1932

Abstract

With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-071813-105108
2014-07-11
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-071813-105108.html?itemId=/content/journals/10.1146/annurev-bioeng-071813-105108&mimeType=html&fmt=ahah

Literature Cited

  1. Takahashi K, Yamanaka S. 1.  2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–76 [Google Scholar]
  2. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL. 2.  et al. 2007. Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–20 [Google Scholar]
  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T. 3.  et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72 [Google Scholar]
  4. Chin MH, Mason MJ, Xie W, Volinia S, Singer M. 4.  et al. 2009. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5:111–23 [Google Scholar]
  5. Feng Q, Lu SJ, Klimanskaya I, Gomes I, Kim D. 5.  et al. 2010. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28:704–12 [Google Scholar]
  6. Narsinh KH, Sun N, Sanchez-Freire V, Lee AS, Almeida P. 6.  et al. 2011. Single cell transcriptional profiling reveals heterogeneity of human induced pluripotent stem cells. J. Clin. Investig. 121:1217–21 [Google Scholar]
  7. Bilic J, Izpisua Belmonte JC. 7.  2012. Concise review: Induced pluripotent stem cells versus embryonic stem cells: close enough or yet too far apart?. Stem Cells 30:33–41 [Google Scholar]
  8. Abyzov A, Mariani J, Palejev D, Zhang Y, Haney MS. 8.  et al. 2012. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 492:438–42 [Google Scholar]
  9. Yamanaka S. 9.  2012. Induced pluripotent stem cells: past, present and future. Cell Stem Cell 10:678–84 [Google Scholar]
  10. Okita K, Ichisaka T, Yamanaka S. 10.  2007. Generation of germline-competent induced pluripotent stem cells. Nature 448:313–17 [Google Scholar]
  11. Zhao T, Zhang ZN, Rong Z, Xu Y. 11.  2011. Immunogenicity of induced pluripotent stem cells. Nature 474:212–15 [Google Scholar]
  12. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. 12.  2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–53 [Google Scholar]
  13. Okita K, Matsumura Y, Sato Y, Okada A, Morizane A. 13.  et al. 2011. A more eficient method to generate integration-free human iPS cells. Nat. Methods 8:409–12 [Google Scholar]
  14. Warren L, Manos PD, Ahfeldt T, Loh YH, Li H. 14.  et al. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:618–30 [Google Scholar]
  15. Kim D, Kim CH, Moon JI, Chung YG, Chang MY. 15.  et al. 2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–76 [Google Scholar]
  16. Judson RL, Babiarz JE, Venere M, Blelloch R. 16.  2009. Embryonic stem cell–specific microRNAs promote induced pluripotency. Nat. Biotechnol. 27:459–61 [Google Scholar]
  17. Melton C, Judson RL, Blelloch R. 17.  2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:621–26 [Google Scholar]
  18. Anokye-Danso F, Trivedi CM, Juhr D, Gupta M, Cui Z. 18.  et al. 2011. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell 8:376–88 [Google Scholar]
  19. Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M. 19.  et al. 2008. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat. Biotechnol. 26:795–97 [Google Scholar]
  20. Li Y, Zhang Q, Yin X, Yang W, Du Y. 20.  et al. 2011. Generation of iPSCs from mouse fibroblasts with a single gene, Oct4, and small molecules. Cell Res. 21:196–204 [Google Scholar]
  21. Li W, Tian E, Chen ZX, Sun G, Ye P. 21.  et al. 2012. Identification of Oct4-activating compounds that enhance reprogramming efficiency. Proc. Natl. Acad. Sci. USA 109:20853–58 [Google Scholar]
  22. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE. 22.  et al. 2009. A small-molecule inhibitor of Tgf-β signaling replaces Sox2 in reprogramming by inducing Nanog. Cell Stem Cell 5:491–503 [Google Scholar]
  23. Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S. 23.  et al. 2009. A chemical platform for improved induction of human iPSCs. Nat. Methods 6:805–8 [Google Scholar]
  24. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S. 24.  2008. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–74 [Google Scholar]
