1932

Abstract

Stem cells hold significant promise for regeneration of tissue defects and disease-modifying therapies. Although numerous promising stem cell approaches are advancing in clinical trials, intraoperative stem cell therapies offer more immediate hope by integrating an autologous cell source with a well-established surgical intervention in a single procedure. Herein, the major developments in intraoperative stem cell approaches, from in vivo models to clinical studies, are reviewed, and the potential regenerative mechanisms and the roles of different cell populations in the regeneration process are discussed. Although intraoperative stem cell therapies have been shown to be safe and effective for several indications, there are still critical challenges to be tackled prior to adoption into the standard surgical armamentarium.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071811-150041
2012-08-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/14/1/annurev-bioeng-071811-150041.html?itemId=/content/journals/10.1146/annurev-bioeng-071811-150041&mimeType=html&fmt=ahah

Literature Cited

  1. Joneschild E, Urbaniak JR. 1.  2005. Biology of the vascularized fibular graft. Bone Generation and Repair: Biology and Clinical Applications JR Lieberman, GE Friedlaender 93–112 New York: Humana [Google Scholar]
  2. de Boer HH. 2.  1988. The history of bone grafts. Clin. Orthop. Relat. Res. 226:292–98 [Google Scholar]
  3. Fujishiro T, Kobayashi H, Bauer TW. 3.  2008. Autograft bone. Musculoskeletal Tissue Regeneration WS Pietrzak 65–79 New York: Humana [Google Scholar]
  4. Paley D, Young MC, Wiley AM, Fornasier VL, Jackson RW. 4.  1986. Percutaneous bone marrow grafting of fractures and bony defects. An experimental study in rabbits. Clin. Orthop. Relat. Res. 208:300–12 [Google Scholar]
  5. Healey JH, Zimmerman PA, McDonnell JM, Lane JM. 5.  1990. Percutaneous bone marrow grafting of delayed union and nonunion in cancer patients. Clin. Orthop. Relat. Res. 256:280–85 [Google Scholar]
  6. Connolly JF, Guse R, Tiedeman J, Dehne R. 6.  1991. Autologous marrow injection as a substitute for operative grafting of tibial nonunions. Clin. Orthop. Relat. Res. 266:259–70 [Google Scholar]
  7. Garg NK, Gaur S, Sharma S. 7.  1993. Percutaneous autogenous bone marrow grafting in 20 cases of ununited fracture. Acta Orthop. Scand. 64:671–72 [Google Scholar]
  8. Siwach RC, Sangwan SS, Singh R, Goel A. 8.  2001. Role of percutaneous bone marrow grafting in delayed unions, non-unions and poor regenerates. Indian J. Med. Sci. 55:326–36 [Google Scholar]
  9. Connolly JF.9.  1995. Injectable bone marrow preparations to stimulate osteogenic repair. Clin. Orthop. Relat. Res. 313:8–18 [Google Scholar]
  10. Rougraff BT, Kling TJ. 10.  2002. Treatment of active unicameral bone cysts with percutaneous injection of demineralized bone matrix and autogenous bone marrow. J. Bone Jt. Surg. Am. 84:921–29 [Google Scholar]
  11. Docquier P-L, Delloye C. 11.  2005. Treatment of aneurysmal bone cysts by introduction of demineralized bone and autogenous bone marrow. J. Bone Jt. Surg. Am. 87:2253–58 [Google Scholar]
  12. Friedenstein AJ.12.  1976. Precursor cells of mechanocytes. Int. Rev. Cytol. 47:327–59 [Google Scholar]
  13. Budenz RW, Bernard GW. 13.  1980. Osteogenesis and leukopoiesis within diffusion-chamber implants of isolated bone marrow subpopulations. Am. J. Anat. 159:455–74 [Google Scholar]
  14. Connolly J, Guse R, Lippiello L, Dehne R. 14.  1989. Development of an osteogenic bone-marrow preparation. J. Bone Jt. Surg. Am. 71:684–91 [Google Scholar]
  15. Hernigou P, Poignard A, Beaujean F, Rouard H. 15.  2005. Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J. Bone Jt. Surg. Am. 87:1430–37 [Google Scholar]
