1932

Abstract

Mitochondria are ancient organelles evolved from bacteria. Over the course of evolution, the behavior of mitochondria inside eukaryotic cells has changed dramatically, and the corresponding machineries that control it are in most cases new inventions. The evolution of mitochondrial behavior reflects the necessity to create a dynamic compartment to integrate the myriad mitochondrial functions with the status of other endomembrane compartments, such as the endoplasmic reticulum, and with signaling pathways that monitor cellular homeostasis and respond to stress. Here we review what has been discovered about the molecular machineries that work together to control the collective behavior of mitochondria in cells, as well as their physiological roles in healthy and disease states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-101011-155756
2014-10-06
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-101011-155756.html?itemId=/content/journals/10.1146/annurev-cellbio-101011-155756&mimeType=html&fmt=ahah

Literature Cited

  1. Alavi MV, Bette S, Schimpf S, Schuettauf F, Schraermeyer U. et al. 2007. A splice site mutation in the murine Opa1 gene features pathology of autosomal dominant optic atrophy. Brain J. Neurol. 130:1029–42 [Google Scholar]
  2. Alexander C, Votruba M, Pesch UE, Thiselton DL, Mayer S. et al. 2000. OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat. Genet. 26:211–15 [Google Scholar]
  3. Alirol E, James D, Huber D, Marchetto A, Vergani L. et al. 2006. The mitochondrial fission protein hFis1 requires the endoplasmic reticulum gateway to induce apoptosis. Mol. Biol. Cell 17:4593–605 [Google Scholar]
  4. Altmann K, Frank M, Neumann D, Jakobs S, Westermann B. 2008. The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181:119–30 [Google Scholar]
  5. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC. et al. 2014. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 204:919–29 [Google Scholar]
  6. Anton F, Fres JM, Schauss A, Pinson B, Praefcke GJ. et al. 2011. Ugo1 and Mdm30 act sequentially during Fzo1-mediated mitochondrial outer membrane fusion. J. Cell Sci. 124:1126–35 [Google Scholar]
  7. Ardail D, Privat JP, Egret-Charlier M, Levrat C, Lerme F, Louisot P. 1990. Mitochondrial contact sites. Lipid composition and dynamics. J. Biol. Chem. 265:18797–802 [Google Scholar]
  8. Arnoult D, Grodet A, Lee YJ, Estaquier J, Blackstone C. 2005a. Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J. Biol. Chem. 280:35742–50 [Google Scholar]
  9. Arnoult D, Rismanchi N, Grodet A, Roberts RG, Seeburg DP. et al. 2005b. Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr. Biol. 15:2112–18 [Google Scholar]
  10. Axe EL, Walker SA, Manifava M, Chandra P, Roderick HL. et al. 2008. Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J. Cell Biol. 182:685–701 [Google Scholar]
  11. Baker MJ, Lampe PA, Stojanovski D, Korwitz A, Anand R. et al. 2014. Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J. 33:578–93 [Google Scholar]
  12. Baloh RH, Schmidt RE, Pestronk A, Milbrandt J. 2007. Altered axonal mitochondrial transport in the pathogenesis of Charcot-Marie-Tooth disease from mitofusin 2 mutations. J. Neurosci. 27:422–30 [Google Scholar]
  13. Ban T, Heymann JA, Song Z, Hinshaw JE, Chan DC. 2010. OPA1 disease alleles causing dominant optic atrophy have defects in cardiolipin-stimulated GTP hydrolysis and membrane tubulation. Hum. Mol. Genet. 19:2113–22 [Google Scholar]
  14. Ban-Ishihara R, Ishihara T, Sasaki N, Mihara K, Ishihara N. 2013. Dynamics of nucleoid structure regulated by mitochondrial fission contributes to cristae reformation and release of cytochrome c. Proc. Natl. Acad. Sci. USA 110:11863–68 [Google Scholar]
  15. Belenkiy R, Haefele A, Eisen MB, Wohlrab H. 2000. The yeast mitochondrial transport proteins: new sequences and consensus residues, lack of direct relation between consensus residues and transmembrane helices, expression patterns of the transport protein genes, and protein-protein interactions with other proteins. Biochim. Biophys. Acta1467207–18
  16. Bian X, Klemm RW, Liu TY, Zhang M, Sun S. et al. 2011. Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes. Proc. Natl. Acad. Sci. USA 108:3976–81 [Google Scholar]
  17. Birky CW Jr. 1994. Relaxed and stringent genomes: why cytoplasmic genes don't obey Mendel's laws. J. Hered. 85:355–65 [Google Scholar]
  18. Birner R, Burgermeister M, Schneiter R, Daum G. 2001. Roles of phosphatidylethanolamine and of its several biosynthetic pathways in Saccharomyces cerevisiae. Mol. Biol. Cell 12:997–1007 [Google Scholar]
  19. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A. et al. 1999. The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1:298–304 [Google Scholar]
  20. Bogenhagen DF. 2012. Mitochondrial DNA nucleoid structure. Biochim. Biophys. Acta 1819:914–20 [Google Scholar]
  21. Boldogh IR, Nowakowski DW, Yang HC, Chung H, Karmon S. et al. 2003. A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14:4618–27 [Google Scholar]
  22. Boldogh IR, Ramcharan SL, Yang HC, Pon LA. 2004. A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol. Biol. Cell 15:3994–4002 [Google Scholar]
  23. Boldogh IR, Yang HC, Nowakowski WD, Karmon SL, Hays LG. et al. 2001. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. Sci. USA 98:3162–67 [Google Scholar]
  24. Bramkamp M. 2012. Structure and function of bacterial dynamin-like proteins. Biol. Chem. 393:1203–14 [Google Scholar]
  25. Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC. 2003. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 160:1115–27 [Google Scholar]
  26. Brown TA, Tkachuk AN, Shtengel G, Kopek BG, Bogenhagen DF. et al. 2011. Superresolution fluorescence imaging of mitochondrial nucleoids reveals their spatial range, limits, and membrane interaction. Mol. Cell. Biol. 31:4994–5010 [Google Scholar]
  27. Bui HT, Karren MA, Bhar D, Shaw JM. 2012. A novel motif in the yeast mitochondrial dynamin Dnm1 is essential for adaptor binding and membrane recruitment. J. Cell Biol. 199:613–22 [Google Scholar]
  28. Burmann F, Ebert N, van Baarle S, Bramkamp M. 2011. A bacterial dynamin-like protein mediating nucleotide-independent membrane fusion. Mol. Microbiol. 79:1294–304 [Google Scholar]
  29. Byrnes LJ, Sondermann H. 2011. Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A. Proc. Natl. Acad. Sci. USA 108:2216–21 [Google Scholar]
  30. Castanier C, Garcin D, Vazquez A, Arnoult D. 2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11:133–38 [Google Scholar]
  31. Cereghetti GM, Stangherlin A, Martins de Brito O, Chang CR, Blackstone C. et al. 2008. Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. Proc. Natl. Acad. Sci. USA 105:15803–8 [Google Scholar]
  32. Cerveny KL, Jensen RE. 2003. The WD-repeats of Net2p interact with Dnm1p and Fis1p to regulate division of mitochondria. Mol. Biol. Cell 14:4126–39 [Google Scholar]
