1932

Abstract

When Segré and Silberberg in 1961 witnessed particles in a laminar pipe flow congregating at an annulus in the pipe, scientists were perplexed and spent decades learning why such behavior occurred, finally understanding that it was caused by previously unknown forces on particles in an inertial flow. The advent of microfluidics opened a new realm of possibilities for inertial focusing in the processing of biological fluids and cellular suspensions and created a field that is now rapidly expanding. Over the past five years, inertial focusing has enabled high-throughput, simple, and precise manipulation of bodily fluids for a myriad of applications in point-of-care and clinical diagnostics. This review describes the theoretical developments that have made the field of inertial focusing what it is today and presents the key applications that will make inertial focusing a mainstream technology in the future.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-121813-120704
2014-07-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-121813-120704.html?itemId=/content/journals/10.1146/annurev-bioeng-121813-120704&mimeType=html&fmt=ahah

Literature Cited

  1. Pamme N. 1.  2007. Continuous flow separations in microfluidic devices. Lab Chip 7:1644–59 [Google Scholar]
  2. Gossett DR, Weaver WM, Mach AJ, Hur SC, Tse HTK. 2.  et al. 2010. Label-free cell separation and sorting in microfluidic systems. Anal. Bioanal. Chem. 397:3249–67 [Google Scholar]
  3. Di Carlo D, Irimia D, Tompkins R, Toner M. 3.  2007. Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl. Acad. Sci. USA 104:18892–97 [Google Scholar]
  4. Choi S, Song S, Choi C, Park JK. 4.  2008. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles. Anal. Chem. 81:50–55 [Google Scholar]
  5. Loutherback K, Chou KS, Newman J, Puchalla J, Austin RH, Sturm JC. 5.  2010. Improved performance of deterministic lateral displacement arrays with triangular posts. Microfluid. Nanofluid. 9:1143–49 [Google Scholar]
  6. Huh D, Bahng J, Ling Y, Wei H, Kripfgans O. 6.  et al. 2007. A gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79:1369–76 [Google Scholar]
  7. Morton K, Loutherback K, Inglis D, Tsui O, Sturm J. 7.  et al. 2008. Hydrodynamic metamaterials: microfabricated arrays to steer, refract, and focus streams of biomaterials. Proc. Natl. Acad. Sci. USA 105:7434–38 [Google Scholar]
  8. Choi S, Ku T, Song S, Choi C, Park J-K. 8.  2011. Hydrophoretic high-throughput selection of platelets in physiological shear-stress range. Lab Chip 11:413–18 [Google Scholar]
  9. Choi S, Song S, Choi C, Park J. 9.  2007. Continuous blood cell separation by hydrophoretic filtration. Lab Chip 7:1532–38 [Google Scholar]
  10. Huang LR, Cox EC, Austin RH, Sturm JC. 10.  2004. Continuous particle separation through deterministic lateral displacement. Science 304:987–90 [Google Scholar]
  11. Inglis DW, Davis JA, Austin RH, Sturm JC. 11.  2006. Critical particle size for fractionation by deterministic lateral displacement. Lab Chip 6:655–58 [Google Scholar]
  12. Kralj J, Lis M, Schmidt M, Jensen K. 12.  2006. Continuous dielectrophoretic size-based particle sorting. Anal. Chem. 78:5019–25 [Google Scholar]
  13. Zhu J, Tzeng T-RJ, Xuan X. 13.  2010. Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31:1382–88 [Google Scholar]
  14. Voldman J. 14.  2006. Electrical forces for microscale cell manipulation. Annu. Rev. Biomed. Eng. 8:425–54 [Google Scholar]
  15. Petersson F, Åberg L, Swärd-Nilsson AM, Laurell T. 15.  2007. Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79:5117–23 [Google Scholar]
  16. Miltenyi S, Müller W, Weichel W, Radbruch A. 16.  1990. High gradient magnetic cell separation with MACS. Cytometry 11:231–38 [Google Scholar]
  17. Toner M, Irimia D. 17.  2005. Blood-on-a-chip. Annu. Rev. Biomed. Eng. 7:77–103 [Google Scholar]
  18. Lenshof A, Laurell T. 18.  2010. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39:1203–17 [Google Scholar]