  16. McLain RF, Fleming JE, Boehm CA, Muschler GF. 16.  2005. Aspiration of osteoprogenitor cells for augmenting spinal fusion: comparison of progenitor cell concentrations from the vertebral body and iliac crest. J. Bone Jt. Surg. Am. 87A:2655–61 [Google Scholar]
  17. Muschler GF, Nitto H, Matsukura Y, Boehm C, Valdevit A. 17.  et al. 2003. Spine fusion using cell matrix composites enriched in bone marrow–derived cells. Clin. Orthop. Relat. Res. 407:102–18 [Google Scholar]
  18. Muschler GF, Matsukura Y, Nitto H, Boehm CA, Valdevit AD. 18.  et al. 2005. Selective retention of bone marrow–derived cells to enhance spinal fusion. Clin. Orthop. Relat. Res. 432:242–51 [Google Scholar]
  19. Oyama T, Nishimoto S, Takeda M. 19.  2005. Alveolar bone regeneration utilizing β-TCP and platelet-rich plasma (PRP) derived from bone marrow aspirate. Ann. Plast. Surg. 54:222–23 [Google Scholar]
  20. Gan Y, Dai K, Zhang P, Tang T, Zhu Z, Lu J. 20.  2008. The clinical use of enriched bone marrow stem cells combined with porous beta-tricalcium phosphate in posterior spinal fusion. Biomaterials 29:3973–82 [Google Scholar]
  21. Nishimoto S, Oyama T, Matsuda K. 21.  2007. Simultaneous concentration of platelets and marrow cells: a simple and useful technique to obtain source cells and growth factors for regenerative medicine. Wound Repair Regen. 15:156–62 [Google Scholar]
  22. Brodke D, Pedrozo HA, Kapur TA, Attawia M, Kraus KH. 22.  et al. 2006. Bone grafts prepared with selective cell retention technology heal canine segmental defects as effectively as autograft. J. Orthop. Res. 24:857–66 [Google Scholar]
  23. Lee K, Goodman SB. 23.  2009. Cell therapy for secondary osteonecrosis of the femoral condyles using the Cellect DBM System: a preliminary report. J. Arthroplasty 24:43–48 [Google Scholar]
  24. Kraus KH, Kirker-Head C. 24.  2006. Mesenchymal stem cells and bone regeneration. Vet. Surg. 35:232–42 [Google Scholar]
  25. Hernigou P, Beaujean F. 25.  2002. Treatment of osteonecrosis with autologous bone marrow grafting. Clin. Orthop. Relat. Res. 405:14–23 [Google Scholar]
  26. Gangji V, Hauzeur J-P, Matos C, De Maertelaer V, Toungouz M, Lambermont M. 26.  2004. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells: a pilot study. J. Bone Jt. Surg. Am. 86:1153–60 [Google Scholar]
  27. Gangji V, Hauzeur J-P. 27.  2005. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. J. Bone Jt. Surg. Am. 87:106–12 [Google Scholar]
  28. Hernigou P, Poignard A, Zilber S, Rouard H. 28.  2009. Cell therapy of hip osteonecrosis with autologous bone marrow grafting. Indian J. Orthop. 43:40–45 [Google Scholar]
  29. Hernigou P, Manicom O, Poignard A, Nogier A, Filippini P, De Abreu L. 29.  2004. Core decompression with marrow stem cells. Oper. Tech. Orthop. 14:68–74 [Google Scholar]
  30. Takigami H, Kumagai K, Latson L, Togawa D, Bauer T. 30.  et al. 2007. Bone formation following OP-1 implantation is improved by addition of autogenous bone marrow cells in a canine femur defect model. J. Orthop. Res. 25:1333–42 [Google Scholar]
  31. Carragee EJ, Hurwitz EL, Weiner BK. 31.  2011. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11:471–91 [Google Scholar]
  32. Chang F, Ishii T, Yanai T, Mishima H, Akaogi H. 32.  et al. 2008. Repair of large full-thickness articular cartilage defects by transplantation of autologous uncultured bone-marrow-derived mononuclear cells. J. Orthop. Res. 26:18–26 [Google Scholar]
  33. Giannini S, Buda R, Vannini F, Cavallo M, Grigolo B. 33.  2009. One-step bone marrow–derived cell transplantation in talar osteochondral lesions. Clin. Orthop. Relat. Res. 467:3307–20 [Google Scholar]