  33. Cerveny KL, McCaffery JM, Jensen RE. 2001. Division of mitochondria requires a novel DNM1-interacting protein, Net2p. Mol. Biol. Cell 12:309–21 [Google Scholar]
  34. Chan EY, McQuibban GA. 2012. Phosphatidylserine decarboxylase 1 (Psd1) promotes mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and alternative topogenesis of mitochondrial genome maintenance protein 1 (Mgm1). J. Biol. Chem. 287:40131–39 [Google Scholar]
  35. Chan NC, Salazar AM, Pham AH, Sweredoski MJ, Kolawa NJ. et al. 2011. Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20:1726–37 [Google Scholar]
  36. Chang CR, Blackstone C. 2007. Cyclic AMP-dependent protein kinase phosphorylation of Drp1 regulates its GTPase activity and mitochondrial morphology. J. Biol. Chem. 282:21583–87 [Google Scholar]
  37. Chappie JS, Acharya S, Leonard M, Schmid SL, Dyda F. 2010. G domain dimerization controls dynamin's assembly-stimulated GTPase activity. Nature 465:435–40 [Google Scholar]
  38. Chappie JS, Acharya S, Liu YW, Leonard M, Pucadyil TJ, Schmid SL. 2009. An intramolecular signaling element that modulates dynamin function in vitro and in vivo. Mol. Biol. Cell 20:3561–71 [Google Scholar]
  39. Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL. et al. 2011. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent powerstroke. Cell 147:209–22 [Google Scholar]
  40. Chen H, Chomyn A, Chan DC. 2005. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J. Biol. Chem. 280:26185–92 [Google Scholar]
  41. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. 2003. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J. Cell Biol. 160:189–200 [Google Scholar]
  42. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA. et al. 2010. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–89 [Google Scholar]
  43. Chen Y, Dorn GW 2nd. 2013. PINK1-phosphorylated mitofusin 2 is a Parkin receptor for culling damaged mitochondria. Science 340:471–75 [Google Scholar]
  44. Chen Y, Sheng ZH. 2013. Kinesin-1-syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol. 202:351–64 [Google Scholar]
  45. Chernyakov I, Santiago-Tirado F, Bretscher A. 2013. Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Curr. Biol. 23:1818–24 [Google Scholar]
  46. Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ. et al. 2012. Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000 [Google Scholar]
  47. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR. 2010. The BCL-2 family reunion. Mol. Cell 37:299–310 [Google Scholar]
  48. Choi SY, Huang P, Jenkins GM, Chan DC, Schiller J, Frohman MA. 2006. A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis. Nat. Cell Biol. 8:1255–62 [Google Scholar]
  49. Chu CT, Ji J, Dagda RK, Jiang JF, Tyurina YY. et al. 2013. Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol. 15:1197–205 [Google Scholar]
  50. Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L. et al. 2006. Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–75 [Google Scholar]
  51. Cohen MM, Amiott EA, Day AR, Leboucher GP, Pryce EN. et al. 2011. Sequential requirements for the GTPase domain of the mitofusin Fzo1 and the ubiquitin ligase SCFMdm30 in mitochondrial outer membrane fusion. J. Cell Sci. 124:1403–10 [Google Scholar]
  52. Colombini M. 2010. Ceramide channels and their role in mitochondria-mediated apoptosis. Biochim. Biophys. Acta 1797:1239–44 [Google Scholar]
  53. Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T. 2012. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–18 [Google Scholar]
  54. Coonrod EM, Karren MA, Shaw JM. 2007. Ugo1p is a multipass transmembrane protein with a single carrier domain required for mitochondrial fusion. Traffic 8:500–11 [Google Scholar]
  55. Cribbs JT, Strack S. 2007. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep. 8:939–44 [Google Scholar]
  56. Csordas G, Renken C, Varnai P, Walter L, Weaver D. et al. 2006. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174:915–21 [Google Scholar]
  57. Danino D, Hinshaw JE. 2001. Dynamin family of mechanoenzymes. Curr. Opin. Cell Biol. 13:454–60 [Google Scholar]
  58. Davies KM, Anselmi C, Wittig I, Faraldo-Gómez JD, Kühlbrandt W. 2012. Structure of the yeast F1FO-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc. Natl. Acad. Sci. USA 109:13602–7 [Google Scholar]
  59. Davies VJ, Hollins AJ, Piechota MJ, Yip W, Davies JR. et al. 2007. Opa1 deficiency in a mouse model of autosomal dominant optic atrophy impairs mitochondrial morphology, optic nerve structure and visual function. Hum. Mol. Genet. 16:1307–18 [Google Scholar]
  60. Deas E, Plun-Favreau H, Gandhi S, Desmond H, Kjaer S. et al. 2011. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet. 20:867–79 [Google Scholar]
  61. Delettre C, Lenaers G, Griffoin J-M, Gigarel N, Lorenzo C. et al. 2000. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat. Genet. 26:207–10 [Google Scholar]
  62. Detmer SA, Chan DC. 2007. Complementation between mouse Mfn1 and Mfn2 protects mitochondrial fusion defects caused by CMT2A disease mutations. J. Cell Biol. 176:405–14 [Google Scholar]
  63. DeVay RM, Dominguez-Ramirez L, Lackner LL, Hoppins S, Stahlberg H, Nunnari J. 2009. Coassembly of Mgm1 isoforms requires cardiolipin and mediates mitochondrial inner membrane fusion. J. Cell Biol. 186:793–803 [Google Scholar]
  64. Dixit E, Kagan JC. 2013. Intracellular pathogen detection by RIG-I-like receptors. Adv. Immunol. 117:99–125 [Google Scholar]
  65. Dohm JA, Lee SJ, Hardwick JM, Hill RB, Gittis AG. 2004. Cytosolic domain of the human mitochondrial fission protein fis1 adopts a TPR fold. Proteins 54:153–56 [Google Scholar]
  66. Dürr M, Escobar-Henriques M, Merz S, Geimer S, Langer T, Westermann B. 2006. Nonredundant roles of mitochondria-associated F-box proteins, Mfb1 and Mdm30, in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell 17:3745–55 [Google Scholar]
  67. Duvezin-Caubet S, Jagasia R, Wagener J, Hofmann S, Trifunovic A. et al. 2006. Proteolytic processing of OPA1 links mitochondrial dysfunction to alterations in mitochondrial morphology. J. Cell Biol. 281:37972–79 [Google Scholar]
  68. Eccleston JF, Binns DD, Davis CT, Albanesi JP, Jameson DM. 2002. Oligomerization and kinetic mechanism of the dynamin GTPase. Eur. Biophys. J. 31:275–82 [Google Scholar]
  69. Eiyama A, Kondo-Okamoto N, Okamoto K. 2013. Mitochondrial degradation during starvation is selective and temporally distinct from bulk autophagy in yeast. FEBS Lett. 587:1787–92 [Google Scholar]
  70. Erickson HP. 2000. Dynamin and FtsZ: missing links in mitochondrial and bacterial division. J. Cell Biol. 148:1103–5 [Google Scholar]
  71. Escobar-Henriques M, Westermann B, Langer T. 2006. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 173:645–50 [Google Scholar]
  72. Esser K, Tursun B, Ingenhoven M, Michaelis G, Pratje E. 2002. A novel two-step mechanism for removal of a mitochondrial signal sequence involves the mAAA complex and the putative rhomboid protease Pcp1. J. Mol. Biol. 323:835–43 [Google Scholar]