  19. Tsutsui H, Ho C-M. 19.  2009. Cell separation by non-inertial force fields in microfluidic systems. Mech. Res. Commun. 36:92–103 [Google Scholar]
  20. Whitesides G. 20.  2006. The origins and the future of microfluidics. Nature 442:368–73 [Google Scholar]
  21. Segré G, Silberberg A. 21.  1961. Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–10 [Google Scholar]
  22. Rubinow S, Keller JB. 22.  1961. The transverse force on a spinning sphere moving in a viscous fluid. J. Fluid Mech. 11:447–59 [Google Scholar]
  23. Matas J, Morris J, Guazzelli É. 23.  2004. Lateral forces on a sphere. Oil Gas Sci. Technol. 59:59–70 [Google Scholar]
  24. Feng J, Hu H, Joseph D. 24.  1994. Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2: Couette and Poiseuille flows. J. Fluid Mech. 277:271–301 [Google Scholar]
  25. Saffman PG. 25.  1965. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22:385–400 [Google Scholar]
  26. Repetti R, Leonard E. 26.  1964. Segré-Silberberg annulus formation: a possible explanation. Nature 203:1346–48 [Google Scholar]
  27. Jeffrey R, Pearson J. 27.  2006. Particle motion in laminar vertical tube flow. J. Fluid Mech. 22:721–35 [Google Scholar]
  28. Ho B, Leal L. 28.  1974. Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65:365–400 [Google Scholar]
  29. Vasseur P, Cox R. 29.  1976. The lateral migration of a spherical particle in two-dimensional shear flows. J. Fluid Mech. 78:385–413 [Google Scholar]
  30. Zhou J, Papautsky I. 30.  2013. Fundamentals of inertial focusing in microchannels. Lab Chip 13:1121–32 [Google Scholar]
  31. Dean WR. 31.  1928. Fluid motion in a curved channel. Proc. R. Soc. A Math. Phys. Eng. Sci. 121:402–20 [Google Scholar]
  32. Berger S, Talbot L, Yao L. 32.  1983. Flow in curved pipes. Annu. Rev. Fluid Mech. 15:461–512 [Google Scholar]
  33. Vriend HJD. 33.  1981. Velocity redistribution in curved rectangular channels. J. Fluid Mech. 107:423–39 [Google Scholar]
  34. Norouzi M, Biglari N. 34.  2013. An analytical solution for Dean flow in curved ducts with rectangular cross section. Phys. Fluids 25:053602 [Google Scholar]
  35. Cheng K, Akiyama M. 35.  1970. Laminar forced convection heat transfer in curved rectangular channels. Int. J. Heat Mass Transf. 13:471–90 [Google Scholar]
  36. Di Carlo D, Edd J, Irimia D, Tompkins R, Toner M. 36.  2008. Equilibrium separation and filtration of particles using differential inertial focusing. Anal. Chem. 80:2204–11 [Google Scholar]
  37. Zeng L, Najjar F, Balachandar S, Fischer P. 37.  2009. Forces on a finite-sized particle located close to a wall in a linear shear flow. Phys. Fluids 21:033302 [Google Scholar]
  38. Di Carlo D, Edd J, Humphry K, Stone H, Toner M. 38.  2009. Particle segregation and dynamics in confined flows. Phys. Rev. Lett. 102:094503 [Google Scholar]
  39. Asmolov E. 39.  1999. The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J. Fluid Mech. 381:63–87 [Google Scholar]
  40. Choi Y-S, Seo K-W, Lee S-J. 40.  2011. Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab Chip 11:460–65 [Google Scholar]
  41. Choi Y-S, Lee S-J. 41.  2010. Holographic analysis of three-dimensional inertial migration of spherical particles in micro-scale pipe flow. Microfluid. Nanofluid. 9:819–29 [Google Scholar]
  42. Zhou J, Giridhar PV, Kasper S, Papautsky I. 42.  2013. Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13:1919–29 [Google Scholar]
  43. Matas J-P, Morris Guazzelli JF. 43.  2004. Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515:171–95 [Google Scholar]
  44. Matas J-P, Morris Guazzelli J. 44.  2009. Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621:59–67 [Google Scholar]
  45. Ciftlik A, Ettori M, Gijs M. 45.  2013. High throughput-per-footprint inertial focusing. Small 9:2764–73 [Google Scholar]
  46. Bhagat A, Kuntaegowdanahalli S, Papautsky I. 46.  2008. Continuous particle separation in spiral microchannels using Dean flows and differential migration. Lab Chip 8:1906–14 [Google Scholar]