  34. Buda R, Vannini F, Cavallo M, Grigolo B, Cenacchi A, Giannini S. 34.  2010. Osteochondral lesions of the knee: a new one-step repair technique with bone-marrow-derived cells. J. Bone Jt. Surg. Am. 92:2–11 [Google Scholar]
  35. Benthien JP, Behrens P. 35.  2010. Autologous matrix-induced chondrogenesis (AMIC): combining microfracturing and a collagen I/III matrix for articular cartilage resurfacing. Cartilage 1:65–68 [Google Scholar]
  36. Benthien JP, Behrens P. 36.  2010. Autologous matrix-induced chondrogenesis (AMIC): a one-step procedure for retropatellar articular resurfacing. Acta Orthop. Belg. 76:260–63 [Google Scholar]
  37. Benthien J, Behrens P. 37.  2011. The treatment of chondral and osteochondral defects of the knee with autologous matrix-induced chondrogenesis (AMIC): method description and recent developments. Knee Surg. Sports Traumatol. Arthrosc. 19:81316–19 [Google Scholar]
  38. Steinwachs MR, Guggi T, Kreuz PC. 38.  2008. Marrow stimulation techniques. Injury 39:26–31 [Google Scholar]
  39. de Girolamo L, Bertolini G, Cervellin M, Sozzi G, Volpi P. 39.  2010. Treatment of chondral defects of the knee with one step matrix-assisted technique enhanced by autologous concentrated bone marrow: in vitro characterisation of mesenchymal stem cells from iliac crest and subchondral bone. Injury 41:1172–77 [Google Scholar]
  40. Oshima Y, Watanabe N, Matsuda K-i, Takai S, Kawata M, Kubo T. 40.  2005. Behavior of transplanted bone marrow–derived GFP mesenchymal cells in osteochondral defect as a simulation of autologous transplantation. J. Histochem. Cytochem. 53:207–16 [Google Scholar]
  41. Matoba S, Matsubara H. 41.  2009. Therapeutic angiogenesis for peripheral artery diseases by autologous bone marrow cell transplantation. Curr. Pharm. Des. 15:2769–77 [Google Scholar]
  42. Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S. 42.  et al. 2002. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–35 [Google Scholar]
  43. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K-i. 43.  et al. 2001. Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903 [Google Scholar]
  44. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y. 44.  et al. 2001. Implantation of bone marrow mononuclear cells into ischemic myocardium enhances collateral perfusion and regional function via side supply of angioblasts, angiogenic ligands, and cytokines. Circulation 104:1046–52 [Google Scholar]
  45. Miyamoto M, Yasutake M, Takano H, Takagi H, Takagi G. 45.  et al. 2004. Therapeutic angiogenesis by autologous bone marrow cell implantation for refractory chronic peripheral arterial disease using assessment of neovascularization by 99mTc-tetrofosmin (TF) perfusion scintigraphy. Cell Transplant. 13:429–37 [Google Scholar]
  46. Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D. 46.  et al. 2004. Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–18 [Google Scholar]
  47. Kohlman-Trigoboff D, Lawson JH, Murphy MP. 47.  2006. Stem cell use in a patient with an ischemic foot ulcer: a case study. J. Vasc. Nurs. 24:56–61 [Google Scholar]
  48. Franz RW, Parks A, Shah KJ, Hankins T, Hartman JF, Wright ML. 48.  2009. Use of autologous bone marrow mononuclear cell implantation therapy as a limb salvage procedure in patients with severe peripheral arterial disease. J. Vasc. Surg. 50:1378–90 [Google Scholar]
  49. Napoli C, Farzati B, Sica V, Iannuzzi E, Coppola G. 49.  et al. 2008. Beneficial effects of autologous bone marrow cell infusion and antioxidants/L-arginine in patients with chronic critical limb ischemia. Eur. J. Cardiovasc. Prev. Rehabil. 15:709–18 [Google Scholar]
  50. Hernández P, Cortina L, Artaza H, Pol N, Lam RM. 50.  et al. 2007. Autologous bone-marrow mononuclear cell implantation in patients with severe lower limb ischaemia: a comparison of using blood cell separator and Ficoll density gradient centrifugation. Atherosclerosis 194:e52–56 [Google Scholar]
