1932

Abstract

The evolutionary conservation of developmental mechanisms is a truism in biology, but few attempts have been made to integrate development with evolutionary theory and ecology. To work toward such a synthesis, we summarize studies in the nematode model , focusing on the development of the dauer, a stress-resistant, alternative larval stage. Integrative approaches combining molecular and genetic principles of development with natural variation and ecological studies in wild populations have identified a key role for a developmental switch mechanism in dauer development and evolution, one that involves the nuclear hormone receptor DAF-12. DAF-12 is a crucial regulator and convergence point for different signaling inputs, and its function is conserved among free-living and parasitic nematodes. Furthermore, DAF-12 is the target of regulatory loops that rely on novel or fast-evolving components to control the intraspecific competition of dauer larvae. We propose developmental switches as paradigms for understanding the integration of development, evolution, and ecology at the molecular level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-102314-112451
2015-11-13
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/31/1/annurev-cellbio-102314-112451.html?itemId=/content/journals/10.1146/annurev-cellbio-102314-112451&mimeType=html&fmt=ahah

Literature Cited

  1. Amundson R. 2005. The Changing Role of the Embryo in Evolutionary Thought: Roots of Evo-Devo New York: Cambridge Univ. Press
  2. Antebi A. 2015. Nuclear receptor signal transduction in C. elegans. WormBook The C. elegans Research Community. http://www.wormbook.org
  3. Antebi A, Culotti JG, Hedgecock EM. 1998. daf-12 regulates developmental age and the dauer alternative in Caenorhabditis elegans. Development 125:1191–205 [Google Scholar]
  4. Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. 2000. daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev. 14:1512–27 [Google Scholar]
  5. Beldade P, Brakefield PM. 2002. The genetics and evo-devo of butterfly wing patterns. Nat. Rev. Genet. 3:442–52 [Google Scholar]
  6. Bento G, Ogawa A, Sommer RJ. 2010. Co-option of the hormone-signalling module dafachronic acid–DAF-12 in nematode evolution. Nature 466:494–97 [Google Scholar]
  7. Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P. et al. 1998. A molecular evolutionary framework for the phylum Nematoda. Nature 392:71–75 [Google Scholar]
  8. Booth LN, Tuch BB, Johnson AD. 2010. Intercalation of a new tier of transcription regulation into an ancient circuit. Nature 468:959–63 [Google Scholar]
  9. Bose N, Meyer JM, Yim JJ, Mayer MG, Markov GV. et al. 2014. Natural variation in dauer pheromone production and sensing supports intraspecific competition in nematodes. Curr. Biol. 24:1536–41 [Google Scholar]
  10. Bose N, Ogawa A, von Reuss SH, Yim JJ, Ragsdale EJ. et al. 2012. Complex small-molecule architectures regulate phenotypic plasticity in a nematode. Angew. Chem. 51:12438–43 [Google Scholar]
  11. Butcher RA, Fujita M, Schroeder FC, Clardy J. 2007. Small-molecule pheromones that control dauer development in Caenorhabditis elegans. Nat. Chem. Biol. 3:420–22 [Google Scholar]
  12. Butcher RA, Ragains JR, Kim E, Clardy J. 2008. A potent dauer pheromone component in Caenorhabditis elegans that acts synergistically with other components. PNAS 105:14288–92 [Google Scholar]
  13. Butcher RA, Ragains JR, Li W, Ruvkun G, Clardy J, Mak HY. 2009. Biosynthesis of the Caenorhabditis elegans dauer pheromone. PNAS 106:1875–79 [Google Scholar]
  14. Carroll SB. 2005. Endless Forms Most Beautiful New York: Norton
  15. Cassada RC, Russell RL. 1975. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46:326–42 [Google Scholar]
  16. Crook M, Thompson FJ, Grant WN, Viney ME. 2005. daf-7 and the development of Strongyloides ratti and Parastrongyloides trichosuri. Mol. Biochem. Parasitol. 139:213–23 [Google Scholar]