  73. Estaquier J, Arnoult D. 2007. Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ. 14:1086–94 [Google Scholar]
  74. Eura Y, Ishihara N, Yokota S, Mihara K. 2003. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 134:333–44 [Google Scholar]
  75. Eves PT, Jin Y, Brunner M, Weisman LS. 2012. Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J. Cell Biol. 198:69–85 [Google Scholar]
  76. Faelber K, Gao S, Held M, Posor Y, Haucke V. et al. 2013. Oligomerization of dynamin superfamily proteins in health and disease. Prog. Mol. Biol. Transl. Sci. 117:411–43 [Google Scholar]
  77. Faelber K, Posor Y, Gao S, Held M, Roske Y. et al. 2011. Crystal structure of nucleotide-free dynamin. Nature 477:556–60 [Google Scholar]
  78. Farkasovsky M, Küntzel H. 1995. Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions. J. Cell Biol. 131:1003–14 [Google Scholar]
  79. Fehrenbacher KL, Boldogh IR, Pon LA. 2005. A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Mol. Biol. Cell 16:5094–102 [Google Scholar]
  80. Felix RS, Colleoni GW, Caballero OL, Yamamoto M, Almeida MS. et al. 2009. SAGE analysis highlights the importance of p53csv, ddx5, mapkapk2 and ranbp2 to multiple myeloma tumorigenesis. Cancer Lett. 278:41–48 [Google Scholar]
  81. Ferguson KM, Lemmon MA, Schlessinger J, Sigler PB. 1994. Crystal structure at 2.2 A resolution of the pleckstrin homology domain from human dynamin. Cell 79:199–209 [Google Scholar]
  82. Filippin L, Magalhaes PJ, Di Benedetto G, Colella M, Pozzan T. 2003. Stable interactions between mitochondria and endoplasmic reticulum allow rapid accumulation of calcium in a subpopulation of mitochondria. J. Biol. Chem. 278:39224–34 [Google Scholar]
  83. Flis VV, Daum G. 2013. Lipid transport between the endoplasmic reticulum and mitochondria. Cold Spring Harb. Perspect. Biol. 5:a013235 [Google Scholar]
  84. Ford MG, Jenni S, Nunnari J. 2011. The crystal structure of dynamin. Nature 477:561–66 [Google Scholar]
  85. Forner F, Foster LJ, Campanaro S, Valle G, Mann M. 2006. Quantitative proteomic comparison of rat mitochondria from muscle, heart, and liver. Mol. Cell. Proteomics 5:608–19 [Google Scholar]
  86. Fortsch J, Hummel E, Krist M, Westermann B. 2011. The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J. Cell Biol. 194:473–88 [Google Scholar]
  87. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG. et al. 2001. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 1:515–25 [Google Scholar]
  88. Fransson S, Ruusala A, Aspenstrom P. 2006. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem. Biophys. Res. Commun. 344:500–10 [Google Scholar]
  89. Frederick RL, McCaffery JM, Cunningham KW, Okamoto K, Shaw JM. 2004. Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway. J. Cell Biol. 167:87–98 [Google Scholar]
  90. Frederick RL, Okamoto K, Shaw JM. 2008. Multiple pathways influence mitochondrial inheritance in budding yeast. Genetics 178:825–37 [Google Scholar]
  91. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV. et al. 2006. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–89 [Google Scholar]
  92. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK. 2011. ER tubules mark sites of mitochondrial division. Science 334:358–62 [Google Scholar]
  93. Friedman JR, Webster BM, Mastronarde DN, Verhey KJ, Voeltz GK. 2010. ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. J. Cell Biol. 190:363–75 [Google Scholar]
  94. Fritz S, Weinbach N, Westermann B. 2003. Mdm30 is an F-box protein required for maintenance of fusion-competent mitochondria in yeast. Mol. Biol. Cell 14:2303–13 [Google Scholar]
  95. Frohlich C, Grabiger S, Schwefel D, Faelber K, Rosenbaum E. et al. 2013. Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J. 32:1280–92 [Google Scholar]
  96. Gabaldon T, Huynen MA. 2007. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLOS Comput. Biol. 3:e219 [Google Scholar]
  97. Gallego O, Betts MJ, Gvozdenovic-Jeremic J, Maeda K, Matetzki C. et al. 2010. A systematic screen for protein-lipid interactions in. Saccharomyces cerevisiae. Mol. Syst. Biol. 6:430 [Google Scholar]
  98. Gandre-Babbe S, van der Bliek AM. 2008. The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19:2402–12 [Google Scholar]
  99. Gao S, von der Malsburg A, Paeschke S, Behlke J, Haller O. et al. 2010. Structural basis of oligomerization in the stalk region of dynamin-like MxA. Nature 465:502–6 [Google Scholar]
  100. Garrido N, Griparic L, Jokitalo E, Wartiovaara J, van der Bliek AM, Spelbrink JN. 2003. Composition and dynamics of human mitochondrial nucleoids. Mol. Biol. Cell 14:1583–96 [Google Scholar]
  101. Ge L, Melville D, Zhang M, Schekman R. 2013. The ER-Golgi intermediate compartment is a key membrane source for the LC3 lipidation step of autophagosome biogenesis. eLife 2:e00947 [Google Scholar]
  102. Gegg ME, Cooper JM, Chau KY, Rojo M, Schapira AH, Taanman JW. 2010. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 19:4861–70 [Google Scholar]
  103. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC. et al. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12:119–31 [Google Scholar]
  104. Glater EE, Megeath LJ, Stowers RS, Schwarz TL. 2006. Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent. J. Cell Biol. 173:545–57 [Google Scholar]
  105. Gomes LC, Di Benedetto G, Scorrano L. 2011. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13:589–98 [Google Scholar]
  106. Gomes LC, Scorrano L. 2008. High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy. Biochim. Biophys. Acta 1777:860–66 [Google Scholar]
  107. Gonzalvez F, Schug ZT, Houtkooper RH, MacKenzie ED, Brooks DG. et al. 2008. Cardiolipin provides an essential activating platform for caspase-8 on mitochondria. J. Cell Biol. 183:681–96 [Google Scholar]
  108. Graef M, Friedman JR, Graham C, Babu M, Nunnari J. 2013. ER exit sites are physical and functional core autophagosome biogenesis components. Mol. Biol. Cell 24:2918–31 [Google Scholar]
  109. Graef M, Nunnari J. 2011. Mitochondria regulate autophagy by conserved signalling pathways. EMBO J. 30:2101–14 [Google Scholar]
  110. Griffin EE, Graumann J, Chan DC. 2005. The WD40 protein Caf4p is a component of the mitochondrial fission machinery and recruits Dnm1p to mitochondria. J. Cell Biol. 170:237–48 [Google Scholar]
  111. Griparic L, Kanazawa T, van der Bliek AM. 2007. Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J. Cell Biol. 178:757–64 [Google Scholar]
  112. Guillery O, Malka F, Landes T, Guillou E, Blackstone C. et al. 2008. Metalloprotease-mediated OPA1 processing is modulated by the mitochondrial membrane potential. Biol. Cell 100:315–25 [Google Scholar]
  113. Guo Q, Koirala S, Perkins EM, McCaffery JM, Shaw JM. 2012. The mitochondrial fission adaptors Caf4 and Mdv1 are not functionally equivalent. PLOS ONE 7:e53523 [Google Scholar]
  114. Guo X, Macleod GT, Wellington A, Hu F, Panchumarthi S. et al. 2005. The GTPase dMiro is required for axonal transport of mitochondria to Drosophila synapses. Neuron 47:379–93 [Google Scholar]