  51. Koshikawa M, Shimodaira S, Yoshioka T, Kasai H, Watanabe N. 51.  et al. 2006. Therapeutic angiogenesis by bone marrow implantation for critical hand ischemia in patients with peripheral arterial disease: a pilot study. Curr. Med. Res. Opin. 22:793–98 [Google Scholar]
  52. Amann B, Luedemann C, Ratei R, Schmidt-Lucke JA. 52.  2009. Autologous bone marrow cell transplantation increases leg perfusion and reduces amputations in patients with advanced critical limb ischemia due to peripheral artery disease. Cell Transplant. 18:371–80 [Google Scholar]
  53. Matoba S, Tatsumi T, Murohara T, Imaizumi T, Katsuda Y. 53.  et al. 2008. Long-term clinical outcome after intramuscular implantation of bone marrow mononuclear cells (Therapeutic Angiogenesis by Cell Transplantation [TACT] trial) in patients with chronic limb ischemia. Am. Heart J. 156:1010–18 [Google Scholar]
  54. Kamata Y, Takahashi Y, Iwamoto M, Matsui K, Murakami Y. 54.  et al. 2007. Local implantation of autologous mononuclear cells from bone marrow and peripheral blood for treatment of ischaemic digits in patients with connective tissue diseases. Rheumatology 46:882–84 [Google Scholar]
  55. Huang P, Li S, Han M, Xiao Z, Yang R, Han ZC. 55.  2005. Autologous transplantation of granulocyte colony–stimulating factor–mobilized peripheral blood mononuclear cells improves critical limb ischemia in diabetes. Diabetes Care 28:2155–60 [Google Scholar]
  56. Kolvenbach R, Kreissig C, Cagiannos C, Afifi R, Schmaltz E. 56.  2010. Intraoperative adjunctive stem cell treatment in patients with critical limb ischemia using a novel point-of-care device. Ann. Vasc. Surg. 24:367–72 [Google Scholar]
  57. 57. US Natl. Inst. Health. 2011. Feasibility study of the TGI adipose-derived stromal cell (ASC)-coated ePTFE vascular graft (TGI-PVG-IDE). http://clinicaltrials.gov/ct2/show/NCT01305863 [Google Scholar]
  58. 58. Univ. Louisville. 2011. UofL vascular surgeons perform first prosthetic bypass graft procedure using patient's own stem cells with ‘point-of-care’ technology. http://louisville.edu/medschool/news-archive/uofl-vascular-surgeons-perform-first-prosthetic-bypass-graft-procedure-using-patient2019s-own-stem-cells-with-2018point-of-care2019-technology
  59. Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G. 59.  et al. 2006. Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am. Heart J. 151:192–97 [Google Scholar]
  60. Yaoita H, Takase S, Maruyama Y, Sato Y, Satokawa H. 60.  et al. 2005. Scintigraphic assessment of the effects of bone marrow–derived mononuclear cell transplantation combined with off-pump coronary artery bypass surgery in patients with ischemic heart disease. J. Nucl. Med. 46:1610–17 [Google Scholar]
  61. Zhao Q, Sun Y, Xia L, Chen A, Wang Z. 61.  2008. Randomized study of mononuclear bone marrow cell transplantation in patients with coronary surgery. Ann. Thorac. Surg. 86:1833–40 [Google Scholar]
  62. Ang K-L, Chin D, Leyva F, Foley P, Kubal C. 62.  et al. 2008. Randomized, controlled trial of intramuscular or intracoronary injection of autologous bone marrow cells into scarred myocardium during CABG versus CABG alone. Nat. Clin. Pract. Cardiovasc. Med. 5:663–70 [Google Scholar]
  63. Li T-S, Hamano K, Hirata K, Kobayashi T, Nishida M. 63.  2003. The safety and feasibility of the local implantation of autologous bone marrow cells for ischemic heart disease. J. Card. Surg. 18:S69–75 [Google Scholar]
  64. Ghodsizad A, Klein H-M, Borowski A, Stoldt V, Feifel N. 64.  et al. 2004. Intraoperative isolation and processing of BM-derived stem cells. Cytotherapy 6:523–26 [Google Scholar]