  17. Davidson EH. 2006. The Regulatory Genome: Gene Regulatory Networks in Development and Evolution Burlington, MA: Academic
  18. Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K. et al. 2008. The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat. Genet. 40:1193–98 [Google Scholar]
  19. Dieterich C, Sommer RJ. 2009. How to become a parasite—lessons from the genomes of nematodes. Trends Genet. 25:203–9 [Google Scholar]
  20. Fielenbach N, Antebi A. 2008. C. elegans dauer formation and the molecular basis of plasticity. Genes Dev. 22:2149–65 [Google Scholar]
  21. Fuchs G. 1915. Die Naturgeschichte der Nematoden und einiger anderer Parasiten. 1. des Ips typographus L. 2. des Hylobius abietis L. Zool. Jahrb. Abt. Syst. 38:109–222 [Google Scholar]
  22. Gerisch B, Antebi A. 2004. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 131:1765–76 [Google Scholar]
  23. Gerisch B, Weitzel C, Kober-Eisermann C, Rottiers V, Antebi A. 2001. A hormonal signaling pathway influencing C. elegans metabolism, reproductive development, and life span. Dev. Cell 1:841–51 [Google Scholar]
  24. Golden JW, Riddle DL. 1982. A pheromone influences larval development in the nematode Caenorhabditis elegans. Science 218:578–80 [Google Scholar]
  25. Golden JW, Riddle DL. 1985. A gene affecting production of the Caenorhabditis elegans dauer-inducing pheromone. Mol. Gen. Genet. 198:534–36 [Google Scholar]
  26. Herrmann M, Kienle S, Rochat J, Mayer WE, Sommer RJ. 2010. Haplotype diversity of the nematode Pristionchus pacificus on Réunion in the Indian Ocean suggests multiple independent invasions. Biol. J. Linn. Soc. 100:170–79 [Google Scholar]
  27. Herrmann M, Mayer WE, Hong RL, Kienle S, Minasaki R, Sommer RJ. 2007. The nematode Pristionchus pacificus (Nematoda: Diplogastridae) is associated with the oriental beetle Exomala orientalis (Coleoptera: Scarabaeidae) in Japan. Zool. Sci. 24:883–89 [Google Scholar]
  28. Hu PJ. 2007. Dauer. WormBook The C. elegans Research Community. http://www.wormbook.org
  29. Jeong P-Y, Jung M, Yim Y-H, Kim H, Park M. et al. 2005. Chemical structure and biological activity of the Caenorhabditis elegans dauer-inducing pheromone. Nature 433:541–45 [Google Scholar]
  30. Jia K, Albert PS, Riddle DL. 2002. DAF-9, a cytochrome P450 regulating C. elegans larval development and adult longevity. Development 129:221–31 [Google Scholar]
  31. Kanzaki N, Ragsdale EJ, Herrmann M, Mayer WE, Sommer RJ. 2012. Description of three Pristionchus species (Nematoda: Diplogastridae) from Japan that form a cryptic species complex with the model organism P. pacificus. Zool. Sci. 29:403–17 [Google Scholar]
  32. Keller L. 1999. Levels of Selection in Evolution Princeton, NJ: Princeton Univ. Press
  33. Keller L, Surette MG. 2006. Communication in bacteria: an ecological and evolutionary perspective. Nat. Rev. Microbiol. 4:249–58 [Google Scholar]
  34. Kenyon C. 2010. A pathway that links reproductive status to lifespan in Caenorhabditis elegans. Ann. N.Y. Acad. Sci. 1204:156–62 [Google Scholar]
  35. Kienle S, Sommer RJ. 2013. Cryptic variation in vulva development by cis-regulatory evolution of a HAIRY-binding site. Nat. Commun. 4:1714 [Google Scholar]
  36. Kim K, Sato K, Shibuya M, Zeiger DM, Butcher RA. et al. 2009. Two chemoreceptors mediate developmental effects of dauer pheromone in C. elegans. Science 326:994–98 [Google Scholar]
  37. Laubichler MD, Maienschein J. 2007. From Embryology to Evo-Devo: A History of Developmental Evolution Cambridge, MA: MIT Press
  38. Lee DL. 2002. The Biology of Nematodes London: Taylor & Francis
  39. Ludewig AH, Izrayelit Y, Park D, Malik RU, Zimmermann A. et al. 2013. Pheromone sensing regulates Caenorhabditis elegans lifespan and stress resistance via the deacetylase SIR-2.1. PNAS 110:5522–27 [Google Scholar]
  40. Ludewig AH, Schroeder FC. 2013. Ascaroside signaling in C. elegans. WormBook The C. elegans Research Community. http://www.wormbook.org [Google Scholar]
