1932

Abstract

Mammals are endowed with a complex set of mechanisms that sense mechanical forces imparted by blood flow to endothelial cells (ECs), smooth muscle cells, and circulating blood cells to elicit biochemical responses through a process referred to as mechanotransduction. These biochemical responses are critical for a host of other responses, including regulation of blood pressure, control of vascular permeability for maintaining adequate perfusion of tissues, and control of leukocyte recruitment during immunosurveillance and inflammation. This review focuses on the role of the endothelial surface proteoglycan/glycoprotein layer—the glycocalyx (GCX)—that lines all blood vessel walls and is an agent in mechanotransduction and the modulation of blood cell interactions with the EC surface. We first discuss the biochemical composition and ultrastructure of the GCX, highlighting recent developments that reveal gaps in our understanding of the relationship between composition and spatial organization. We then consider the roles of the GCX in mechanotransduction and in vascular permeability control and review the prominent interaction of plasma-borne sphingosine-1 phosphate (S1P), which has been shown to regulate both the composition of the GCX and the endothelial junctions. Finally, we consider the association of GCX degradation with inflammation and vascular disease and end with a final section on future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-104908
2014-07-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-104908.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-104908&mimeType=html&fmt=ahah

Literature Cited

  1. Nerem RM, Levesque MJ, Cornhill JF. 1.  1981. Vascular endothelial morphology as an indicator of the pattern of blood flow. J. Biomech. Eng. 103:172–76 [Google Scholar]
  2. Kuchan MJ, Frangos JA. 2.  1994. Role of calcium and calmodulin in flow-induced nitric oxide production in endothelial cells. Am. J. Physiol. 266:C628–36 [Google Scholar]
  3. Frangos JA, Eskin SG, McIntire LV, Ives CL. 3.  1985. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227:1477–79 [Google Scholar]
  4. Mo M, Eskin SG, Schilling WP. 4.  1991. Flow-induced changes in Ca2+ signaling of vascular endothelial cells: effect of shear stress and ATP. Am. J. Physiol. 260:H1698–707 [Google Scholar]
  5. Tarbell JM, Shi ZD, Dunn J, Jo HJ. 5.  2014. Fluid mechanics, arterial disease and gene expression. Annu. Rev. Fluid Mech. 46:591–614 [Google Scholar]
  6. Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH. 6.  2007. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–93 [Google Scholar]
  7. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr. 7.  1993. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. Proc. Natl. Acad. Sci. USA 90:4591–95 [Google Scholar]
  8. Davies PF. 8.  2009. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat. Clin. Pract. Cardiovasc. Med. 6:16–26 [Google Scholar]
  9. Curry FE, Adamson RH. 9.  2012. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann. Biomed. Eng. 40:828–39 [Google Scholar]
  10. Tarbell JM, Pahakis MY. 10.  2006. Mechanotransduction and the glycocalyx. J. Intern. Med. 259:339–50 [Google Scholar]
  11. Weinbaum S, Tarbell JM, Damiano ER. 11.  2007. The structure and function of the endothelial glycocalyx layer. Annu. Rev. Biomed. Eng. 9:121–67 [Google Scholar]
  12. Pries AR, Secomb TW, Gaehtgens P. 12.  2000. The endothelial surface layer. Pflugers Arch. 440:653–66 [Google Scholar]
  13. Seog J, Dean D, Rolauffs B, Wu T, Genzer J. 13.  et al. 2005. Nanomechanics of opposing glycosaminoglycan macromolecules. J. Biomech. 38:1789–97 [Google Scholar]