  65. Stamm C, Kleine HD, Westphal B, Petzsch M, Kittner C. 65.  et al. 2004. CABG and bone marrow stem cell transplantation after myocardial infarction. Thorac. Cardiovasc. Surg. 52:152–58 [Google Scholar]
  66. Klein HM, Assmann A, Lichtenberg A, Heke M. 66.  2010. Intraoperative CD133+ cell transplantation during coronary artery bypass grafting in ischemic cardiomyopathy. MMCTS 2010:3947 [Google Scholar]
  67. Donnenberg AD, Donnenberg VS, Griffin DL, Moore LR, Tekinturhan F, Kormos RL. 67.  2011. Intra-operative preparation of autologous bone marrow–derived CD34-enriched cellular products for cardiac therapy. Cytotherapy 13:4441–48 [Google Scholar]
  68. Jin P, Wang E, Wang Y-h, Huang W, Kuang W. 68.  et al. 2011. Central zone of myocardial infarction: a neglected target area for heart cell therapy. J. Cell. Mol. Med. 16:636–47 [Google Scholar]
  69. Zhao W, Schafer S, Choi J, Yamanaka YJ, Lombardi ML. 69.  et al. 2011. Cell-surface sensors for real-time probing of cellular environments. Nat. Nanotechnol. 6:524–31 [Google Scholar]
  70. Sarkar D, Vemula PK, Zhao W, Gupta A, Karnik R, Karp JM. 70.  2010. Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31:5266–74 [Google Scholar]
  71. Campagnoli C, Roberts IAG, Kumar S, Bennett PR, Bellantuono I, Fisk NM. 71.  2001. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98:2396–402 [Google Scholar]
  72. Baksh D, Davies JE, Zandstra PW. 72.  2003. Adult human bone marrow–derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion. Exp. Hematol. 31:723–32 [Google Scholar]
  73. Muschler GF, Nitto H, Boehm CA, Easley KA. 73.  2001. Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J. Orthop. Res. 19:117–25 [Google Scholar]
  74. Muschler GF, Boehm C, Easley K. 74.  1997. Aspiration to obtain osteoblast progenitor cells from human bone marrow: the influence of aspiration volume. J. Bone Jt. Surg. Am. 79:1699–709 [Google Scholar]
  75. Ichiyanagi T, Anabuki K, Nishijima Y, Ono H. 75.  2010. Isolation of mesenchymal stem cells from bone marrow wastes of spinal fusion procedure (TLIF) for low back pain patients and preparation of bone dusts for transplantable autologous bone graft with a serum glue. Biosci. Trends 4:110–18 [Google Scholar]
  76. Peng L, Jia Z, Yin X, Zhang X, Liu Y. 76.  et al. 2008. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 17:761–74 [Google Scholar]
  77. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. 77.  2006. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–301 [Google Scholar]
  78. Yoshimura H, Muneta T, Nimura A, Yokoyama A, Koga H, Sekiya I. 78.  2007. Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell Tissue Res. 327:449–62 [Google Scholar]
  79. Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P. 79.  et al. 2008. Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp. Biol. Med. 233:901–13 [Google Scholar]
  80. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW. 80.  et al. 2001. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–28 [Google Scholar]
  81. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN, Klein-Nulend J. 81.  et al. 2006. Adipose tissue–derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy 8:166–77 [Google Scholar]
  82. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. 82.  2006. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol. 24:150–54 [Google Scholar]
  83. Jurgens WJFM, van Dijk A, Zandieh Doulabi B, Niessen FB, Ritt MJPF. 83.  et al. 2009. Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Cytotherapy 11:1052–64 [Google Scholar]
  84. Jurgens WJFM, Oedayrajsingh-Varma MJ, Helder MN, Zandieh Doulabi B, Schouten TE. 84.  et al. 2008. Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res. 332:415–26 [Google Scholar]