  25. Buganim Y, Faddah DA, Jaenisch R. 25.  2013. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 14:427–39 [Google Scholar]
  26. Hou P, Li Y, Zhang X, Liu C, Guan J. 26.  et al. 2013. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341:651–54 [Google Scholar]
  27. Downing TL, Soto J, Morez C, Houssin T, Fritz A. 27.  et al. 2013. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12:1154–62 [Google Scholar]
  28. Fluri DA, Tonge PD, Song H, Baptista RP, Shakiba N. 28.  et al. 2012. Derivation, expansion and differentiation of induced pluripotent stem cells in continuous suspension cultures. Nat. Methods 9:509–16 [Google Scholar]
  29. Zhao Y, Yin X, Qin H, Zhu F, Liu H. 29.  et al. 2008. Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3:5475–79 [Google Scholar]
  30. Singh A, Suri S, Lee T, Chilton JM, Cooke MT. 30.  et al. 2013. Adhesion strength-based, label-free isolation of human pluripotent stem cells. Nat. Methods 10:5438–44 [Google Scholar]
  31. Rais Y, Zviran A, Geula S, Gafni O, Chomsky E. 31.  et al. 2013. Deterministic direct reprogramming of somatic cells to pluripotency. Nature 502:65–70 [Google Scholar]
  32. Lei Y, Schaffer DV. 31a.  2013. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation. Proc. Natl. Acad. Sci. USA 110:525039–48 [Google Scholar]
  33. Serra M, Brito C, Correia C, Alves PM. 32.  2012. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 30:6350–59 [Google Scholar]
  34. Wilson JL, McDevitt TC. 33.  2013. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation. Biotechnol. Bioeng. 110:3667–82 [Google Scholar]
  35. Villa-Diaz LG, Ross AM, Lahann J, Krebsbach PH. 34.  2013. Concise review: The evolution of human pluripotent stem cell culture: from feeder cells to synthetic coatings. Stem Cells 31:11–7 [Google Scholar]
  36. de Peppo GM, Sladkova M, Sjövall P, Palmquist A, Oudina K. 35.  et al. 2013. Human embryonic stem cell-derived mesodermal progenitors display substantially increased tissue formation compared to human mesenchymal stem cells under dynamic culture conditions in a packed bed/column bioreactor. Tissue Eng. Part A 19:1–2175–87 [Google Scholar]
  37. Serra M, Brito C, Correia C, Alves PM. 36.  2012. Process engineering of human pluripotent stem cells for clinical application. Trends Biotechnol. 30:6350–59 [Google Scholar]
  38. Nakagawa Y, Nakamura S, Nakajima M, Endo H, Dohda T. 37.  et al. 2013. Two differential flows in a bioreactor promoted platelet generation from human pluripotent stem cell-derived megakaryocytes. Exp. Hematol. 41:8742–48 [Google Scholar]
  39. Cimetta E, Sirabella D, Yeager K, Davidson K, Simon J. 38.  et al. 2013. Microfluidic bioreactor for dynamic regulation of early mesodermal commitment in human pluripotent stem cells. Lab. Chip 13:3355–64 [Google Scholar]
  40. Shafa M, Day B, Yamashita A, Meng G, Liu S. 39.  et al. 2012. Derivation of iPSCs in stirred suspension bioreactors. Nat. Methods 9:5465–66 [Google Scholar]
  41. Kinney MA, Sargent CY, McDevitt TC. 40.  2011. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng. Part B Rev. 17:4249–62 [Google Scholar]
  42. Fridley KM, Fernandez I, Li MT, Kettlewell RB, Roy K. 41.  2010. Unique differentiation profile of mouse embryonic stem cells in rotary and stirred tank bioreactors. Tissue Eng. Part A 16:113285–98 [Google Scholar]
  43. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L. 42.  et al. 2013. Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 110:218680–85 [Google Scholar]
  44. Lu L, Mende M, Yang X, Körber HF, Schnittler HJ. 43.  et al. 2012. Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion. Tissue Eng. Part A 19:3–4403–14 [Google Scholar]
  45. Liao J, Guo X, Grande-Allen KJ, Kasper FK, Mikos AG. 44.  2010. Bioactive polymer/extracellular matrix scaffolds fabricated with a flow perfusion bioreactor for cartilage tissue engineering. Biomaterials 31:348911–20 [Google Scholar]
  46. Want AJ, Nienow AW, Hewitt CJ, Coopman K. 45.  2012. Large-scale expansion and exploitation of pluripotent stem cells for regenerative medicine purposes: beyond the T flask. Regen. Med. 7:171–84 [Google Scholar]