  47. Gossett DR, Carlo DD. 47.  2009. Particle focusing mechanisms in curving confined flows. Anal. Chem. 81:8459–65 [Google Scholar]
  48. Guan G, Wu L, Bhagat AA, Li Z, Chen PCY. 48.  et al. 2013. Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci. Rep. 3:1495 [Google Scholar]
  49. Hasni A, Göbbels K, Thiebes A, Bräunig P, Mokwa W, Schnakenberg U. 49.  2011. Focusing and sorting of particles in spiral microfluidic channels. Procedia Eng. 25:1197–200 [Google Scholar]
  50. Kemna E, Schoeman R, Wolbers F, Vermes I, Weitz DA, Van Den Berg A. 50.  2012. High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab Chip 12:2881–87 [Google Scholar]
  51. Martel J, Toner M. 51.  2012. Inertial focusing dynamics in spiral microchannels. Phys. Fluids 24:032001 [Google Scholar]
  52. Oakey J, Applegate R Jr, Arellano E, Di Carlo D. 52.  2010. Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal. Chem. 82:3862–67 [Google Scholar]
  53. Russom A, Gupta A, Nagrath S, Carlo D, Edd J, Toner M. 53.  2009. Differential inertial focusing of particles in curved low-aspect-ratio microchannels. New J. Phys. 11:075025 [Google Scholar]
  54. Seo J, Lean M, Kole A. 54.  2007. Membrane-free microfiltration by asymmetric inertial migration. Appl. Phys. Lett. 91:033901 [Google Scholar]
  55. Seo KW, Choi YS, Lee SJ. 55.  2012. Dean-coupled inertial migration and transient focusing of particles in a curved microscale pipe flow. Exp. Fluids 53:1867–77 [Google Scholar]
  56. Xiang N, Chen K, Sun D, Wang S, Yi H, Ni Z. 56.  2012. Quantitative characterization of the focusing process and dynamic behavior of differently sized microparticles in a spiral microchannel. Microfluid. Nanofluid. 14:89–99 [Google Scholar]
  57. Xiang N, Yi H, Chen K, Sun D, Jiang D. 57.  et al. 2013. High-throughput inertial particle focusing in a curved microchannel: insights into the flow-rate regulation mechanism and process model. Biomicrofluidics 7:044116 [Google Scholar]
  58. Kuntaegowdanahalli SS, Bhagat AAS, Kumar G, Papautsky I. 58.  2009. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9:2973–80 [Google Scholar]
  59. Martel JM, Toner M. 59.  2013. Particle focusing in curved microfluidic channels. Sci. Rep. 3:3340 [Google Scholar]
  60. Di Carlo D. 60.  2009. Inertial microfluidics. Lab Chip 9:3038–46 [Google Scholar]
  61. Wu L, Guan G, Hou H, Bhagat A, Han J. 61.  2012. Separation of leukocytes from blood using spiral channel with trapezoid cross-section. Anal. Chem. 84:9324–31 [Google Scholar]
  62. Bhagat A, Kuntaegowdanahalli S, Papautsky I. 62.  2008. Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys. Fluids 20:101702 [Google Scholar]
  63. Majid EW, Guan G, Khoo BL, Lee WC, Bhagat AAS. 63.  et al. 2013. Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14:128–37 [Google Scholar]
  64. Park J, Song S, Jung H. 64.  2009. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels. Lab Chip 9:939–48 [Google Scholar]
  65. Wang X, Zhou J, Papautsky I. 65.  2013. Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity. Biomicrofluidics 7:044119 [Google Scholar]
  66. Hur SC, Mach AJ, Di Carlo D. 66.  2011. High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:022206 [Google Scholar]
  67. Zhang J, Li M, Li W, Alici G. 67.  2013. Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. J. Micromech. Microeng. 23:085023 [Google Scholar]
  68. Park JS, Jung HI. 68.  2009. Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Anal. Chem. 81:8280–88 [Google Scholar]
  69. Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D. 69.  2011. Automated cellular sample preparation using a Centrifuge-on-a-Chip. Lab Chip 11:2827–34 [Google Scholar]
  70. Chung A, Pulido D, Oka JC, Amini H, Masaeli M, Di Carlo D. 70.  2013. Microstructure-induced helical vortices allow single-stream and long-term inertial focusing. Lab Chip 13:2942–49 [Google Scholar]
  71. Chung AJ, Gossett DR, Di Carlo D. 71.  2012. Three dimensional, sheathless, and high-throughput microparticle inertial focusing through geometry-induced secondary flows. Small 9:685–90 [Google Scholar]