  115. Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R. et al. 2010. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 141:656–67 [Google Scholar]
  116. Hales KG, Fuller MT. 1997. Developmentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90:121–29 [Google Scholar]
  117. Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A. et al. 2013. Autophagosomes form at ER-mitochondria contact sites. Nature 495:389–93 [Google Scholar]
  118. Hanekamp T, Thorsness MK, Rebbapragada I, Fisher EM, Seebart C. et al. 2002. Maintenance of mitochondrial morphology is linked to maintenance of the mitochondrial genome in Saccharomyces cerevisiae. Genetics 162:1147–56 [Google Scholar]
  119. Harner M, Korner C, Walther D, Mokranjac D, Kaesmacher J. et al. 2011. The mitochondrial contact site complex, a determinant of mitochondrial architecture. EMBO J. 30:4356–70 [Google Scholar]
  120. Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. 2009. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat. Cell Biol. 11:1433–37 [Google Scholar]
  121. Heil-Chapdelaine RA, Oberle JR, Cooper JA. 2000. The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J. Cell Biol. 151:1337–44 [Google Scholar]
  122. Herlan M, Bornhovd C, Hell K, Neupert W, Reichert AS. 2004. Alternative topogenesis of Mgm1 and mitochondrial morphology depend on ATP and a functional import motor. J. Cell Biol. 165:167–73 [Google Scholar]
  123. Herlan M, Vogel F, Bornhovd C, Neupert W, Reichert AS. 2003. Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J. Biol. Chem. 278:27781–88 [Google Scholar]
  124. Hermann GJ, Thatcher JW, Mills JP, Hales KG, Fuller MT. et al. 1998. Mitochondrial fusion in yeast requires the transmembrane GTPase Fzo1p. J. Cell Biol. 143:359–73 [Google Scholar]
  125. Hinshaw JE. 2000. Dynamin and its role in membrane fission. Annu. Rev. Cell Dev. Biol. 16:483–519 [Google Scholar]
  126. Hobbs AEA, Srinivasan M, McCaffery JM, Jensen RE. 2001. Mmm1p, a mitochondrial outer membrane protein, is connected to mitochondrial DNA (mtDNA) nucleoids and required for mtDNA stability. J. Cell Biol. 152:401–10 [Google Scholar]
  127. Hom JR, Gewandter JS, Michael L, Sheu SS, Yoon Y. 2007. Thapsigargin induces biphasic fragmentation of mitochondria through calcium-mediated mitochondrial fission and apoptosis. J. Cell. Physiol. 212:498–508 [Google Scholar]
  128. Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM. et al. 2011a. A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195:323–40 [Google Scholar]
  129. Hoppins S, Edlich F, Cleland MM, Banerjee S, McCaffery JM. et al. 2011b. The soluble form of Bax regulates mitochondrial fusion via MFN2 homotypic complexes. Mol. Cell 41:150–60 [Google Scholar]
  130. Hoppins S, Horner J, Song C, McCaffery JM, Nunnari J. 2009. Mitochondrial outer and inner membrane fusion requires a modified carrier protein. J. Cell Biol. 184:569–81 [Google Scholar]
  131. Hoppins S, Lackner L, Nunnari J. 2007. The machines that divide and fuse mitochondria. Annu. Rev. Biochem. 76:751–80 [Google Scholar]
  132. Horner SM, Liu HM, Park HS, Briley J, Gale M Jr. 2011. Mitochondrial-associated endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis C virus. Proc. Natl. Acad. Sci. USA 108:14590–95 [Google Scholar]
  133. Ingerman E, Perkins EM, Marino M, Mears JA, McCaffery JM. et al. 2005. Dnm1 forms spirals that are structurally tailored to fit mitochondria. J. Cell Biol. 170:1021–27 [Google Scholar]
  134. Ishihara N, Eura Y, Mihara K. 2004. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J. Cell Sci. 117:6535–46 [Google Scholar]
  135. Ishihara N, Fujita Y, Oka T, Mihara K. 2006. Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. EMBO J. 25:2966–77 [Google Scholar]
  136. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO. et al. 2009. Mitochondrial fission factor Drp1 is essential for embryonic development and synapse formation in mice. Nat. Cell Biol. 11:958–66 [Google Scholar]
  137. Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  138. Itoh K, Tamura Y, Iijima M, Sesaki H. 2013. Effects of Fcj1-Mos1 and mitochondrial division on aggregation of mitochondrial DNA nucleoids and organelle morphology. Mol. Biol. Cell 24:1842–51 [Google Scholar]
  139. Itoh T, Toh EA, Matsui Y. 2004. Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J. 23:2520–30 [Google Scholar]
  140. Itoh T, Watabe A, Toh EA, Matsui Y. 2002. Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol. Cell. Biol. 22:7744–57 [Google Scholar]
  141. Iwasawa R, Mahul-Mellier AL, Datler C, Pazarentzos E, Grimm S. 2011. Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30:556–68 [Google Scholar]
  142. Jin L, Waterman PM, Jonscher KR, Short CM, Reisdorph NA, Cambier JC. 2008. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell. Biol. 28:5014–26 [Google Scholar]
  143. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Youle RJ. 2010. Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol. 191:933–42 [Google Scholar]
  144. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ. 2004. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J. Cell Biol. 164:493–99 [Google Scholar]
  145. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S. et al. 2002. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 159:931–38 [Google Scholar]
  146. Karbowski M, Norris KL, Cleland MM, Jeong SY, Youle RJ. 2006. Role of Bax and Bak in mitochondrial morphogenesis. Nature 443:658–62 [Google Scholar]
  147. Karren MA, Coonrod EM, Anderson TK, Shaw JM. 2005. The role of Fis1p-Mdv1p interactions in mitochondrial fission complex assembly. J. Cell Biol. 171:291–301 [Google Scholar]
  148. Kasahara A, Cipolat S, Chen Y, Dorn GW 2nd, Scorrano L. 2013. Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling. Science 342:734–37 [Google Scholar]
  149. Kenniston JA, Lemmon MA. 2010. Dynamin GTPase regulation is altered by PH domain mutations found in centronuclear myopathy patients. EMBO J. 29:3054–67 [Google Scholar]
  150. Kijima K, Numakura C, Izumino H, Umetsu K, Nezu A. et al. 2005. Mitochondrial GTPase mitofusin 2 mutation in Charcot-Marie-Tooth neuropathy type 2A. Hum. Genet. 116:23–27 [Google Scholar]
  151. Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR. et al. 2011. Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol. Cell 44:532–44 [Google Scholar]
  152. Kim Y, Park J, Kim S, Song S, Kwon SK. et al. 2008. PINK1 controls mitochondrial localization of Parkin through direct phosphorylation. Biochem. Biophys. Res. Commun. 377:975–80 [Google Scholar]
  153. Kissova I, Deffieu M, Manon S, Camougrand N. 2004. Uth1p is involved in the autophagic degradation of mitochondria. J. Biol. Chem. 279:39068–74 [Google Scholar]
  154. Klecker T, Scholz D, Fortsch J, Westermann B. 2013. The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 126:2924–30 [Google Scholar]
  155. Koirala S, Guo Q, Kalia R, Bui HT, Eckert DM. et al. 2013. Interchangeable adaptors regulate mitochondrial dynamin assembly for membrane scission. Proc. Natl. Acad. Sci. USA 110:E1342–51 [Google Scholar]
