1932

Abstract

Mechanical force modulates development, influences tissue homeostasis, and contributes to disease. Forces sculpt tissue-level behaviors and direct cell fate by engaging mechanoreceptors and by altering organization of the cytoskeleton and actomyosin contractility to stimulate mechanotransduction mechanisms that alter transcription. Nevertheless, how force specifically leverages mechanotransduction pathways to control transcriptional regulation of cell fate remains unclear. Here we review recent findings specifically in the context of epithelial-to-mesenchymal transitions that have revealed conserved mechanisms whereby extracellular force, mediated through cell–extracellular matrix and cell-cell junctional complexes, induces transcriptional reprogramming to alter cell and tissue fate. We focus on the interplay between tissue mechanics and the epithelial-to-mesenchymal transitions that occur during embryonic development and cancer malignancy. We describe the adhesion-linked cellular machinery that mediates mechano-transduction and elaborate on how these force-linked networks stimulate key transcriptional programs that induce an epithelial-to-mesenchymal phenotypic transition, thereby providing an overview of how mechanical signals can be translated into a change in cell fate.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111315-125150
2016-10-06
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/32/1/annurev-cellbio-111315-125150.html?itemId=/content/journals/10.1146/annurev-cellbio-111315-125150&mimeType=html&fmt=ahah