  85. Hoogendoorn RJW, Lu ZF, Kroeze RJ, Bank RA, Wuisman PIJM, Helder MN. 85.  2008. Adipose stem cells for intervertebral disc regeneration: current status and concepts for the future. J. Cell. Mol. Med. 12:2205–16 [Google Scholar]
  86. Knippenberg M, Helder MN, Zandieh Doulabi B, Wuisman PIJM, Klein-Nulend J. 86.  2006. Osteogenesis versus chondrogenesis by BMP-2 and BMP-7 in adipose stem cells. Biochem. Biophys. Res. Commun. 342:902–8 [Google Scholar]
  87. Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PIJM. 87.  2007. Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng. 13:1799–808 [Google Scholar]
  88. Gimble J, Guilak F, Bunnell B. 88.  2010. Clinical and preclinical translation of cell-based therapies using adipose tissue–derived cells. Stem Cell Res. Ther. 1:19 [Google Scholar]
  89. Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ. 89.  et al. 2000. Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood 95:952–58 [Google Scholar]
  90. Case J, Mead LE, Bessler WK, Prater D, White HA. 90.  et al. 2007. Human CD34+AC133+VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp. Hematol. 35:1109–18 [Google Scholar]
  91. Majors AK, Boehm CA, Nitto H, Midura RJ, Muschler GF. 91.  1997. Characterization of human bone marrow stromal cells with respect to osteoblastic differentiation. J. Orthop. Res. 15:546–57 [Google Scholar]
  92. Simmons P, Torok-Storb B. 92.  1991. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78:55–62 [Google Scholar]
  93. Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N. 93.  et al. 1998. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J. Bone Miner. Res. 13:655–63 [Google Scholar]
  94. Oprea WE, Karp JM, Hosseini MM, Davies JE. 94.  2003. Effect of platelet releasate on bone cell migration and recruitment in vitro. J. Craniofac. Surg. 14:292–300 [Google Scholar]
  95. Langer HF, Gawaz M. 95.  2008. Platelets in regenerative medicine. Basic Res. Cardiol. 103:299–307 [Google Scholar]
  96. Eppley BL, Woodell JE, Higgins J. 96.  2004. Platelet quantification and growth factor analysis from platelet-rich plasma: implications for wound healing. Plast. Reconstr. Surg. 114:1502–8 [Google Scholar]
  97. Kark LR, Karp JM, Davies JE. 97.  2006. Platelet releasate increases the proliferation and migration of bone marrow–derived cells cultured under osteogenic conditions. Clin. Oral Implants Res. 17:321–27 [Google Scholar]
  98. Peterbauer-Scherb A, van Griensven M, Meinl A, Gabriel C, Redl H, Wolbank S. 98.  2010. Isolation of pig bone marrow mesenchymal stem cells suitable for one-step procedures in chondrogenic regeneration. J. Tissue Eng. Regen. Med. 4:485–90 [Google Scholar]
  99. Leitner GC, Gruber R, Neumüller J, Wagner A, Kloimstein P. 99.  et al. 2006. Platelet content and growth factor release in platelet-rich plasma: a comparison of four different systems. Vox Sang. 91:135–39 [Google Scholar]
  100. Mazzucco L, Balbo V, Cattana E, Borzini P. 100.  2008. Platelet-rich plasma and platelet gel preparation using Plateltex®. Vox Sang. 94:202–8 [Google Scholar]
  101. Kaminski A, Klopsch C, Mark P, Yerebakan C, Donndorf P. 101.  et al. 2010. Autologous valve replacement—CD133+ stem cell-plus-fibrin composite-based sprayed cell seeding for intraoperative heart valve tissue engineering. Tissue Eng. Part C 17:299–309 [Google Scholar]
  102. Zangi L, Rivkin R, Kassis I, Levdansky L, Marx G, Gorodetsky R. 102.  2006. High-yield isolation, expansion, and differentiation of rat bone marrow–derived mesenchymal stem cells with fibrin microbeads. Tissue Eng. 12:2343–54 [Google Scholar]
  103. Guo K-T, Schäfer R, Paul A, Gerber A, Ziemer G, Wendel HP. 103.  2006. A new technique for the isolation and surface immobilization of mesenchymal stem cells from whole bone marrow using high-specific DNA aptamers. Stem Cells 24:2220–31 [Google Scholar]