  47. Sun LY, Lin SZ, Li YS, Harn HJ, Chiou TW. 46.  2011. Functional cells cultured on microcarriers for use in regenerative medicine research. Cell Transplant. 20:149–62 [Google Scholar]
  48. Olmer R, Haase A, Merkert S, Cui W, Palecek J. 47.  et al. 2010. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 5:151–64 [Google Scholar]
  49. Cao N, Liang H, Huang J, Wang J, Chen Y. 48.  et al. 2013. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions. Cell Res. 23:91119–32 [Google Scholar]
  50. Wang Y, Chou BK, Dowey S, He C, Gerecht S, Cheng L. 49.  2013. Scalable expansion of human induced pluripotent stem cells in the defined xeno-free E8 medium under adherent and suspension culture conditions. Stem Cell Res. 11:31103–16 [Google Scholar]
  51. Fontes A, Macarthur CC, Lieu PT, Vemuri MC. 50.  2013. Generation of human-induced pluripotent stem cells (hiPSCs) using episomal vectors on defined Essential 8™ Medium conditions. Methods Mol. Biol. 997:57–72 [Google Scholar]
  52. Yang JJ, Liu JF, Kurokawa T, Kitada K, Gong JP. 51.  2012. Hydrogels as feeder-free scaffolds for long-term self-renewal of mouse induced pluripotent stem cells. J. Tissue Eng. Regen. Med. In press. doi: 10.1002/term.1640
  53. Kehoe DE, Jing D, Lock LT, Tzanakakis ES. 52.  2010. Scalable stirred-suspension bioreactor culture of human pluripotent stem cells. Tissue Eng. Part A 16:2405–21 [Google Scholar]
  54. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K. 53.  et al. 2008. Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–17 [Google Scholar]
  55. Zhang J, Wilson GF, Soerens AG, Koonce CH, Yu J. 54.  et al. 2009. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104:e30–41 [Google Scholar]
  56. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A. 55.  et al. 2009. Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120:1513–23 [Google Scholar]
  57. Shimoji K, Yuasa S, Onizuka T, Hattori F, Tanaka T. 56.  et al. 2010. G-CSF promotes the proliferation of developing cardiomyocytes in vivo and in derivation from ESCs and iPSCs. Cell Stem Cell 6:227–37 [Google Scholar]
  58. Engler AJ, Carag-Krieger C, Johnson CP, Raab M, Tang HY. 57.  et al. 2008. Embryonic cardiomyocytes beat best on a matrix with heart-like elasticity: Scar-like rigidity inhibits beating. J. Cell Sci. 121:3794–802 [Google Scholar]
  59. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y. 58.  et al. 2013. Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat. Methods 10:781–87 [Google Scholar]
  60. Yang L, Soonpaa MH, Adler ED, Roepke TK, Kattman SJ. 59.  et al. 2008. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453:524–28 [Google Scholar]
  61. Narazaki G, Uosaki H, Teranishi M, Okita K, Kim B. 60.  et al. 2008. Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118:498–506 [Google Scholar]
  62. Taura D, Sone M, Homma K, Oyamada N, Takahashi K. 61.  et al. 2009. Induction and isolation of vascular cells from human induced pluripotent stem cells—brief report. Arterioscler. Thromb. Vasc. Biol. 29:1100–3 [Google Scholar]
  63. Moretti A, Bellin M, Jung CB, Thies TM, Takashima Y. 62.  et al. 2010. Mouse and human induced pluripotent stem cells as a source for multipotent Isl1+ cardiovascular progenitors. FASEB J. 24:700–11 [Google Scholar]
  64. Park SW, Koh YJ, Jeon J, Cho YH, Jang MJ. 63.  et al. 2010. Efficient differentiation of human pluripotent stem cells into functional CD34+ progenitor cells by combined modulation of the MEK/ERK and BMP4 signaling pathways. Blood 116:5762–72 [Google Scholar]
  65. Choi KD, Yu J, Smuga-Otto K, Salvagiotto G, Rehrauer W. 64.  et al. 2009. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27:559–67 [Google Scholar]
  66. Grigoriadis AE, Kennedy M, Bozec A, Brunton F, Stenbeck G. 65.  et al. 2010. Directed differentiation of hematopoietic precursors and functional osteoclasts from human ES and iPS cells. Blood 115:2769–76 [Google Scholar]
  67. Hu BY, Zhang SC. 66.  2009. Differentiation of spinal motor neurons from pluripotent human stem cells. Nat. Protoc. 4:1295–304 [Google Scholar]