  14. Oohira A, Wight TN, Bornstein P. 14.  1983. Sulfated proteoglycans synthesized by vascular endothelial cells in culture. J. Biol. Chem. 258:2014–21 [Google Scholar]
  15. Jackson RL, Busch SJ, Cardin AD. 15.  1991. Glycosaminoglycans: molecular properties, protein interactions, and role in physiological processes. Physiol. Rev. 71:481–539 [Google Scholar]
  16. Rosenberg RD, Shworak NW, Liu J, Schwartz JJ, Zhang L. 16.  1997. Heparan sulfate proteoglycans of the cardiovascular system: Specific structures emerge but how is synthesis regulated?. J. Clin. Investig. 100:S67–75 [Google Scholar]
  17. Halden Y, Rek A, Atzenhofer W, Szilak L, Wabnig A, Kungl AJ. 17.  2004. Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem. J. 377:533–38 [Google Scholar]
  18. Kokenyesi R, Bernfield M. 18.  1994. Core protein structure and sequence determine the site and presence of heparan sulfate and chondroitin sulfate on syndecan-1. J. Biol. Chem. 269:12304–9 [Google Scholar]
  19. Simons M, Horowitz A. 19.  2001. Syndecan-4-mediated signalling. Cell Signal. 13:855–62 [Google Scholar]
  20. Yoneda A, Couchman JR. 20.  2003. Regulation of cytoskeletal organization by syndecan transmembrane proteoglycans. Matrix Biol. 22:25–33 [Google Scholar]
  21. Fransson LA, Belting M, Cheng F, Jonsson M, Mani K, Sandgren S. 21.  2004. Novel aspects of glypican glycobiology. Cell Mol. Life Sci. 61:1016–24 [Google Scholar]
  22. Cheng F, Mani K, Van den Born J, Ding K, Belting M, Fransson LA. 22.  2002. Nitric oxide-dependent processing of heparan sulfate in recycling S-nitrosylated glypican-1 takes place in caveolin-1-containing endosomes. J. Biol. Chem. 277:44431–39 [Google Scholar]
  23. Van Deurs B, Roepstorff K, Hommelgaard AM, Sandvig K. 23.  2003. Caveolae: anchored, multifunctional platforms in the lipid ocean. Trends Cell Biol. 13:92–100 [Google Scholar]
  24. Laurent TC, Fraser JR. 24.  1992. Hyaluronan. FASEB J. 6:2397–404 [Google Scholar]
  25. Henry CB, Duling BR. 25.  1999. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am. J. Physiol. 277:H508–14 [Google Scholar]
  26. Zeng Y, Ebong EE, Fu BM, Tarbell JM. 26.  2012. The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS ONE 7:e43168 [Google Scholar]
  27. Adamson RH, Clough G. 27.  1992. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. 445:473–86 [Google Scholar]
  28. Curry FE, Adamson RH. 28.  2013. Sphingosine-1-phosphate and the “albumin effect” on rat venular microvessels. FASEB J. 27:Suppl.896.2 [Google Scholar]
  29. Zeng Y, Adamson RH, Curry FR, Tarbell JM. 29.  2014. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am. J. Physiol. Heart Circ. Physiol. 306:H363–72 [Google Scholar]
  30. Giantsos-Adams KM, Koo AJ, Song S, Sakai J, Sankaran J. 30.  et al. 2013. Heparan sulfate regrowth profiles under laminar shear flow following enzymatic degradation. Cell. Mol. Bioeng. 6:160–74 [Google Scholar]
  31. Koo A, Dewey CF, García-Cardeña G. 31.  2013. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am. J. Physiol.-Cell Physiol. 304:C137–46 [Google Scholar]
  32. Reitsma S, Slaaf DW, Vink H, Van Zandvoort MA, oude Egbrink MG. 32.  2007. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 454:345–59 [Google Scholar]
  33. Ebong EE, Macaluso FP, Spray DC, Tarbell JM. 33.  2011. Imaging the endothelial glycocalyx in vitro by rapid freezing/freeze substitution transmission electron microscopy. Arterioscler. Thromb. Vasc. Biol. 31:1908–15 [Google Scholar]
  34. Rostgaard J, Qvortrup K. 34.  1997. Electron microscopic demonstrations of filamentous molecular sieve plugs in capillary fenestrae. Microvasc. Res. 53:1–13 [Google Scholar]