  72. Ookawara S, Higashi R, Street D, Ogawa K. 72.  2004. Feasibility study on concentration of slurry and classification of contained particles by microchannel. Chem. Eng. J. 101:171–78 [Google Scholar]
  73. Ookawara S, Oozeki N, Ogawa K, Löb P, Hessel V. 73.  2010. Process intensification of particle separation by lift force in arc microchannel with bifurcation. Chem. Eng. Proc. Process Intensif. 49:696–702 [Google Scholar]
  74. Hur SC, Choi SE, Kwon S, Di Carlo D. 74.  2011. Inertial focusing of non-spherical microparticles. Appl. Phys. Lett. 99:044101 [Google Scholar]
  75. Masaeli M, Sollier E, Amini H, Mao W, Camacho K. 75.  et al. 2012. Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2:031017 [Google Scholar]
  76. Hur SC, Henderson-MacLennan NK, McCabe ERB, Di Carlo D. 76.  2011. Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–20 [Google Scholar]
  77. Takemura F, Takagi S, Magnaudet J, Matsumoto Y. 77.  2002. Drag and lift forces on a bubble rising near a vertical wall in a viscous liquid. J. Fluid Mech. 461:277–300 [Google Scholar]
  78. Takemura F, Magnaudet J. 78.  2003. The transverse force on clean and contaminated bubbles rising near a vertical wall at moderate Reynolds number. J. Fluid Mech. 495:235–53 [Google Scholar]
  79. Leal L. 79.  1980. Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12:435–76 [Google Scholar]
  80. Amini H, Sollier E, Weaver WM, Di Carlo D. 80.  2012. Intrinsic particle-induced lateral transport in microchannels. Proc. Natl. Acad. Sci. USA 109:11593–98 [Google Scholar]
  81. Lee W, Amini H, Stone HA, Di Carlo D. 81.  2010. Dynamic self-assembly and control of microfluidic particle crystals. Proc. Natl. Acad. Sci. USA 107:22413–18 [Google Scholar]
  82. Humphry KJ. 82.  2009. Low Reynolds number flows for microfluidic technologies: instabilities, drops, and inertially ordered particles PhD Thesis, Harvard Univ., Cambridge, MA
  83. Humphry KJ, Kulkarni PM, Weitz DA, Morris JF, Stone HA. 83.  2010. Axial and lateral particle ordering in finite Reynolds number channel flows. Phys. Fluids 22:081703 [Google Scholar]
  84. Matas J, Glezer V, Guazzelli É, Morris J. 84.  2004. Trains of particles in finite-Reynolds-number pipe flow. Phys. Fluids 16:4192–95 [Google Scholar]
  85. Huang P, Joseph D. 85.  2000. Effects of shear thinning on migration of neutrally buoyant particles in pressure driven flow of Newtonian and viscoelastic fluids. J. Non-Newtonian Fluid Mech. 90:159–85 [Google Scholar]
  86. Lim EJ, Ober TJ, Edd JF, McKinley GH, Toner M. 86.  2012. Visualization of microscale particle focusing in diluted and whole blood using particle trajectory analysis. Lab Chip 12:2199–210 [Google Scholar]
  87. Nam J, Lim H, Kim D, Jung H, Shin S. 87.  2012. Continuous separation of microparticles in a microfluidic channel via the elasto-inertial effect of non-Newtonian fluid. Lab Chip 12:1347–54 [Google Scholar]
  88. Yang S, Kim J, Lee S, Lee S, Kim J. 88.  2010. Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab Chip 11:266–73 [Google Scholar]
  89. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM. 89.  2013. DNA-based highly tunable particle focuser. Nat. Commun. 4:2567 [Google Scholar]
  90. Lee DJ, Brenner H, Youn JR, Song YS. 90.  2013. Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep. 3:3258 [Google Scholar]
  91. Wu Z, Willing B, Bjerketorp J, Jansson JK, Hjort K. 91.  2009. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9:1193–99 [Google Scholar]
  92. Hur SC, Tse HTK, Di Carlo D. 92.  2010. Sheathless inertial cell ordering for extreme throughput flow cytometry. Lab Chip 10:274–80 [Google Scholar]
  93. Bhagat AAS, Kuntaegowdanahalli SS, Kaval N, Seliskar CJ, Papautsky I. 93.  2010. Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices 12:187–95 [Google Scholar]
  94. Mao X, Lin S-C, Dong C, Huang T. 94.  2009. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9:1583–89 [Google Scholar]