  41. Lynch M. 2007. The Origins of Genome Architecture Sunderland, MA: Sinauer Assoc.
  42. Mahalak KK, Chamberlin HM. 2015. Orphan genes find a home: interspecific competition and gene network evolution. PLOS Genet. 11:e1005254 [Google Scholar]
  43. Mahanti P, Bose N, Bethke A, Judkins JC, Wollam J. et al. 2014. Comparative metabolomics reveals endogenous ligands of DAF-12, a nuclear hormone receptor, regulating C. elegans development and lifespan. Cell Metab. 19:73–83 [Google Scholar]
  44. Mayer MG, Rödelsperger C, Witte H, Riebesell M, Sommer RJ. 2015. The orphan gene dauerless regulates dauer development and intraspecific competition in nematodes by copy number variation. PLOS Genet. 11:e1005146 [Google Scholar]
  45. Mayer MG, Sommer RJ. 2011. Natural variation in Pristionchus pacificus dauer formation reveals cross-preference rather than self-preference of nematode dauer pheromones. Proc. R. Soc. B 278:2784–90 [Google Scholar]
  46. Mayr E. 1963. Animal Species and Evolution Cambridge, MA: Harvard Univ. Press
  47. McGaughran A, Morgan K, Sommer RJ. 2013. Unraveling the evolutionary history of the nematode Pristionchus pacificus: from lineage diversification to island colonization. Ecol. Evol. 3:667–75 [Google Scholar]
  48. McGrath PT, Xu Y, Ailion M, Garrison JL, Butcher RA, Bargmann CI. 2011. Parallel evolution of domesticated Caenorhabditis species targets pheromone receptor genes. Nature 477:321–25 [Google Scholar]
  49. Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I. et al. 2011. The role of developmental plasticity in evolutionary innovation. Proc. R. Soc. B 278:2705–13 [Google Scholar]
  50. Morgan K, McGaughran A, Villate L, Herrmann M, Witte H. et al. 2012. Multi locus analysis of Pristionchus pacificus on La Réunion Island reveals an evolutionary history shaped by multiple introductions, constrained dispersal events and rare out-crossing. Mol. Ecol. 21:250–66 [Google Scholar]
  51. Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T. et al. 2006. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124:1209–23 [Google Scholar]
  52. Nemetschke L, Eberhardt AG, Hertzberg H, Streit A. 2010. Genetics, chromatin diminution, and sex chromosome evolution in the parasitic nematode genus Strongyloides. Curr. Biol. 20:1687–96 [Google Scholar]
  53. Ogawa A, Bento G, Bartelmes G, Dieterich C, Sommer RJ. 2011. Pristionchus pacificus daf-16 is essential for dauer formation but dispensable for mouth form dimorphism. Development 138:1281–84 [Google Scholar]
  54. Ogawa A, Streit A, Antebi A, Sommer RJ. 2009. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19:67–71 [Google Scholar]
  55. Osche G. 1956. Die Präadaptation freilebender Nematoden an den Parasitismus. Zool. Anz. 19:391–96 [Google Scholar]
  56. Park D, O'Doherty I, Somvanshi RK, Bethke A, Schroeder FC. et al. 2012. Interaction of structure-specific and promiscuous G-protein-coupled receptors mediates small-molecule signaling in Caenorhabditis elegans. PNAS 109:9917–22 [Google Scholar]
  57. Perry RN, Wharton DA. 2011. Molecular and Physiological Basis of Nematode Survival Chippenham, UK: CABI
  58. Pin PA, Nilsson O. 2012. The multifaceted roles of FLOWERING LOCUS T in plant development. Plant Cell Environ 35:1742–55 [Google Scholar]
  59. Poulin R. 2007. Evolutionary Ecology of Parasites. Princeton, NJ: Princeton Univ. Press
  60. Raff RA. 1996. The Shape of Life: Genes, Development, and the Evolution of Animal Form Chicago: Univ. Chicago Press
  61. Ragsdale EJ. 2015. Mouth dimorphism and the evolution of novelty and diversity. Pristionchus pacificus: A Nematode Model for Comparative and Evolutionary Biology RJ Sommer 301–29 Leiden, Neth: Brill [Google Scholar]
  62. Ragsdale EJ, Müller MR, Rödelsperger C, Sommer RJ. 2013. A developmental switch coupled to the evolution of plasticity acts through a sulfatase. Cell 155:922–33 [Google Scholar]
  63. Riddle DL. 1978. The genetics of development and behavior in Caenorhabditis elegans. J. Nematol. 10:1–16 [Google Scholar]
  64. Riddle DL, Albert PS. 1997. Genetic and environmental regulation of dauer larva development. C. elegans II, ed. DL Riddle, T Blumenthal, BJ Meyer, JR Priess 739–68 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  65. Riedl R. 1975. Die Ordnung des Lebendigen: Systembedingungen der Evolution Hamburg, Ger: Verlag Paul Parey
  66. Rieppel OC. 1988. Fundamentals of Comparative Biology Basel, Switz: Birkhäuser Verlag
  67. Rieppel OC. 2008. Development, essentialism, and population thinking. Evol. Dev. 10:504–7 [Google Scholar]
  68. Sachs JL, Mueller UG, Wilcox TP, Bull JJ. 2004. The evolution of cooperation. Q. Rev. Biol. 79:135–60 [Google Scholar]
  69. Schlager B, Wang X, Braach G, Sommer RJ. 2009. Molecular cloning of a dominant roller mutant and establishment of DNA-mediated transformation in the nematode Pristionchus pacificus. Genesis 47:300–4 [Google Scholar]
