2AF 65 to couple 3′-end processing and splicing. Genes Dev. 14:403–13 [Google Scholar]
  82. Hsin JP, Manley JL. 82.  2012. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26:2119–37 [Google Scholar]
  83. Jove R, Manley JL. 83.  1984. In vitro transcription from the adenovirus 2 major late promoter utilizing templates truncated at promoter-proximal sites. J. Biol. Chem. 259:8513–21 [Google Scholar]
  84. Rasmussen EB, Lis JT. 84.  1993. In vivo transcriptional pausing and cap formation on three Drosophila heat shock genes. PNAS 90:7923–27 [Google Scholar]
  85. Cheng H, Dufu K, Lee CS, Hsu JL, Dias A, Reed R. 85.  2006. Human mRNA export machinery recruited to the 5′ end of mRNA. Cell 127:1389–400 [Google Scholar]
  86. Pabis M, Neufeld N, Steiner MC, Bojic T, Shav-Tal Y, Neugebauer KM. 86.  2013. The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. RNA 19:1054–63 [Google Scholar]
  87. Görnemann J, Kotovic KM, Hujer K, Neugebauer KM. 87.  2005. Cotranscriptional spliceosome assembly occurs in a stepwise fashion and requires the cap binding complex. Mol. Cell 19:53–63 [Google Scholar]
  88. Reichert VL, Le Hir H, Jurica MS, Moore MJ. 88.  2002. 5′ exon interactions within the human spliceosome establish a framework for exon junction complex structure and assembly. Genes Dev. 16:2778–91 [Google Scholar]
  89. Konig J, Zarnack K, Rot G, Curk T, Kayikci M. 89.  et al. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17:909–15 [Google Scholar]
  90. Huang M, Rech JE, Northington SJ, Flicker PF, Mayeda A. 90.  et al. 1994. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol. 14:518–33 [Google Scholar]
  91. Huang Y, Steitz JA. 91.  2001. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7:899–905 [Google Scholar]
  92. Huang Y, Gattoni R, Stévenin J, Steitz JA. 92.  2003. SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. Mol. Cell 11:837–43 [Google Scholar]
  93. Tafuri SR, Familari M, Wolffe AP. 93.  1993. A mouse Y box protein, MSY1, is associated with paternal mRNA in spermatocytes. J. Biol. Chem. 268:12213–20 [Google Scholar]
  94. Domínguez-Sánchez MS, Barroso S, Gómez-González B, Luna R, Aguilera A. 94.  2011. Genome instability and transcription elongation impairment in human cells depleted of THO/TREX. PLOS Genet. 7:e1002386 [Google Scholar]
  95. Li X, Manley JL. 95.  2005. Inactivation of the SR protein splicing factor ASF/SF2 results in genomic instability. Cell 122:365–78 [Google Scholar]
  96. Li X, Niu T, Manley JL. 96.  2007. The RNA binding protein RNPS1 alleviates ASF/SF2 depletion-induced genomic instability. RNA 13:2108–15 [Google Scholar]
  97. Silver DL, Watkins-Chow DE, Schreck KC, Pierfelice TJ, Larson DM. 97.  et al. 2010. The exon junction complex component Magoh controls brain size by regulating neural stem cell division. Nat. Neurosci. 13:551–58 [Google Scholar]
  98. Paulsen RD, Soni DV, Wollman R, Hahn AT, Yee MC. 98.  et al. 2009. A genome-wide siRNA screen reveals diverse cellular processes and pathways that mediate genome stability. Mol. Cell 35:228–39 [Google Scholar]
  99. Daneholt B. 99.  2001. Packing and delivery of a genetic message. Chromosoma 110:173–85 [Google Scholar]
  100. Skoglund U, Andersson K, Björkroth B, Lamb MM, Daneholt B. 100.  1983. Visualization of the formation and transport of a specific hnRNP particle. Cell 34:847–55 [Google Scholar]
  101. Batisse J, Batisse C, Budd A, Böttcher B, Hurt E. 101.  2009. Purification of nuclear poly(A)-binding protein Nab2 reveals association with the yeast transcriptome and a messenger ribonucleoprotein core structure. J. Biol. Chem. 284:34911–17 [Google Scholar]