  35. Vink H, Duling BR. 35.  1996. Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. Circ. Res. 79:581–89 [Google Scholar]
  36. Smith ML, Long DS, Damiano ER, Ley K. 36.  2003. Near-wall micro-PIV reveals a hydrodynamically relevant endothelial surface layer in venules in vivo. Biophys. J. 85:637–45 [Google Scholar]
  37. Long DS, Smith ML, Pries AR, Ley K, Damiano ER. 37.  2004. Microviscometry reveals reduced blood viscosity and altered shear rate and shear stress profiles in microvessels after hemodilution. Proc. Natl. Acad. Sci. USA 101:10060–65 [Google Scholar]
  38. Damiano ER, Long DS, Smith ML. 38.  2004. Estimation of viscosity profiles using velocimetry data from parallel flows of linearly viscous fluids: application to microvascular haemodynamics. J. Fluid Mech. 512:1–19 [Google Scholar]
  39. Barker AL, Konopatskaya O, Neal CR, Macpherson JV, Whatmore JL. 39.  et al. 2004. Observation and characterisation of the glycocalyx of viable human endothelial cells using confocal laser scanning microscopy. Phys. Chem. Chem. Phys. 6:1006–11 [Google Scholar]
  40. Stevens AP, Hlady V, Dull RO. 40.  2007. Fluorescence correlation spectroscopy can probe albumin dynamics inside lung endothelial glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol. 293:L328–35 [Google Scholar]
  41. Yen WY, Cai B, Zeng M, Tarbell JM, Fu BM. 41.  2012. Quantification of the endothelial surface glycocalyx on rat and mouse blood vessels. Microvasc. Res. 83:337–46 [Google Scholar]
  42. Broekhuizen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H. 42.  et al. 2010. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53:2646–55 [Google Scholar]
  43. Martens RJ, Vink H, Van Oostenbrugge RJ, Staals J. 43.  2013. Sublingual microvascular glycocalyx dimensions in lacunar stroke patients. Cerebrovasc. Dis. 35:451–54 [Google Scholar]
  44. Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG. 44.  et al. 2007. Two-photon microscopy of vital murine elastic and muscular arteries: combined structural and functional imaging with subcellular resolution. J. Vasc. Res. 44:87–98 [Google Scholar]
  45. Reitsma S, Egbrink MG, Vink H, Van den Berg BM, Passos VL. 45.  et al. 2011. Endothelial glycocalyx structure in the intact carotid artery: a two-photon laser scanning microscopy study. J. Vasc. Res. 48:297–306 [Google Scholar]
  46. Van den Berg BM, Spaan JA, Vink H. 46.  2009. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch. 457:1199–206 [Google Scholar]
  47. Betteridge KB, Neal CR, Bates DO, Salmon AHJ. 47.  2013. Endothelial glycocalyx-surface layer depth measurements in single perfused microvessels by confocal microscopy in vivo and subsequent electron microscopy. Microcirculation 20:64 [Google Scholar]
  48. Van den Berg BM, Spaan JA, Rolf TM, Vink H. 48.  2006. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290:H915–20 [Google Scholar]
  49. Michel CC, Curry FR. 49.  2009. Glycocalyx volume: a critical review of tracer dilution methods for its measurement. Microcirculation 16:213–19 [Google Scholar]
  50. Squire JM, Chew M, Nneji G, Neal C, Barry J, Michel C. 50.  2001. Quasi-periodic substructure in the microvessel endothelial glycocalyx: A possible explanation for molecular filtering?. J. Struct. Biol. 136:239–55 [Google Scholar]
  51. Arkill KP, Neal CR, Mantell JM, Michel CC, Qvortrup K. 51.  et al. 2012. 3D reconstruction of the glycocalyx structure in mammalian capillaries using electron tomography. Microcirculation 19:343–51 [Google Scholar]