  156. Kopec KO, Alva V, Lupas AN. 2010. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26:1927–31 [Google Scholar]
  157. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J. et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81 [Google Scholar]
  158. Kornmann B, Osman C, Walter P. 2011. The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. USA 108:14151–56 [Google Scholar]
  159. Kornmann B, Walter P. 2010. ERMES-mediated ER-mitochondria contacts: molecular hubs for the regulation of mitochondrial biology. J. Cell Sci. 123:1389–93 [Google Scholar]
  160. Korobova F, Gauvin TJ, Higgs HN. 2014. A role for myosin II in mammalian mitochondrial fission. Curr. Biol. 24:409–14 [Google Scholar]
  161. Koshiba T, Detmer S, Kaiser J, Chen H, McCaffery J, Chan D. 2004. Structural basis of mitochondrial tethering by mitofusin complexes acting in trans. Science 305:858–62 [Google Scholar]
  162. Koshiba T, Yasukawa K, Yanagi Y, Kawabata S. 2011. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal. 4:ra7 [Google Scholar]
  163. Kristensen AR, Schandorff S, Hoyer-Hansen M, Nielsen MO, Jaattela M. et al. 2008. Ordered organelle degradation during starvation-induced autophagy. Mol. Cell. Proteomics 7:2419–28 [Google Scholar]
  164. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M. et al. 2002. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–42 [Google Scholar]
  165. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM. 1999. C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol. Cell 4:815–26 [Google Scholar]
  166. Lackner LL, Horner JS, Nunnari J. 2009. Mechanistic analysis of a dynamin effector. Science 325:874–77 [Google Scholar]
  167. Lackner LL, Ping H, Graef M, Murley A, Nunnari J. 2013. Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. USA 110:E458–67 [Google Scholar]
  168. Lane N, Martin W. 2010. The energetics of genome complexity. Nature 467:929–34 [Google Scholar]
  169. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. 2004. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 15:5001–11 [Google Scholar]
  170. Legros F, Lombes A, Frachon P, Rojo M. 2002. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol. Biol. Cell 13:4343–54 [Google Scholar]
  171. Lewandowska A, Macfarlane J, Shaw JM. 2013. Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance. Mol. Biol. Cell 24:1185–95 [Google Scholar]
  172. Lin W, Kang UJ. 2008. Characterization of PINK1 processing, stability, and subcellular localization. J. Neurochem. 106:464–74 [Google Scholar]
  173. Liu S, Sawada T, Lee S, Yu W, Silverio G. et al. 2012a. Parkinson's disease-associated kinase PINK1 regulates Miro protein level and axonal transport of mitochondria. PLOS Genet. 8:e1002537 [Google Scholar]
  174. Liu T, Yu R, Jin SB, Han L, Lendahl U. et al. 2013. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. Exp. Cell Res. 319:2893–904 [Google Scholar]
  175. Liu TY, Bian X, Sun S, Hu X, Klemm RW. et al. 2012b. Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion. Proc. Natl. Acad. Sci. USA 109:E2146–54 [Google Scholar]
  176. Liu X, Weaver D, Shirihai O, Hajnóczky G. 2009. Mitochondrial ‘kiss-and-run’: interplay between mitochondrial motility and fusion-fission dynamics. EMBO J. 28:3074–89 [Google Scholar]
  177. Losón OC, Liu R, Rome ME, Meng S, Kaiser JT. et al. 2014. The mitochondrial fission receptor MiD51 requires ADP as a cofactor. Structure 22:367–77 [Google Scholar]
  178. Losón OC, Song Z, Chen H, Chan DC. 2013. Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol. Biol. Cell 24:659–67 [Google Scholar]
  179. Low HH, Lowe J. 2006. A bacterial dynamin-like protein. Nature 444:766–69 [Google Scholar]
  180. Low HH, Sachse C, Amos LA, Lowe J. 2009. Structure of a bacterial dynamin-like protein lipid tube provides a mechanism for assembly and membrane curving. Cell 139:1342–52 [Google Scholar]
  181. Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X. 2000. Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat. Cell Biol. 2:754–61 [Google Scholar]
  182. Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K. et al. 2010. PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol. 189:211–21 [Google Scholar]
  183. McQuibban GA, Saurya S, Freeman M. 2003. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423:537–41 [Google Scholar]
  184. Meeusen S, Devay R, Block J, Cassidy-Stone A, Wayson S. et al. 2006. Mitochondrial inner-membrane fusion and crista maintenance requires the dynamin-related GTPase Mgm1. Cell 127:383–95 [Google Scholar]
  185. Meeusen S, McCaffery JM, Nunnari J. 2004. Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–52 [Google Scholar]
  186. Meeusen S, Nunnari J. 2003. Evidence for a two membrane–spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163:503–10 [Google Scholar]
  187. Mehrotra N, Nichols J, Ramachandran R. 2014. Alternate pleckstrin homology domain orientations regulate dynamin-catalyzed membrane fission. Mol. Biol. Cell 6:879–90 [Google Scholar]
  188. Meisinger C, Pfannschmidt S, Rissler M, Milenkovic D, Becker T. et al. 2007. The morphology proteins Mdm12/Mmm1 function in the major β-barrel assembly pathway of mitochondria. EMBO J. 26:2229–39 [Google Scholar]
  189. Meisinger C, Rissler M, Chacinska A, Szklarz LK, Milenkovic D. et al. 2004. The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7:61–71 [Google Scholar]
  190. Merrill RA, Slupe AM, Strack S. 2013. N-terminal phosphorylation of PP2A/Bβ2 regulates translocation to mitochondria, dynamin-related protein 1 dephosphorylation, and neuronal survival. FEBS J. 280:662–73 [Google Scholar]
  191. Messerschmitt M, Jakobs S, Vogel F, Fritz S, Dimmer KS. et al. 2003. The inner membrane protein Mdm33 controls mitochondrial morphology in yeast. J. Cell Biol. 160:553–64 [Google Scholar]
  192. Mileykovskaya E, Dowhan W, Birke RL, Zheng D, Lutterodt L, Haines TH. 2001. Cardiolipin binds nonyl acridine orange by aggregating the dye at exposed hydrophobic domains on bilayer surfaces. FEBS Lett. 507:187–90 [Google Scholar]
  193. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. 2010. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J. Neurosci. 30:4232–40 [Google Scholar]
  194. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S. et al. 2010. Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901 [Google Scholar]
  195. Mootha VK, Bunkenborg J, Olsen JV, Hjerrild M, Wisniewski JR. et al. 2003. Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–40 [Google Scholar]
  196. Moreau K, Ravikumar B, Renna M, Puri C, Rubinsztein DC. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell 146:303–17 [Google Scholar]
  197. Morin-Leisk J, Saini SG, Meng X, Makhov AM, Zhang P, Lee TH. 2011. An intramolecular salt bridge drives the soluble domain of GTP-bound atlastin into the postfusion conformation. J. Cell Biol. 195:605–15 [Google Scholar]