  68. Hu BY, Du ZW, Zhang SC. 67.  2009. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat. Protoc. 4:1614–22 [Google Scholar]
  69. Lee G, Chambers SM, Tomishima MJ, Studer L. 68.  2010. Derivation of neural crest cells from human pluripotent stem cells. Nat. Protoc. 5:688–701 [Google Scholar]
  70. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. 69.  2009. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27:275–80 [Google Scholar]
  71. Zhou J, Su P, Li D, Tsang S, Duan E, Wang F. 70.  2010. High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28:1741–50 [Google Scholar]
  72. Haque A, Yue XS, Motazedian A, Tagawa Y, Akaike T. 71.  2012. Characterization and neural differentiation of mouse embryonic and induced pluripotent stem cells on cadherin-based substrata. Biomaterials 33:5094–106 [Google Scholar]
  73. Kuo YC, Huang MJ. 72.  2012. Material-driven differentiation of induced pluripotent stem cells in neuron growth factor-grafted poly(epsilon-caprolactone)-poly(beta-hydroxybutyrate) scaffolds. Biomaterials 33:5672–82 [Google Scholar]
  74. Keung AJ, Asuri P, Kumar S, Schaffer DV. 73.  2012. Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr. Biol. (Camb.) 4:1049–58 [Google Scholar]
  75. Saha K, Keung AJ, Irwin EF, Li Y, Little L. 74.  et al. 2008. Substrate modulus directs neural stem cell behavior. Biophys. J. 95:4426–38 [Google Scholar]
  76. Ankam S, Suryana M, Chan LY, Moe AA, Teo BK. 75.  et al. 2013. Substrate topography and size determine the fate of human embryonic stem cells to neuronal or glial lineage. Acta Biomater. 9:4535–45 [Google Scholar]
  77. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D. 76.  et al. 2008. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl. Acad. Sci. USA 105:5856–61 [Google Scholar]
  78. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW. 77.  et al. 2009. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–77 [Google Scholar]
  79. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H. 78.  et al. 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–21 [Google Scholar]
  80. Karumbayaram S, Novitch BG, Patterson M, Umbach JA, Richter L. 79.  et al. 2009. Directed differentiation of human-induced pluripotent stem cells generates active motor neurons. Stem Cells 27:806–11 [Google Scholar]
  81. Marchetto MC, Carromeu C, Acab A, Yu D, Yeo GW. 80.  et al. 2010. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143:527–39 [Google Scholar]
  82. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N. 81.  et al. 2011. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473:221–25 [Google Scholar]
  83. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ. 82.  et al. 2009. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–6 [Google Scholar]
  84. Wang A, Tang Z, Park IH, Zhu Y, Patel S. 83.  et al. 2011. Induced pluripotent stem cells for neural tissue engineering. Biomaterials 32:5023–32 [Google Scholar]
  85. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M. 84.  et al. 2010. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 107:12704–9 [Google Scholar]
  86. Si-Tayeb K, Noto FK, Sepac A, Sedlic F, Bosnjak ZJ. 85.  et al. 2010. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev. Biol. 10:81 [Google Scholar]
  87. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z. 86.  et al. 2010. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51:329–35 [Google Scholar]
  88. Chen YF, Tseng CY, Wang HW, Kuo HC, Yang VW, Lee OK. 87.  2012. Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 55:1193–203 [Google Scholar]
  89. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. 88.  2008. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:627–32 [Google Scholar]
  90. Ieda M, Fu JD, Delgado-Olguin P, Vedantham V, Hayashi Y. 89.  et al. 2010. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142:375–86 [Google Scholar]
  91. Qian L, Huang Y, Spencer CI, Foley A, Vedantham V. 90.  et al. 2012. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485:593–98 [Google Scholar]