  52. Desjardins C, Duling BR. 52.  1990. Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit. Am. J. Physiol. 258:H647–54 [Google Scholar]
  53. Gao L, Lipowsky HH. 53.  2010. Composition of the endothelial glycocalyx and its relation to its thickness and diffusion of small solutes. Microvasc. Res. 80:394–401 [Google Scholar]
  54. Sahl SJ, Moerner WE. 54.  2013. Super-resolution fluorescence imaging with single molecules. Curr. Opin. Struct. Biol. 23:778–87 [Google Scholar]
  55. Curry FE, Michel CC. 55.  1980. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96–99 [Google Scholar]
  56. Michel CC, Curry FE. 56.  1999. Microvascular permeability. Physiol. Rev. 79:703–61 [Google Scholar]
  57. Ogston AG. 57.  1958. The spaces in a uniform random suspension of fibres. Trans. Faraday Soc. 54:1754–57 [Google Scholar]
  58. Ogston AG, Michel CC. 58.  1978. General descriptions of passive transport of neutral solute and solvent through membranes. Prog. Biophys. Mol. Biol. 34:197–217 [Google Scholar]
  59. Michel CC. 59.  1988. Capillary permeability and how it may change. J. Physiol. 404:1–29 [Google Scholar]
  60. Gouverneur M, Berg B, Nieuwdorp M, Stroes E, Vink H. 60.  2006. Vasculoprotective properties of the endothelial glycocalyx: effects of fluid shear stress. J. Intern. Med. 259:393–400 [Google Scholar]
  61. Melchior B, Frangos JA. 61.  2012. q/11-mediated intracellular calcium responses to retrograde flow in endothelial cells. Am. J. Physiol. Cell Physiol. 303:C467–73 [Google Scholar]
  62. Singleton PA, Dudek SM, Ma SF, Garcia JG. 62.  2006. Transactivation of sphingosine 1-phosphate receptors is essential for vascular barrier regulation: novel role for hyaluronan and CD44 receptor family. J. Biol. Chem. 281:34381–93 [Google Scholar]
  63. Zeng Y, Waters M, Andrews A, Honarmandi P, Ebong E. 63.  et al. 2013. Fluid shear stress induces the clustering of heparan sulfate via mobility of glypican-1 in lipid rafts. Am. J. Physiol. Heart Circ. Physiol. 305:H811–20 [Google Scholar]
  64. Florian JA, Kosky JR, Ainslie K, Pang Z, Dull RO, Tarbell JM. 64.  2003. Heparan sulfate proteoglycan is a mechanosensor on endothelial cells. Circ. Res. 93:e136–42 [Google Scholar]
  65. Pohl U, Herlan K, Huang A, Bassenge E. 65.  1991. EDRF-mediated shear-induced dilation opposes myogenic vasoconstriction in small rabbit arteries. Am. J. Physiol. 261:H2016–23 [Google Scholar]
  66. Hecker M, Mulsch A, Bassenge E, Busse R. 66.  1993. Vasoconstriction and increased flow: two principal mechanisms of shear stress-dependent endothelial autacoid release. Am. J. Physiol. 265:H828–33 [Google Scholar]
  67. Mochizuki S, Vink H, Hiramatsu O, Kajita T, Shigeto F. 67.  et al. 2003. Role of hyaluronic acid glycosaminoglycans in shear-induced endothelium-derived nitric oxide release. Am. J. Physiol. Heart Circ. Physiol. 285:H722–26 [Google Scholar]
  68. Nagy N, Freudenberger T, Melchior-Becker A, Rock K, Ter Braak M. 68.  et al. 2010. Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis. Circulation 122:2313–22 [Google Scholar]
  69. Rubio R, Ceballos G. 69.  2000. Role of the endothelial glycocalyx in dromotropic, inotropic, and arrythmogenic effects of coronary flow. Am. J. Physiol. Heart Circ. Physiol. 278:H106–16 [Google Scholar]
  70. Pahakis MY, Kosky JR, Dull RO, Tarbell JM. 70.  2007. The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress. Biochem. Biophys. Res. Commun. 355:228–33 [Google Scholar]
  71. Remuzzi A, Dewey CF Jr, Davies PF, Gimbrone MA Jr. 71.  1984. Orientation of endothelial cells in shear fields in vitro. Biorheology 21:617–30 [Google Scholar]