  102. Silverman IM, Li F, Alexander A, Goff L, Trapnell C. 102.  et al. 2014. RNase-mediated protein footprint sequencing reveals protein-binding sites throughout the human transcriptome. Genome Biol. 15:R3 [Google Scholar]
  103. Carmody SR, Wente SR. 103.  2009. mRNA nuclear export at a glance. J. Cell Sci. 122:1933–37 [Google Scholar]
  104. Valencia P, Dias AP, Reed R. 104.  2008. Splicing promotes rapid and efficient mRNA export in mammalian cells. PNAS 105:3386–91 [Google Scholar]
  105. Keene JD. 105.  2007. RNA regulons: coordination of post-transcriptional events. Nat. Rev. Genet. 8:533–43 [Google Scholar]
  106. Cenik C, Chua HN, Zhang H, Tarnawsky SP, Akef A. 106.  et al. 2011. Genome analysis reveals interplay between 5′ UTR introns and nuclear mRNA export for secretory and mitochondrial genes. PLOS Genet. 7:e1001366 [Google Scholar]
  107. Brennan CM, Gallouzi IE, Steitz JA. 107.  2000. Protein ligands to HuR modulate its interaction with target mRNAs in vivo. J. Cell Biol. 151:1–14 [Google Scholar]
  108. Topisirovic I, Siddiqui N, Borden KL. 108.  2009. The eukaryotic translation initiation factor 4E (eIF4E) and HuR RNA operons collaboratively regulate the expression of survival and proliferative genes. Cell Cycle 8:960–61 [Google Scholar]
  109. Speese SD, Ashley J, Jokhi V, Nunnari J, Barria R. 109.  et al. 2012. Nuclear envelope budding enables large ribonucleoprotein particle export during synaptic Wnt signaling. Cell 149:832–46 [Google Scholar]
  110. Grünwald D, Singer RH. 110.  2010. In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467:604–7 [Google Scholar]
  111. Oeffinger M, Zenklusen D. 111.  2012. To the pore and through the pore: a story of mRNA export kinetics. Biochim. Biophys. Acta 1819:494–506 [Google Scholar]
  112. Tran EJ, Zhou Y, Corbett AH, Wente SR. 112.  2007. The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA:protein remodeling events. Mol. Cell 28:850–59 [Google Scholar]
  113. von Moeller H, Basquin C, Conti E. 113.  2009. The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat. Struct. Mol. Biol. 16:247–54 [Google Scholar]
  114. Valkov E, Dean JC, Jani D, Kuhlmann SI, Stewart M. 114.  2012. Structural basis for the assembly and disassembly of mRNA nuclear export complexes. Biochim. Biophys. Acta 1819:578–92 [Google Scholar]
  115. Dias SM, Wilson KF, Rojas KS, Ambrosio AL, Cerione RA. 115.  2009. The molecular basis for the regulation of the cap-binding complex by the importins. Nat. Struct. Mol. Biol. 16:930–37 [Google Scholar]
  116. Görlich D, Kraft R, Kostka S, Vogel F, Hartmann E. 116.  et al. 1996. Importin provides a link between nuclear protein import and U snRNA export. Cell 87:21–32 [Google Scholar]
  117. Fritzsche R, Karra D, Bennett KL, Ang FY, Heraud-Farlow JE. 117.  et al. 2013. Interactome of two diverse RNA granules links mRNA localization to translational repression in neurons. Cell Rep. 5:1749–62 [Google Scholar]
  118. Maquat LE, Hwang J, Sato H, Tang Y. 118.  2010. CBP80-promoted mRNP rearrangements during the pioneer round of translation, nonsense-mediated mRNA decay, and thereafter. Cold Spring Harb. Symp. Quant. Biol. 75:127–34 [Google Scholar]
  119. Bono F, Ebert J, Unterholzner L, Güttler T, Izaurralde E, Conti E. 119.  2004. Molecular insights into the interaction of PYM with the Mago–Y14 core of the exon junction complex. EMBO Rep. 5:304–10 [Google Scholar]
  120. Gehring NH, Lamprinaki S, Kulozik AE, Hentze MW. 120.  2009. Disassembly of exon junction complexes by PYM. Cell 137:536–48 [Google Scholar]
  121. Huang Y, Yario TA, Steitz JA. 121.  2004. A molecular link between SR protein dephosphorylation and mRNA export. PNAS 101:9666–70 [Google Scholar]
  122. Buxbaum AR, Wu B, Singer RH. 122.  2014. Single β-actin mRNA detection in neurons reveals a mechanism for regulating its translatability. Science 343:419–22 [Google Scholar]