  198. Moss TJ, Andreazza C, Verma A, Daga A, McNew JA. 2011. Membrane fusion by the GTPase atlastin requires a conserved C-terminal cytoplasmic tail and dimerization through the middle domain. Proc. Natl. Acad. Sci. USA 108:11133–38 [Google Scholar]
  199. Mozdy AD, McCaffery JM, Shaw JM. 2000. Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel integral membrane component Fis1p. J. Cell Biol. 151:367–79 [Google Scholar]
  200. Muhlberg AB, Warnock DE, Schmid SL. 1997. Domain structure and intramolecular regulation of dynamin GTPase. EMBO J. 16:6676–83 [Google Scholar]
  201. Murley A, Lackner LL, Osman C, West M, Voeltz GK. et al. 2013. ER-associated mitochondrial division links the distribution of mitochondria and mitochondrial DNA in yeast. eLife 2:e00422 [Google Scholar]
  202. Nakada K, Inoue K, Ono T, Isobe K, Ogura A. et al. 2001. Inter-mitochondrial complementation: mitochondria-specific system preventing mice from expression of disease phenotypes by mutant mtDNA. Nat. Med. 7:934–40 [Google Scholar]
  203. Narendra DP, Jin SM, Tanaka A, Suen DF, Gautier CA. et al. 2010. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLOS Biol. 8:e1000298 [Google Scholar]
  204. Naylor K, Ingerman E, Okreglak V, Marino M, Hinshaw JE, Nunnari J. 2006. Mdv1 interacts with assembled dnm1 to promote mitochondrial division. J. Biol. Chem. 281:2177–83 [Google Scholar]
  205. Neupert W, Herrmann JM. 2007. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 76:723–49 [Google Scholar]
  206. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. 2005. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J. Biol. Chem. 280:25060–70 [Google Scholar]
  207. Neutzner A, Youle RJ. 2005. Instability of the mitofusin Fzo1 regulates mitochondrial morphology during the mating response of the yeast Saccharomyces cerevisiae. J. Biol. Chem. 280:18598–603 [Google Scholar]
  208. Nguyen TT, Lewandowska A, Choi JY, Markgraf DF, Junker M. et al. 2012. Gem1 and ERMES do not directly affect phosphatidylserine transport from ER to mitochondria or mitochondrial inheritance. Traffic 13:880–90 [Google Scholar]
  209. Nowikovsky K, Reipert S, Devenish RJ, Schweyen RJ. 2007. Mdm38 protein depletion causes loss of mitochondrial K+/H+ exchange activity, osmotic swelling and mitophagy. Cell Death Differ. 14:1647–56 [Google Scholar]
  210. Nunnari J, Marshall W, Straight A, Murray A, Sedat JW, Walter P. 1997. Mitochondrial transmission during mating in S. cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mtDNA. Mol. Biol. Cell 8:1233–42 [Google Scholar]
  211. Nunnari J, Suomalainen A. 2012. Mitochondria: in sickness and in health. Cell 148:1145–59 [Google Scholar]
  212. Olichon A, Baricault L, Gas N, Guillou E, Valette A. et al. 2003. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J. Biol. Chem. 278:7743–46 [Google Scholar]
  213. Ono T, Isobe K, Nakada K, Hayashi JI. 2001. Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria. Nat. Genet. 28:272–75 [Google Scholar]
  214. Onoguchi K, Onomoto K, Takamatsu S, Jogi M, Takemura A. et al. 2010. Virus-infection or 5′ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLOS Pathog. 6:e1001012 [Google Scholar]
  215. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ. et al. 2009. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–83 [Google Scholar]
  216. Osman C, Haag M, Potting C, Rodenfels J, Dip PV. et al. 2009. The genetic interactome of prohibitins: coordinated control of cardiolipin and phosphatidylethanolamine by conserved regulators in mitochondria. J. Cell Biol. 184:583–96 [Google Scholar]
  217. Osman C, Voelker DR, Langer T. 2011. Making heads or tails of phospholipids in mitochondria. J. Cell Biol. 192:7–16 [Google Scholar]
  218. Osteryoung KW, Nunnari J. 2003. The division of endosymbiotic organelles. Science 302:1698–704 [Google Scholar]
  219. Otera H, Wang C, Cleland MM, Setoguchi K, Yokota S. et al. 2010. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol. 191:1141–58 [Google Scholar]
  220. Palmer CS, Elgass KD, Parton RG, Osellame LD, Stojanovski D, Ryan MT. 2013. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem. 288:27584–93 [Google Scholar]
  221. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Frazier AE, Ryan MT. 2011. MiD49 and MiD51, new components of the mitochondrial fission machinery. EMBO Rep. 12:565–73 [Google Scholar]
  222. Palmieri F. 2013. The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol. Asp. Med. 34:465–84 [Google Scholar]
  223. Parone PA, James DI, Da Cruz S, Mattenberger Y, Donzé O. et al. 2006. Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol. Cell. Biol. 26:7397–408 [Google Scholar]
  224. Pellegrino MW, Nargund AM, Haynes CM. 2013. Signaling the mitochondrial unfolded protein response. Biochim. Biophys. Acta 1833:410–16 [Google Scholar]
  225. Pepling ME, Wilhelm JE, O'Hara AL, Gephardt GW, Spradling AC. 2007. Mouse oocytes within germ cell cysts and primordial follicles contain a Balbiani body. Proc. Natl. Acad. Sci. USA 104:187–92 [Google Scholar]
  226. Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R. 2008. Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–18 [Google Scholar]
  227. Potting C, Tatsuta T, König T, Haag M, Wai T. et al. 2013. TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. Cell Metab. 18:287–95 [Google Scholar]
  228. Praefcke GJ, McMahon HT. 2004. The dynamin superfamily: Universal membrane tubulation and fission molecules?. Nat. Rev. Mol. Cell Biol. 5:133–47 [Google Scholar]
  229. Prakash B, Praefcke GJ, Renault L, Wittinghofer A, Herrmann C. 2000. Structure of human guanylate-binding protein 1 representing a unique class of GTP-binding proteins. Nature 403:567–71 [Google Scholar]
  230. Quirós PM, Ramsay AJ, Sala D, Fernández-Vizarra E, Rodríguez F. et al. 2012. Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J. 31:2117–33 [Google Scholar]
  231. Rabinowitz JD, White E. 2010. Autophagy and metabolism. Science 330:1344–48 [Google Scholar]
  232. Ramachandran R, Pucadyil TJ, Liu YW, Acharya S, Leonard M. et al. 2009. Membrane insertion of the pleckstrin homology domain variable loop 1 is critical for dynamin-catalyzed vesicle scission. Mol. Biol. Cell 20:4630–39 [Google Scholar]
  233. Rambold AS, Kostelecky B, Elia N, Lippincott-Schwartz J. 2011. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. USA 108:10190–95 [Google Scholar]
  234. Rapaport D, Brunner M, Neupert W, Westermann B. 1998. Fzo1p is a mitochondrial outer membrane protein essential for the biogenesis of functional mitochondria in Saccharomyces cerevisiae. J. Biol. Chem. 273:20150–55 [Google Scholar]
  235. Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. 2010. Plasma membrane contributes to the formation of pre-autophagosomal structures. Nat. Cell Biol. 12:747–57 [Google Scholar]
  236. Richter V, Palmer CS, Osellame LD, Singh AP, Elgass K. et al. 2014. Structural and functional analysis of MiD51, a dynamin receptor required for mitochondrial fission. J. Cell Biol. 204:477–86 [Google Scholar]