  72. Langille BL, Adamson SL. 72.  1981. Relationship between blood flow direction and endothelial cell orientation at arterial branch sites in rabbits and mice. Circ. Res. 48:481–88 [Google Scholar]
  73. Thi MM, Tarbell JM, Weinbaum S, Spray DC. 73.  2004. The role of the glycocalyx in reorganization of the actin cytoskeleton under fluid shear stress: a “bumper-car” model. Proc. Natl. Acad. Sci. USA 101:16483–88 [Google Scholar]
  74. Moon JJ, Matsumoto M, Patel S, Lee L, Guan JL, Li S. 74.  2005. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J. Cell Physiol. 203:166–76 [Google Scholar]
  75. Yao Y, Rabodzey A, Dewey CF Jr. 75.  2007. Glycocalyx modulates the motility and proliferative response of vascular endothelium to fluid shear stress. Am. J. Physiol. Heart Circ. Physiol. 293:H1023–30 [Google Scholar]
  76. Curry FR, Adamson RH. 76.  2010. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc. Res. 87:218–29 [Google Scholar]
  77. Dull RO, Dinavahi R, Schwartz L, Humphries DE, Berry D. 77.  et al. 2003. Lung endothelial heparan sulfates mediate cationic peptide-induced barrier dysfunction: a new role for the glycocalyx. Am. J. Physiol. Lung Cell. Mol. Physiol. 285:L986–95 [Google Scholar]
  78. Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. 78.  2003. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl. Acad. Sci. USA 100:7988–95 [Google Scholar]
  79. Ebong EE, Lopez-Quintero SV, Rizzo V, Spray DC, Tarbell JM. 79.  2014. Shear-induced endothelial NOS activation and remodeling via heparan sulfate, glypican-1, and syndecan-1. Integr. Biol. 6:338–47 [Google Scholar]
  80. Belting M. 80.  2003. Heparan sulfate proteoglycan as a plasma membrane carrier. Trends Biochem. Sci. 28:145–51 [Google Scholar]
  81. Bevan JA, Siegel G. 81.  1991. Blood vessel wall matrix flow sensor: evidence and speculation. Blood Vessels 28:552–56 [Google Scholar]
  82. Hileman RE, Fromm JR, Weiler JM, Linhardt RJ. 82.  1998. Glycosaminoglycan-protein interactions: definition of consensus sites in glycosaminoglycan binding proteins. Bioessays 20:156–67 [Google Scholar]
  83. Bishop JR, Schuksz M, Esko JD. 83.  2007. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–37 [Google Scholar]
  84. Conway D, Schwartz MA. 84.  2012. Lessons from the endothelial junctional mechanosensory complex. F1000 Biol. Rep. 4:1 [Google Scholar]
  85. Osawa M, Masuda M, Kusano K, Fujiwara K. 85.  2002. Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: Is it a mechanoresponsive molecule?. J. Cell Biol. 158:773–85 [Google Scholar]
  86. Chiu YJ, McBeath E, Fujiwara K. 86.  2008. Mechanotransduction in an extracted cell model: Fyn drives stretch- and flow-elicited PECAM-1 phosphorylation. J. Cell Biol. 182:753–63 [Google Scholar]
  87. Collins C, Guilluy C, Welch C, O'Brien ET, Hahn K. 87.  et al. 2012. Localized tensional forces on PECAM-1 elicit a global mechanotransduction response via the integrin-RhoA pathway. Curr. Biol. 22:2087–94 [Google Scholar]
  88. Dela Paz NG, Melchior B, Shayo FY, Frangos JA. 88.  2014. Heparan sulfates mediate the interaction between platelet endothelial cell adhesion molecule-1 (PECAM-1) and the Gαq/11 subunits of heterotrimeric G proteins. J. Biol. Chem. 289:117413–24 [Google Scholar]
  89. Garin G, Berk BC. 89.  2006. Flow-mediated signaling modulates endothelial cell phenotype. Endothelium 13:375–84 [Google Scholar]
  90. Giddens DP, Zarins CK, Glagov S. 90.  1993. The role of fluid mechanics in the localization and detection of atherosclerosis. J. Biomech. Eng. 115:588–94 [Google Scholar]
  91. Tedgui A, Mallat Z. 91.  2001. Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 88:877–87 [Google Scholar]