  123. Anderson P, Kedersha N. 123.  2006. RNA granules. J. Cell Biol. 172:803–8 [Google Scholar]
  124. Batish M, van den Bogaard P, Kramer FR, Tyagi S. 124.  2012. Neuronal mRNAs travel singly into dendrites. PNAS 109:4645–50 [Google Scholar]
  125. Park HY, Lim H, Yoon YJ, Follenzi A, Nwokafor C. 125.  et al. 2014. Visualization of dynamics of single endogenous mRNA labeled in live mouse. Science 343:422–24 [Google Scholar]
  126. Krichevsky AM, Kosik KS. 126.  2001. Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32:683–96 [Google Scholar]
  127. Carson JH, Gao Y, Tatavarty V, Levin MK, Korza G. 127.  et al. 2008. Multiplexed RNA trafficking in oligodendrocytes and neurons. Biochim. Biophys. Acta 1779:453–58 [Google Scholar]
  128. Graber TE, Hébert-Seropian S, Khoutorsky A, David A, Yewdell JW. 128.  et al. 2013. Reactivation of stalled polyribosomes in synaptic plasticity. PNAS 110:16205–10 [Google Scholar]
  129. Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I. 129.  2011. RNA granules in germ cells. Cold Spring Harb. Perspect. Biol. 3a002774
  130. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C. 130.  et al. 2009. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–32 [Google Scholar]
  131. Weber SC, Brangwynne CP. 131.  2012. Getting RNA and protein in phase. Cell 149:1188–91 [Google Scholar]
  132. Schoenberg DR, Maquat LE. 132.  2012. Regulation of cytoplasmic mRNA decay. Nat. Rev. Genet. 13:246–59 [Google Scholar]
  133. Roy B, Jacobson A. 133.  2013. The intimate relationships of mRNA decay and translation. Trends Genet. 29:691–99 [Google Scholar]
  134. Bhattacharya A, Czaplinski K, Trifillis P, He F, Jacobson A, Peltz SW. 134.  2000. Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6:1226–35 [Google Scholar]
  135. Franks TM, Singh G, Lykke-Andersen J. 135.  2010. Upf1 ATPase-dependent mRNP disassembly is required for completion of nonsense-mediated mRNA decay. Cell 143:938–50 [Google Scholar]
  136. Zünd D, Gruber AR, Zavolan M, Mühlemann O. 136.  2013. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nat. Struct. Mol. Biol. 20:936–43 [Google Scholar]
  137. Hurt JA, Robertson AD, Burge CB. 137.  2013. Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res. 23:1636–50 [Google Scholar]
  138. Gregersen LH, Schueler M, Munschauer M, Mastrobuoni G, Chen W. 138.  et al. 2014. MOV10 is a 5′ to 3′ RNA helicase contributing to UPF1 mRNA target degradation by translocation along 3′ UTRs. Mol. Cell 54:573–85 [Google Scholar]
  139. Fiorini F, Boudvillain M, Le Hir H. 139.  2013. Tight intramolecular regulation of the human Upf1 helicase by its N- and C-terminal domains. Nucleic Acids Res. 41:2404–15 [Google Scholar]
  140. Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JW, Maquat LE. 140.  2008. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133:314–27 [Google Scholar]
  141. Carroll JS, Munchel SE, Weis K. 141.  2011. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. J. Cell Biol. 194:527–37 [Google Scholar]
  142. Sweet T, Kovalak C, Coller J. 142.  2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLOS Biol. 10:e1001342 [Google Scholar]
  143. Dutta A, Zheng S, Jain D, Cameron CE, Reese JC. 143.  2011. Intermolecular interactions within the abundant DEAD-box protein Dhh1 regulate its activity in vivo. J. Biol. Chem. 286:27454–70 [Google Scholar]
  144. Baer BW, Kornberg RD. 144.  1980. Repeating structure of cytoplasmic poly(A)-ribonucleoprotein. PNAS 77:1890–99 [Google Scholar]
/content/journals/10.1146/annurev-biochem-080111-092106
Loading
/content/journals/10.1146/annurev-biochem-080111-092106
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error