  104. Guo K-T, Ziemer G, Paul A, Wendel HP. 104.  2008. CELL-SELEX: novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 9:668–78 [Google Scholar]
  105. Lin K, Matsubara Y, Masuda Y, Togashi K, Ohno T. 105.  et al. 2008. Characterization of adipose tissue–derived cells isolated with the Celution™ system. Cytotherapy 10:417–26 [Google Scholar]
  106. Hicok KC, Hedrick MH. 106.  2011. Automated isolation and processing of adipose-derived stem and regenerative cells. Methods Mol. Biol. 702:87–105 [Google Scholar]
  107. Jurgens WJ, Kroeze RJ, Bank RA, Ritt MJPF, Helder MN. 107.  2011. Rapid attachment of adipose stromal cells on resorbable polymeric scaffolds facilitates the one-step surgical procedure for cartilage and bone tissue engineering purposes. J. Orthop. Res. 29:853–60 [Google Scholar]
  108. Bensaïd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H. 108.  2003. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497–502 [Google Scholar]
  109. Müller AM, Mehrkens A, Schäfer DJ, Jaquiery C, Güven S. 109.  et al. 2010. Towards an intraoperative engineering of osteogenic and vasculogenic grafts from the stromal vascular fraction of human adipose tissue. Eur. Cells Mater. 19:127–35 [Google Scholar]
  110. Rüger BM, Breuss J, Hollemann D, Yanagida G, Fischer MB. 110.  et al. 2008. Vascular morphogenesis by adult bone marrow progenitor cells in three-dimensional fibrin matrices. Differentiation 76:772–83 [Google Scholar]
  111. Syedain ZH, Weinberg JS, Tranquillo RT. 111.  2008. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl. Acad. Sci. USA 105:6537–42 [Google Scholar]
  112. Discher DE, Mooney DJ, Zandstra PW. 112.  2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–77 [Google Scholar]
  113. Hernigou P, Mathieu G, Poignard A, Manicom O, Beaujean F, Rouard H. 113.  2006. Percutaneous autologous bone-marrow grafting for nonunions: surgical technique. J. Bone Jt. Surg. Am. 88:322–27 [Google Scholar]
  114. Gupta MC, Theerajunyaporn T, Maitra S, Schmidt MB, Holy CE. 114.  et al. 2007. Efficacy of mesenchymal stem cell enriched grafts in an ovine posterolateral lumbar spine model. Spine 32:720–26 [Google Scholar]
  115. Jacobsen K, Szczepanowski K, Al-Zube LA, Kim J, Lin SS. 115.  2008. The role of intraoperative bone marrow aspirate stem cell concentration as a bone grafting technique. Tech. Foot Ankle Surg. 7:84–89 [Google Scholar]
  116. Hermann PC, Huber SL, Herrler T, von Hesler C, Andrassy J. 116.  et al. 2008. Concentration of bone marrow total nucleated cells by a point-of-care device provides a high yield and preserves their functional activity. Cell Transplant. 16:1059–69 [Google Scholar]
  117. Mehta J, Singhal S, Gordon L, Tallman M, Williams S. 117.  et al. 2002. COBE Spectra is superior to Fenwal CS-3000 Plus for collection of hematopoietic stem cells. Bone Marrow Transplant. 29:563–67 [Google Scholar]
  118. Ford CD, Lehman C, Strupp A, Kelley L. 118.  2002. Comparison of CD34+ cell collection efficiency on the COBE Spectra and Fenwal CS-3000 plus. J. Clin. Apheresis 17:17–20 [Google Scholar]
  119. Dzieczkowski JS, McGonigal M, Cook J, Sugrue M, Andersen J, Anderson KC. 119.  1995. A comparison of peripheral blood stem cell apheresis using the Fenwal CS-3000 Plus and COBE Spectra. Transfus. Sci. 16:71–77 [Google Scholar]
  120. Aktas M, Radke T, Strauer B, Wernet P, Kogler G. 120.  2008. Separation of adult bone marrow mononuclear cells using the automated closed separation system Sepax. Cytotherapy 10:203–11 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071811-150041
Loading
/content/journals/10.1146/annurev-bioeng-071811-150041
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error