1932

Abstract

NF-κB (nuclear factor kappa B) family transcription factors are master regulators of immune and inflammatory processes in response to both injury and infection. In the latent state, NF-κBs are sequestered in the cytosol by their inhibitor IκB (inhibitor of NF-κB) proteins. Upon stimulations of innate immune receptors such as Toll-like receptors and cytokine receptors such as those in the TNF (tumor necrosis factor) receptor superfamily, a series of membrane proximal events lead to the activation of the IKK (IκB kinase). Phosphorylation of IκBs results in their proteasomal degradation and the release of NF-κB for nuclear translocation and activation of gene transcription. Here, we review the plethora of structural studies in these NF-κB activation pathways, including the TRAF (TNF receptor–associated factor) proteins, IKK, NF-κB, ubiquitin ligases, and deubiquitinating enzymes. Although these structures only provide snapshots of isolated processes, an emerging picture is that these signaling cascades coalesce into large oligomeric signaling complexes, or signalosomes, for signal propagation.

Keyword(s): IKKNEMOTNFToll-like receptorTRAFubiquitin
Loading

Article metrics loading...

/content/journals/10.1146/annurev-biophys-083012-130338
2013-05-06
2024-03-28
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-biophys-083012-130338
Loading
/content/journals/10.1146/annurev-biophys-083012-130338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error