  92. Tsou JK, Gower RM, Ting HJ, Schaff UY, Insana MF. 92.  et al. 2008. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 15:311–23 [Google Scholar]
  93. Libby P. 93.  2012. Inflammation in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 32:2045–51 [Google Scholar]
  94. Davies PF, Civelek M, Fang Y, Guerraty MA, Passerini AG. 94.  2010. Endothelial heterogeneity associated with regional athero-susceptibility and adaptation to disturbed blood flow in vivo. Semin. Thromb. Hemost. 36:265–75 [Google Scholar]
  95. Sun C, Alkhoury K, Wang YI, Foster GA, Radecke CE. 95.  et al. 2012. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circ. Res. 111:1054–64 [Google Scholar]
  96. Arisaka T, Mitsumata M, Kawasumi M, Tohjima T, Hirose S. 96.  et al. 1995. Effects of shear stress on glycosaminoglycan synthesis in vascular endothelial cells. Ann. N.Y. Acad. Sci. 748:543–54 [Google Scholar]
  97. Simon SI, Nyunt T, Florine-Casteel K, Ritchie K, Ting-Beall HP. 97.  et al. 2007. Dynamics of neutrophil membrane compliance and microstructure probed with a micropipet-based piconewton force transducer. Ann. Biomed. Eng. 35:595–604 [Google Scholar]
  98. Rehm M, Bruegger D, Christ F, Conzen P, Thiel M. 98.  et al. 2007. Shedding of the endothelial glycocalyx in patients undergoing major vascular surgery with global and regional ischemia. Circulation 116:1896–906 [Google Scholar]
  99. Chiu JJ, Chen LJ, Lee PL, Lee CI, Lo LW. 99.  et al. 2003. Shear stress inhibits adhesion molecule expression in vascular endothelial cells induced by coculture with smooth muscle cells. Blood 101:2667–74 [Google Scholar]
  100. Chiu JJ, Lee PL, Chen CN, Lee CI, Chang SF. 100.  et al. 2004. Shear stress increases ICAM-1 and decreases VCAM-1 and E-selectin expressions induced by tumor necrosis factor-α in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 24:73–79 [Google Scholar]
  101. Tsao PS, Buitrago R, Chan JR, Cooke JP. 101.  1996. Fluid flow inhibits endothelial adhesiveness: nitric oxide and transcriptional regulation of VCAM-1. Circulation 94:1682–89 [Google Scholar]
  102. Tsuboi H, Ando J, Korenaga R, Takada Y, Kamiya A. 102.  1995. Flow stimulates ICAM-1 expression time and shear stress dependently in cultured human endothelial cells. Biochem. Biophys. Res. Commun. 206:988–96 [Google Scholar]
  103. Curry FR, Adamson RH. 103.  2013. Tonic regulation of vascular permeability. Acta Physiol. (Oxf.) 207:628–49 [Google Scholar]
  104. Bode C, Sensken SC, Peest U, Beutel G, Thol F. 104.  et al. 2010. Erythrocytes serve as a reservoir for cellular and extracellular sphingosine 1-phosphate. J. Cell Biochem. 109:1232–43 [Google Scholar]
  105. Venkataraman K, Lee YM, Michaud J, Thangada S, Ai Y. 105.  et al. 2008. Vascular endothelium as a contributor of plasma sphingosine 1-phosphate. Circ. Res. 102:669–76 [Google Scholar]
  106. Hanel P, Andreani P, Graler MH. 106.  2007. Erythrocytes store and release sphingosine 1-phosphate in blood. FASEB J. 21:1202–9 [Google Scholar]
  107. Kobayashi N, Yamaguchi A, Nishi T. 107.  2009. Characterization of the ATP-dependent sphingosine 1-phosphate transporter in rat erythrocytes. J. Biol. Chem. 284:21192–200 [Google Scholar]
  108. Camerer E, Regard JB, Cornelissen I, Srinivasan Y, Duong DN. 108.  et al. 2009. Sphingosine-1-phosphate in the plasma compartment regulates basal and inflammation-induced vascular leak in mice. J. Clin. Investig. 119:1871–79 [Google Scholar]
  109. Christoffersen C, Nielsen LB. 109.  2013. Apolipoprotein M: bridging HDL and endothelial function. Curr. Opin. Lipidol. 24:295–300 [Google Scholar]