  237. Robinson AJ, Kunji ER, Gross A. 2012. Mitochondrial carrier homolog 2 (MTCH2): the recruitment and evolution of a mitochondrial carrier protein to a critical player in apoptosis. Exp. Cell Res. 318:1316–23 [Google Scholar]
  238. Rolland SG, Lu Y, David CN, Conradt B. 2009. The BCL-2-like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2- and EAT-3/Opa1-dependent mitochondrial fusion. J. Cell Biol. 186:525–40 [Google Scholar]
  239. Rolland SG, Motori E, Memar N, Hench J, Frank S. et al. 2013. Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion. Proc. Natl. Acad. Sci. USA 110:E2967–76 [Google Scholar]
  240. Rowland AA, Voeltz GK. 2012. Endoplasmic reticulum-mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13:607–25 [Google Scholar]
  241. Rujiviphat J, Meglei G, Rubinstein JL, McQuibban GA. 2009. Phospholipid association is essential for dynamin-related protein Mgm1 to function in mitochondrial membrane fusion. J. Biol. Chem. 284:28682–86 [Google Scholar]
  242. Santel A, Fuller MT. 2001. Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114:867–74 [Google Scholar]
  243. Schauss AC, Bewersdorf J, Jakobs S. 2006. Fis1p and Caf4p, but not Mdv1p, determine the polar localization of Dnm1p clusters on the mitochondrial surface. J. Cell Sci. 119:3098–106 [Google Scholar]
  244. Schmid SL, Frolov VA. 2011. Dynamin: functional design of a membrane fission catalyst. Annu. Rev. Cell Dev. Biol. 27:79–105 [Google Scholar]
  245. Schmidt O, Pfanner N, Meisinger C. 2010. Mitochondrial protein import: from proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 11:655–67 [Google Scholar]
  246. Schweers RL, Zhang J, Randall MS, Loyd MR, Li W. et al. 2007. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl. Acad. Sci. USA 104:19500–5 [Google Scholar]
  247. Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA. et al. 2002. A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell 2:55–67 [Google Scholar]
  248. Sesaki H, Dunn CD, Iijima M, Shepard KA, Yaffe MP. et al. 2006. Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 173:651–58 [Google Scholar]
  249. Sesaki H, Jensen RE. 1999. Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147:699–706 [Google Scholar]
  250. Sesaki H, Jensen RE. 2001. UGO1 encodes an outer membrane protein required for mitochondrial fusion. J. Cell Biol. 152:1123–34 [Google Scholar]
  251. Sesaki H, Jensen RE. 2004. Ugo1p links the Fzo1p and Mgm1p GTPases for mitochondrial fusion. J. Biol. Chem. 279:28298–303 [Google Scholar]
  252. Shen Q, Yamano K, Head BP, Kawajiri S, Cheung JT. et al. 2014. Mutations in Fis1 disrupt orderly disposal of defective mitochondria. Mol. Biol. Cell 25:145–59 [Google Scholar]
  253. Shepard KA, Gerber AP, Jambhekar A, Takizawa PA, Brown PO. et al. 2003. Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. USA 100:11429–34 [Google Scholar]
  254. Shim SH, Xia C, Zhong G, Babcock HP, Vaughan JC. et al. 2012. Super-resolution fluorescence imaging of organelles in live cells with photoswitchable membrane probes. Proc. Natl. Acad. Sci. USA 109:13978–83 [Google Scholar]
  255. Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R. et al. 2003. The proteome of Saccharomyces cerevisiae mitochondria. Proc. Natl. Acad. Sci. USA 100:13207–12 [Google Scholar]
  256. Simon VR, Karmon SL, Pon LA. 1997. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil. Cytoskelet. 37:199–210 [Google Scholar]
  257. Slupe AM, Merrill RA, Flippo KH, Lobas MA, Houtman JC, Strack S. 2013. A calcineurin docking motif (LXVP) in dynamin-related protein 1 contributes to mitochondrial fragmentation and ischemic neuronal injury. J. Biol. Chem. 288:12353–65 [Google Scholar]
  258. Song Z, Chen H, Fiket M, Alexander C, Chan DC. 2007. OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J. Cell Biol. 178:749–55 [Google Scholar]
  259. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC. 2009. Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol. Biol. Cell 20:3525–32 [Google Scholar]
  260. Spelbrink JN, Li FY, Tiranti V, Nikali K, Yuan QP. et al. 2001. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat. Genet. 28:223–31 [Google Scholar]
  261. Stojanovski D, Koutsopoulos OS, Okamoto K, Ryan MT. 2004. Levels of human Fis1 at the mitochondrial outer membrane regulate mitochondrial morphology. J. Cell Sci. 117:1201–10 [Google Scholar]
  262. Strack S, Cribbs JT. 2012. Allosteric modulation of Drp1 mechanoenzyme assembly and mitochondrial fission by the variable domain. J. Biol. Chem. 287:10990–1001 [Google Scholar]
  263. Strack S, Wilson TJ, Cribbs JT. 2013. Cyclin-dependent kinases regulate splice-specific targeting of dynamin-related protein 1 to microtubules. J. Cell Biol. 201:1037–51 [Google Scholar]
  264. Stuart RA. 2008. Supercomplex organization of the oxidative phosphorylation enzymes in yeast mitochondria. J. Bioenerg. Biomembr. 40:411–17 [Google Scholar]
  265. Sugioka R, Shimizu S, Tsujimoto Y. 2004. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 279:52726–34 [Google Scholar]
  266. Sun W, Li Y, Chen L, Chen H, You F. et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106:8653–58 [Google Scholar]
  267. Suzuki K, Akioka M, Kondo-Kakuta C, Yamamoto H, Ohsumi Y. 2013. Fine mapping of autophagy-related proteins during autophagosome formation in Saccharomyces cerevisiae. J. Cell Sci. 126:2534–44 [Google Scholar]
  268. Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y. 2001. The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J. 20:5971–81 [Google Scholar]
  269. Suzuki M, Jeong SY, Karbowski M, Youle RJ, Tjandra N. 2003. The solution structure of human mitochondria fission protein Fis1 reveals a novel TPR-like helix bundle. J. Mol. Biol. 334:445–58 [Google Scholar]
  270. Swayne TC, Zhou C, Boldogh IR, Charalel JK, McFaline-Figueroa JR. et al. 2011. Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21:1994–99 [Google Scholar]
  271. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H. 2007. Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J. Biol. Chem. 282:5617–24 [Google Scholar]
  272. Tamura Y, Onguka O, Hobbs AE, Jensen RE, Iijima M. et al. 2012. Role for two conserved intermembrane space proteins, Ups1p and Ups2p, in intramitochondrial phospholipid trafficking. J. Biol. Chem. 287:15205–18 [Google Scholar]
  273. Tan D, Cai Y, Wang J, Zhang J, Menon S. et al. 2013a. The EM structure of the TRAPPIII complex leads to the identification of a requirement for COPII vesicles on the macroautophagy pathway. Proc. Natl. Acad. Sci. USA 110:19432–37 [Google Scholar]
  274. Tan T, Özbalci C, Brügger B, Rapaport D, Dimmer KS. 2013b. Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J. Cell Sci. 126:3563–74 [Google Scholar]
  275. Tieu Q, Nunnari J. 2000. Mdv1p is a WD repeat protein that interacts with the dynamin-related GTPase, Dnm1p, to trigger mitochondrial division. J. Cell Biol. 151:353–65 [Google Scholar]