  95. Kotz KT, Petrofsky AC, Haghgooie R, Granier R, Toner M, Tompkins RG. 95.  2013. Inertial focusing cytometer with integrated optics for particle characterization. Technology 1:27–36 [Google Scholar]
  96. Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT. 96.  et al. 2013. Inertial focusing for tumor antigen–dependent and –independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5:179ra47 [Google Scholar]
  97. Mach AJ, Di Carlo D. 97.  2010. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol. Bioeng. 107:302–11 [Google Scholar]
  98. Kersaudy-Kerhoas M, Dhariwal R, Desmulliez MPY, Jouvet L. 98.  2010. Hydrodynamic blood plasma separation in microfluidic channels. Microfluid. Nanofluid. 8:105–14 [Google Scholar]
  99. Faivre M, Abkarian M, Bickraj K, Stone HA. 99.  2006. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma. Biorheology 43:147–59 [Google Scholar]
  100. Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H. 100.  et al. 2012. Separation of cancer cells from a red blood cell suspension using inertial force. Lab Chip 12:4336–43 [Google Scholar]
  101. Tanaka T, Ishikawa T, Numayama-Tsuruta K, Imai Y, Ueno H. 101.  et al. 2011. Inertial migration of cancer cells in blood flow in microchannels. Biomed. Microdevices 14:25–33 [Google Scholar]
  102. Sun J, Li M, Liu C, Zhang Y, Liu D. 102.  et al. 2012. Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12:3952–60 [Google Scholar]
  103. Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA. 103.  et al. 2013. Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci. Rep. 3:1259 [Google Scholar]
  104. Bhagat A, Hou H, Li L, Lim C, Han J. 104.  2011. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–78 [Google Scholar]
  105. Sollier E, Go DE, Che J, Gossett DR, O'Byrne S. 105.  et al. 2014. Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77 [Google Scholar]
  106. Nivedita N, Papautsky I. 106.  2013. Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7:054101 [Google Scholar]
  107. Lee WC, Bhagat AAS, Huang S, Van Vliet KJ, Han J, Lim CT. 107.  2011. High-throughput cell cycle synchronization using inertial forces in spiral microchannels. Lab Chip 11:1359–67 [Google Scholar]
  108. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG. 108.  et al. 2012. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl. Acad. Sci. USA 109:7630–35 [Google Scholar]
  109. Hansson J, Karlsson MJ, Haraldsson T, Brismar H, Van Der Wijngaart W, Russom A. 109.  2012. Inertial microfluidics in parallel channels for high-throughput applications. Lab Chip 12:4644–50 [Google Scholar]
  110. Gossett DR, Tse HTK, Dudani JS, Goda K, Woods TA. 110.  et al. 2012. Inertial manipulation and transfer of microparticles across laminar fluid streams. Small 8:2757–64 [Google Scholar]
  111. Dudani JS, Gossett DR, Tse HTK, Di Carlo D. 111.  2013. Pinched-flow hydrodynamic stretching of single-cells. Lab Chip 13:3728–34 [Google Scholar]
  112. Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M. 112.  et al. 2013. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5:212ra163 [Google Scholar]
  113. Lagus T, Edd J. 113.  2013. A review of the theory, methods and recent applications of high-throughput single-cell droplet microfluidics. J. Phys. D Appl. Phys. 46:114005 [Google Scholar]
  114. Edd J, Di Carlo D, Humphry K, Köster S, Irimia D. 114.  et al. 2008. Controlled encapsulation of single cells into monodisperse picoliter drops. Lab Chip 8:1262–64 [Google Scholar]
  115. Edd J, Lagus T. 115.  2012. High throughput single-cell and multiple-cell micro-encapsulation. J. Vis. Exp. 64:e4096 [Google Scholar]
  116. Hur S, Yun H. 116.  2013. Sequential multi-molecule delivery using vortex-assisted electroporation. Lab Chip 13:2764–72 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-121813-120704
Loading
/content/journals/10.1146/annurev-bioeng-121813-120704
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error