  110. Ho-Tin-Noé B, Demers M, Wagner DD. 110.  2011. How platelets safeguard vascular integrity. J. Thromb. Haemost. 9:Suppl. 156–65 [Google Scholar]
  111. Stokes KY, Granger DN. 111.  2012. Platelets: a critical link between inflammation and microvascular dysfunction. J. Physiol. 590:1023–34 [Google Scholar]
  112. Wang L, Dudek SM. 112.  2009. Regulation of vascular permeability by sphingosine 1-phosphate. Microvasc. Res. 77:39–45 [Google Scholar]
  113. Adamson RH, Sarai RK, Clark JF, Altangerel A, Thirkill TL, Curry FE. 113.  2012. Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. Am. J. Physiol. Heart Circ. Physiol. 302:H1929–35 [Google Scholar]
  114. Adamson RH, Sarai RK, Altangerel A, Clark JF, Weinbaum S, Curry FE. 114.  2013. Microvascular permeability to water is independent of shear stress, but dependent on flow direction. Am. J. Physiol. Heart Circ. Physiol. 304:H1077–84 [Google Scholar]
  115. Nitz T, Eisenblatter T, Psathaki K, Galla HJ. 115.  2003. Serum-derived factors weaken the barrier properties of cultured porcine brain capillary endothelial cells in vitro. Brain Res. 981:30–40 [Google Scholar]
  116. Curry FE, Clark JF, Adamson RH. 116.  2012. Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. Am. J. Physiol. Heart Circ. Physiol. 303:H825–34 [Google Scholar]
  117. Kendall S, Michel CC. 117.  1995. The measurement of permeability in single rat venules using the red cell microperfusion technique. Exp. Physiol. 80:359–72 [Google Scholar]
  118. Neal CR, Bates DO. 118.  2002. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. J. Physiol. 543:947–57 [Google Scholar]
  119. Kajimura M, Michel CC. 119.  1999. Flow modulates the transport of K+ through the walls of single perfused mesenteric venules in anaesthetised rats. J. Physiol. 521:665–77 [Google Scholar]
  120. Kim MH, Harris NR, Tarbell JM. 120.  2005. Regulation of capillary hydraulic conductivity in response to an acute change in shear. Am. J. Physiol. Heart Circ. Physiol. 289:H2126–35 [Google Scholar]
  121. Tarbell JM. 121.  2010. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87:320–30 [Google Scholar]
  122. Yuan Y, Granger HJ, Zawieja DC, Chilian WM. 122.  1992. Flow modulates coronary venular permeability by a nitric oxide-related mechanism. Am. J. Physiol. 263:H641–46 [Google Scholar]
  123. Huxley VH, Wang JJ, Sarelius IH. 123.  2007. Adaptation of coronary microvascular exchange in arterioles and venules to exercise training and a role for sex in determining permeability responses. Am. J. Physiol. Heart Circ. Physiol. 293:H1196–205 [Google Scholar]
  124. Huxley VH, Williams DA. 124.  1996. Basal and adenosine-mediated protein flux from isolated coronary arterioles. Am. J. Physiol. 271:H1099–108 [Google Scholar]
  125. Yamawaki H, Lehoux S, Berk BC. 125.  2003. Chronic physiological shear stress inhibits tumor necrosis factor-induced proinflammatory responses in rabbit aorta perfused ex vivo. Circulation 108:1619–25 [Google Scholar]
  126. Fernández-Pisonero I, Dueñas AI, Barreiro O, Montero O, Sánchez-Madrid F, García-Rodríguez C. 126.  2012. Lipopolysaccharide and sphingosine-1-phosphate cooperate to induce inflammatory molecules and leukocyte adhesion in endothelial cells. J. Immunol. 189:5402–10 [Google Scholar]
  127. Liu Y, Collins C, Kiosses WB, Murray AM, Joshi M. 127.  et al. 2013. A novel pathway spatiotemporally activates Rac1 and redox signaling in response to fluid shear stress. J. Cell Biol. 201:863–73 [Google Scholar]
  128. Cyster JG, Schwab SR. 128.  2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94 [Google Scholar]