  276. Tieu Q, Okreglak V, Naylor K, Nunnari J. 2002. The WD repeat protein, Mdv1p, functions as a molecular adaptor by interacting with Dnm1p and Fis1p during mitochondrial fission. J. Cell Biol. 158:445–52 [Google Scholar]
  277. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y. et al. 2009. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28:1589–600 [Google Scholar]
  278. Toulmay A, Prinz WA. 2012. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125:49–58 [Google Scholar]
  279. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD. et al. 2008. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27:433–46 [Google Scholar]
  280. van der Bliek AM. 1999. Functional diversity in the dynamin family. Trends Cell Biol. 9:96–102 [Google Scholar]
  281. van der Vaart A, Griffith J, Reggiori F. 2010. Exit from the Golgi is required for the expansion of the autophagosomal phagophore in yeast Saccharomyces cerevisiae. Mol. Biol. Cell 21:2270–84 [Google Scholar]
  282. Vaux DL. 2011. Apoptogenic factors released from mitochondria. Biochim. Biophys. Acta 1813:546–50 [Google Scholar]
  283. Vives-Bauza C, Zhou C, Huang Y, Cui M, de Vries RL. et al. 2010. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl. Acad. Sci. USA 107:378–83 [Google Scholar]
  284. Vlahou G, Elias M, von Kleist-Retzow JC, Wiesner RJ, Rivero F. 2011. The Ras related GTPase Miro is not required for mitochondrial transport in Dictyostelium discoideum. Eur. J. Cell Biol. 90:342–55 [Google Scholar]
  285. Malsburg K, Müller JM, Bohnert M, Oeljeklaus S, Kwiatkowska P. von der et al. 2011. Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell 21:694–707 [Google Scholar]
  286. Voss C, Lahiri S, Young BP, Loewen CJ, Prinz WA. 2012. ER-shaping proteins facilitate lipid exchange between the ER and mitochondria in S. cerevisiae. J. Cell Sci. 125:4791–99 [Google Scholar]
  287. Wakabayashi J, Zhang Z, Wakabayashi N, Tamura Y, Fukaya M. et al. 2009. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell Biol. 186:805–16 [Google Scholar]
  288. Wang X, Schwarz TL. 2009. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–74 [Google Scholar]
  289. Wang X, Winter D, Ashrafi G, Schlehe J, Wong YL. et al. 2011. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 147:893–906 [Google Scholar]
  290. Warnock DE, Hinshaw JE, Schmid SL. 1996. Dynamin self-assembly stimulates its GTPase activity. J. Biol. Chem. 271:22310–14 [Google Scholar]
  291. Wasiak S, Zunino R, McBride HM. 2007. Bax/Bak promote sumoylation of DRP1 and its stable association with mitochondria during apoptotic cell death. J. Cell Biol. 177:439–50 [Google Scholar]
  292. Waterham HR, Koster J, van Roermund CW, Mooyer PA, Wanders RJ, Leonard JV. 2007. A lethal defect of mitochondrial and peroxisomal fission. N. Engl. J. Med. 356:1736–41 [Google Scholar]
  293. Weihofen A, Thomas KJ, Ostaszewski BL, Cookson MR, Selkoe DJ. 2009. Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 48:2045–52 [Google Scholar]
  294. Wideman JG, Gawryluk RM, Gray MW, Dacks JB. 2013. The ancient and widespread nature of the ER-mitochondria encounter structure. Mol. Biol. Evol. 30:2044–49 [Google Scholar]
  295. Wilkens V, Kohl W, Busch K. 2013. Restricted diffusion of OXPHOS complexes in dynamic mitochondria delays their exchange between cristae and engenders a transitory mosaic distribution. J. Cell Sci. 126:103–16 [Google Scholar]
  296. Wilson TJ, Slupe AM, Strack S. 2013. Cell signaling and mitochondrial dynamics: implications for neuronal function and neurodegenerative disease. Neurobiol. Dis. 51:13–26 [Google Scholar]
  297. Wong ED, Wagner JA, Scott SV, Okreglak V, Holewinske TJ. et al. 2003. The intramitochondrial dynamin-related GTPase, Mgm1p, is a component of a protein complex that mediates mitochondrial fusion. J. Cell Biol. 160:303–11 [Google Scholar]
  298. Yamaguchi R, Lartigue L, Perkins G, Scott RT, Dixit A. et al. 2008. Opa1-mediated cristae opening is Bax/Bak and BH3 dependent, required for apoptosis, and independent of Bak oligomerization. Mol. Cell 31:557–69 [Google Scholar]
  299. Yamano K, Fogel AI, Wang C, van der Bliek AM, Youle RJ. 2014. Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy. eLife 3:e01612 [Google Scholar]
  300. Yamano K, Tanaka-Yamano S, Endo T. 2010a. Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep. 11:187–93 [Google Scholar]
  301. Yamano K, Tanaka-Yamano S, Endo T. 2010b. Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem. 285:41222–31 [Google Scholar]
  302. Yamano K, Youle RJ. 2013. PINK1 is degraded through the N-end rule pathway. Autophagy 9:1758–69 [Google Scholar]
  303. Yang HC, Palazzo A, Swayne TC, Pon LA. 1999. A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr. Biol. 9:1111–14 [Google Scholar]
  304. Yoon Y, Krueger EW, Oswald BJ, McNiven MA. 2003. The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol. Cell. Biol. 23:5409–20 [Google Scholar]
  305. Yoon Y, Pitts KR, McNiven MA. 2001. Mammalian dynamin-like protein dlp1 tubulates membranes. Mol. Biol. Cell 12:2894–905 [Google Scholar]
  306. Youle RJ, Narendra DP. 2011. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12:9–14 [Google Scholar]
  307. Youngman MJ, Hobbs AE, Burgess SM, Srinivasan M, Jensen RE. 2004. Mmm2p, a mitochondrial outer membrane protein required for yeast mitochondrial shape and maintenance of mtDNA nucleoids. J. Cell Biol. 164:677–88 [Google Scholar]
  308. Yue W, Chen Z, Liu H, Yan C, Chen M. et al. 2014. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30. Cell Res. 24:482–96 [Google Scholar]
  309. Zhang Y, Chan NC, Ngo HB, Gristick H, Chan DC. 2012. Crystal structure of mitochondrial fission complex reveals scaffolding function for mitochondrial division 1 (Mdv1) coiled coil. J. Biol. Chem. 287:9855–61 [Google Scholar]
  310. Zhao J, Liu T, Jin S, Wang X, Qu M. et al. 2011. Human MIEF1 recruits Drp1 to mitochondrial outer membranes and promotes mitochondrial fusion rather than fission. EMBO J. 30:2762–78 [Google Scholar]
  311. Zhong B, Yang Y, Li S, Wang YY, Li Y. et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538–50 [Google Scholar]
  312. Zick M, Duvezin-Caubet S, Schäfer A, Vogel F, Neupert W, Reichert AS. 2009. Distinct roles of the two isoforms of the dynamin-like GTPase Mgm1 in mitochondrial fusion. FEBS Lett. 583:2237–43 [Google Scholar]
  313. Ziviani E, Tao RN, Whitworth AJ. 2010. Drosophila Parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proc. Natl. Acad. Sci. USA 107:5018–23 [Google Scholar]
  314. Zuchner S, De Jonghe P, Jordanova A, Claeys KG, Guergueltcheva V. et al. 2006. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann. Neurol. 59:276–81 [Google Scholar]
  315. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J. et al. 2004. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat. Genet. 36:449–51 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-101011-155756
Loading
/content/journals/10.1146/annurev-cellbio-101011-155756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error