  70. Schlichting CD, Pigliucci M. 1998. Phenotypic Evolution: A Reaction Norm Perspective Sunderland, MA: Sinauer Assoc.
  71. Schroeder FC. 2015. Modular assembly of primary metabolic building blocks: a chemical language in C. elegans. Chem. Biol. 22:7–16 [Google Scholar]
  72. Sinha A, Sommer RJ, Dieterich C. 2012. Divergent gene expression in the conserved dauer stage of the nematodes Pristionchus pacificus and Caenorhabditis elegans. BMC Genomics 13:254–70 [Google Scholar]
  73. Smocovitis VB. 1996. Unifying Biology Princeton, NJ: Princeton Univ. Press
  74. Sommer RJ. 2009. The future of evo-devo: model systems and evolutionary theory. Nat. Rev. Genet. 10:416–22 [Google Scholar]
  75. Sommer RJ, McGaughran A. 2013. The nematode Pristionchus pacificus as a model system for integrative studies in evolutionary biology. Mol. Ecol. 22:2380–93 [Google Scholar]
  76. Sommer RJ, Ogawa A. 2011. Hormone signaling and phenotypic plasticity in nematode development and evolution. Curr. Biol. 21:R758–66 [Google Scholar]
  77. Srinivasan J, von Reuss SH, Bose N, Zaslaver A, Mahanti P. et al. 2012. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLOS Biol. 10:e1001237 [Google Scholar]
  78. Sudhaus W. 2010. Preadaptive plateau in Rhabditida (Nematoda) allowed the repeated evolution of zooparasites, with an outlook on evolution of life cycles within Spiroascarida. Palaeodiversity 3:117–30 [Google Scholar]
  79. Susoy V, Ragsdale EJ, Kanzaki N, Sommer RJ. 2015. Rapid diversification associated with a macroevolutionary pulse of developmental plasticity. eLife 4:e05463 [Google Scholar]
  80. Tian H, Schlager B, Xiao H, Sommer RJ. 2008. Wnt signaling induces vulva development in the nematode Pristionchus pacificus. Curr. Biol. 18:142–46 [Google Scholar]
  81. True JR, Haag ES. 2001. Developmental system drift and flexibility in evolutionary trajectories. Evol. Dev. 3:109–19 [Google Scholar]
  82. Tsong AE, Miller MG, Raisner RM, Johnson AD. 2003. Evolution of a combinatorial transcriptional circuit: a case study in yeasts. Cell 115:389–99 [Google Scholar]
  83. Tsong AE, Tuch BB, Li H, Johnson AD. 2006. Evolution of alternative transcriptional circuits with identical logic. Nature 443:415–20 [Google Scholar]
  84. Velicer GJ. 2003. Social strife in the microbial world. Trends Microbiol. 11:330–37 [Google Scholar]
  85. Wang X, Sommer RJ. 2011. Antagonism of LIN-17/Frizzled and LIN-18/Ryk in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLOS Biol. 9:e1001110 [Google Scholar]
  86. Wang Z, Abubucker S, Martin J, Wilson RK, Hawdon J, Mitreva M. 2010. Characterizing Ancylostoma caninum transcriptome and exploring nematode parasitic adaptation. BMC Genomics 11:307 [Google Scholar]
  87. West-Eberhard MJ. 2003. Developmental Plasticity and Evolution New York: Oxford Univ. Press
  88. Whitman DW, Ananthakrishnan TN. 2009. Phenotypic Plasticity of Insects: Mechanisms and Consequences Enfield, NH: Sci. Publ.
  89. Wilkins AS. 2002. The Evolution of Developmental Pathways Sunderland, MA: Sinauer Assoc.
  90. Witte H, Moreno E, Rödelsperger C, Kim J, Kim JS. et al. 2015. Gene inactivation using the CRISPR/Cas9 system in the nematode Pristionchus pacificus. Dev. Genes Evol. 225:55–62 [Google Scholar]
  91. Wolpert L. 2007. Principles of Development Oxford, UK: Oxford Univ. Press
  92. Zheng M, Messerschmidt D, Jungblut B, Sommer RJ. 2005. Conservation and diversification of Wnt signaling function during the evolution of nematode vulva development. Nat. Genet. 37:300–4 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-102314-112451
Loading
/content/journals/10.1146/annurev-cellbio-102314-112451
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error