  129. Fyrst H, Saba JD. 129.  2010. An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat. Chem. Biol. 6:489–97 [Google Scholar]
  130. Hla T. 130.  2004. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15:513–20 [Google Scholar]
  131. Jung B, Obinata H, Galvani S, Mendelson K, Ding BS. 131.  et al. 2012. Flow-regulated endothelial S1P receptor-1 signaling sustains vascular development. Dev. Cell 23:600–10 [Google Scholar]
  132. Lewis JC, Taylor RG, Jones ND, St Clair RW, Cornhill JF. 132.  1982. Endothelial surface characteristics in pigeon coronary artery atherosclerosis. I. Cellular alterations during the initial stages of dietary cholesterol challenge. Lab. Investig. 46:123–38 [Google Scholar]
  133. Brower JB, Targovnik JH, Caplan MR, Massia SP. 133.  2010. High glucose-mediated loss of cell surface heparan sulfate proteoglycan impairs the endothelial shear stress response. Cytoskeleton (Hoboken) 67:135–41 [Google Scholar]
  134. Lopez-Quintero SV, Cancel LM, Pierides A, Antonetti D, Spray DC, Tarbell JM. 134.  2013. High glucose attenuates shear-induced changes in endothelial hydraulic conductivity by degrading the glycocalyx. PLoS ONE 8:11e78954 [Google Scholar]
  135. Danese C, Vestri AR, D'Alfonso V, Deriu G, Dispensa S. 135.  et al. 2006. Do hypertension and diabetes mellitus influence the site of atherosclerotic plaques?. Clin. Ter. 157:9–13 [Google Scholar]
  136. Reyes-Soffer G, Holleran S, Di Tullio MR, Homma S, Boden-Albala B. 136.  et al. 2010. Endothelial function in individuals with coronary artery disease with and without type 2 diabetes mellitus. Metabolism 59:1365–71 [Google Scholar]
  137. Vlahu CA, Lemkes BA, Struijk DG, Koopman MG, Krediet RT, Vink H. 137.  2012. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 23:1900–8 [Google Scholar]
  138. Salmon AH, Satchell SC. 138.  2012. Endothelial glycocalyx dysfunction in disease: albuminuria and increased microvascular permeability. J. Pathol. 226:562–74 [Google Scholar]
  139. Luft JH. 139.  1966. Fine structures of capillary and endocapillary layer as revealed by ruthenium red. Fed. Proc. 25:1773–83 [Google Scholar]
  140. Potter DR, Damiano ER. 140.  2008. The hydrodynamically relevant endothelial cell glycocalyx observed in vivo is absent in vitro. Circ. Res. 102:770–76 [Google Scholar]
  141. Devaraj S, Yun JM, Adamson G, Galvez J, Jialal I. 141.  2009. C-reactive protein impairs the endothelial glycocalyx resulting in endothelial dysfunction. Cardiovasc. Res. 84:479–84 [Google Scholar]
  142. Chappell D, Jacob M, Paul O, Rehm M, Welsch U. 142.  et al. 2009. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ. Res. 104:1313–17 [Google Scholar]
  143. Van Haaren PM, VanBavel E, Vink H, Spaan JA. 143.  2003. Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy. Am. J. Physiol. Heart Circ. Physiol. 285:H2848–56 [Google Scholar]
  144. Janczyk P, Hansen S, Bahramsoltani M, Plendl J. 144.  2010. The glycocalyx of human, bovine and murine microvascular endothelial cells cultured in vitro. J. Electron Microsc. 59:291–98 [Google Scholar]
  145. Ueda A, Shimomura M, Ikeda M, Yamaguchi R, Tanishita K. 145.  2004. Effect of glycocalyx on shear-dependent albumin uptake in endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 287:H2287–94 [Google Scholar]
  146. Singh A, Satchell SC, Neal CR, McKenzie EA, Tooke JE, Mathieson PW. 146.  2007. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J. Am. Soc. Nephrol. 18:2885–93 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-104908
Loading
/content/journals/10.1146/annurev-bioeng-071813-104908
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error