  92. Song K, Nam YJ, Luo X, Qi X, Tan W. 91.  et al. 2012. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485:599–604 [Google Scholar]
  93. Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Südhof TC, Wernig M. 92.  2010. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–41 [Google Scholar]
  94. Ambasudhan R, Talantova M, Coleman R, Yuan X, Zhu S. 93.  et al. 2011. Direct reprogramming of adult human fibroblasts to functional neurons under defined conditions. Cell Stem Cell 9:113–18 [Google Scholar]
  95. Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F. 94.  et al. 2012. Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell 11:471–76 [Google Scholar]
  96. Huang P, He Z, Ji S, Sun H, Xiang D. 95.  et al. 2011. Induction of functional hepatocyte-like cells from mouse fibroblasts by defined factors. Nature 475:386–89 [Google Scholar]
  97. Sekiya S, Suzuki A. 96.  2011. Direct conversion of mouse fibroblasts to hepatocyte-like cells by defined factors. Nature 475:390–93 [Google Scholar]
  98. Efe JA, Hilcove S, Kim J, Zhou H, Ouyang K. 97.  et al. 2011. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13:215–22 [Google Scholar]
  99. Thier M, Worsdorfer P, Lakes YB, Gorris R, Herms S. 98.  et al. 2012. Direct conversion of fibroblasts into stably expandable neural stem cells. Cell Stem Cell 10:473–79 [Google Scholar]
  100. Margariti A, Winkler B, Karamariti E, Zampetaki A, Tsai TN. 99.  et al. 2012. Direct reprogramming of fibroblasts into endothelial cells capable of angiogenesis and reendothelialization in tissue-engineered vessels. Proc. Natl. Acad. Sci. USA 109:13793–98 [Google Scholar]
  101. Karamariti E, Margariti A, Winkler B, Wang X, Hong X. 100.  et al. 2013. Smooth muscle cells differentiated from reprogrammed embryonic lung fibroblasts through DKK3 signaling are potent for tissue engineering of vascular grafts. Circ. Res. 112:1433–43 [Google Scholar]
  102. Nunes SS, Song H, Chiang CK, Radisic M. 101.  2011. Stem cell-based cardiac tissue engineering. J. Cardiovasc. Transl. Res. 4:5592–602 [Google Scholar]
  103. Aguado BA, Mulyasasmita W, Su J, Lampe KJ, Heilshorn SC. 102.  2012. Improving viability of stem cells during syringe needle flow through the design of hydrogel cell carriers. Tissue Eng. Part A 18:7–8806–15 [Google Scholar]
  104. Bellin M, Marchetto MC, Gage FH, Mummery CL. 103.  2012. Induced pluripotent stem cells: the new patient?. Nat. Rev. Mol. Cell Biol. 13:11713–26 [Google Scholar]
  105. Malan D, Friedrichs S, Fleischmann BK, Sasse P. 104.  2011. Cardiomyocytes obtained from induced pluripotent stem cells with long-QT syndrome 3 recapitulate typical disease-specific features in vitro. Circ. Res. 109:8841–47 [Google Scholar]
  106. Sinnecker D, Goedel A, Dorn T, Dirschinger RJ, Moretti A, Laugwitz KL. 105.  2013. Modeling long-QT syndromes with iPS cells. J. Cardiovasc. Transl. Res. 6:131–36 [Google Scholar]
  107. Song B, Sun G, Herszfeld D, Sylvain A, Campanale NV. 106.  et al. 2012. Neural differentiation of patient specific iPS cells as a novel approach to study the pathophysiology of multiple sclerosis. Stem Cell Res. 8:2259–73 [Google Scholar]
  108. Yahata N, Asai M, Kitaoka S, Takahashi K, Asaka I. 107.  et al. 2011. Anti-Aβ drug screening platform using human iPS cell-derived neurons for the treatment of Alzheimer's disease. PLoS ONE 6:9e25788 [Google Scholar]
  109. Tanaka T, Takahashi K, Yamane M, Tomida S, Nakamura S. 108.  et al. 2012. Induced pluripotent stem cells from CINCA syndrome patients as a model for dissecting somatic mosaicism and drug discovery. Blood 120:61299–308 [Google Scholar]
  110. Zou J, Mali P, Huang X, Dowey SN, Cheng L. 109.  2011. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood 118:174599–608 [Google Scholar]
  111. Liu J, Verma PJ, Evans-Galea MV, Delatycki MB, Michalska A. 110.  et al. 2011. Generation of induced pluripotent stem cell lines from Friedreich ataxia patients. Stem Cell Rev. 7:3703–13 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-071813-105108
Loading
/content/journals/10.1146/annurev-bioeng-071813-105108
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error