Literature Cited

  1. Abba ML, Patil N, Leupold JH, Allgayer H. 2016. MicroRNA regulation of epithelial to mesenchymal transition. J. Clin. Med. 5:8 doi:10.3390/jcm5010008 [Google Scholar]
  2. Alexandrova AY, Arnold K, Schaub S, Vasiliev JM, Meister J-J. et al. 2008. Comparative dynamics of retrograde actin flow and focal adhesions: Formation of nascent adhesions triggers transition from fast to slow flow. PLOS ONE 3:e3234 doi:10.1371/journal.pone.0003234 [Google Scholar]
  3. Allen JL, Cooke ME, Alliston T. 2012. ECM stiffness primes the TGFβ pathway to promote chondrocyte differentiation. Mol. Biol. Cell 23:3731–42 doi:10.1091/mbc.E12-03-0172 [Google Scholar]
  4. Assoian RK, Klein EA. 2008. Growth control by intracellular tension and extracellular stiffness. Trends Cell Biol. 18:347–52 doi:10.1016/j.tcb.2008.05.002 [Google Scholar]
  5. Avizienyte E, Frame MC. 2005. Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr. Opin. Cell Biol. 17:542–47 doi:10.1016/j.ceb.2005.08.007 [Google Scholar]
  6. Avizienyte E, Wyke AW, Jones RJ, McLean GW, Westhoff MA. et al. 2002. Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat. Cell Biol. 4:632–38 doi:10.1038/ncb829 [Google Scholar]
  7. Balkwill F. 2004. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin. Cancer Biol. 14:171–79 doi:10.1016/j.semcancer.2003.10.003 [Google Scholar]
  8. Barberà MJ, Puig I, Domínguez D, Julien-Grille S, Guaita-Esteruelas S. et al. 2004. Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23:7345–54 doi:10.1038/sj.onc.1207990 [Google Scholar]
  9. Batlle E, Sancho E, Francí C, Domínguez D, Monfar M. et al. 2000. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat. Cell Biol. 2:84–89 doi:10.1038/35000034 [Google Scholar]
  10. Bhowmick NA, Ghiassi M, Bakin A, Aakre M, Lundquist CA. et al. 2001. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol. Biol. Cell 12:27–36 [Google Scholar]
  11. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL. et al. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell–cell contacts upon externally applied stretch. PNAS 109:12568–73 [Google Scholar]
  12. Borisy GG, Svitkina TM. 2000. Actin machinery: pushing the envelope. Curr. Opin. Cell Biol. 12:104–12 [Google Scholar]
  13. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T. 2011. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13:1124–31 doi:10.1038/ncb2307 [Google Scholar]
  14. Bourguignon LYW, Wong G, Earle C, Krueger K, Spevak CC. 2010. Hyaluronan-CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J. Biol. Chem. 285:36721–35 doi:10.1074/jbc.M110.162305 [Google Scholar]
  15. Brabletz T, Jung A, Reu S, Porzner M, Hlubek F. et al. 2001. Variable β-catenin expression in colorectal cancers indicates tumor progression driven by the tumor environment. PNAS 98:10356–61 doi:10.1073/pnas.171610498 [Google Scholar]
  16. Buckley CD, Amft N, Bradfield PF, Pilling D, Ross E. et al. 2000. Persistent induction of the chemokine receptor CXCR4 by TGF-β1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J. Immunol. 165:3423–29 [Google Scholar]
  17. Butcher DT, Alliston T, Weaver VM. 2009. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–22 doi:10.1038/nrc2544 [Google Scholar]
  18. Cano A, Pérez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ. et al. 2000. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2:76–83 doi:10.1038/35000025 [Google Scholar]
  19. Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. 2001. The mouse Snail gene encodes a key regulator of the epithelial–mesenchymal transition. Mol. Cell. Biol. 21:8184–88 [Google Scholar]
  20. Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J. 2011. Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer Res. 71:245–54 doi:10.1158/0008-5472.CAN-10-2330 [Google Scholar]
  21. Chanet S, Martin AC. 2014. Mechanical force sensing in tissues. Prog. Mol. Biol. Transl. Sci. 126:317–52 doi:10.1016/B978-0-12-394624-9.00013-0 [Google Scholar]
  22. Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 1998. Micropatterned surfaces for control of cell shape, position, and function. Biotechnol. Prog. 14:356–63 doi:10.1021/bp980031m [Google Scholar]
  23. Chen J, Imanaka N, Griffin JD. 2010. Hypoxia potentiates Notch signaling in breast cancer leading to decreased E-cadherin expression and increased cell migration and invasion. Br. J. Cancer 102:351–60 [Google Scholar]
  24. Cicchini C, Laudadio I, Citarella F, Corazzari M, Steindler C. et al. 2008. TGFβ-induced EMT requires focal adhesion kinase (FAK) signaling. Exp. Cell Res. 314:143–52 doi:10.1016/j.yexcr.2007.09.005 [Google Scholar]
  25. Clay MR, Halloran MC. 2013. Rho activation is apically restricted by Arhgap1 in neural crest cells and drives epithelial-to-mesenchymal transition. Development 140:3198–209 [Google Scholar]
  26. Copeland JW, Treisman R. 2002. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell 13:4088–99 doi:10.1091/mbc.02-06-0092 [Google Scholar]
  27. Cramer LP. 1997. Molecular mechanism of actin-dependent retrograde flow in lamellipodia of motile cells. Front. Biosci. 2:d260–70 [Google Scholar]
  28. Cui Y, Yamada S. 2013. N-cadherin dependent collective cell invasion of prostate cancer cells is regulated by the N-terminus of α-catenin. PLOS ONE 8:e55069 [Google Scholar]
  29. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41 doi:10.1126/science.1162912 [Google Scholar]
  30. Denoyelle M, Vallés AM, Lentz D, Thiery JP, Boyer B. 2001. Mesoderm-independent regulation of gastrulation movements by the Src tyrosine kinase in Xenopus embryo. Differentiation 69:38–48 doi:10.1046/j.1432-0436.2001.690104.x [Google Scholar]
  31. Descot A, Rex-Haffner M, Courtois G, Bluteau D, Menssen A. et al. 2008. OTT-MAL is a deregulated activator of serum response factor–dependent gene expression. Mol. Cell. Biol. 28:6171–81 doi:10.1128/MCB.00303-08 [Google Scholar]
  32. Díaz-Martín J, Díaz-López A, Moreno-Bueno G, Castilla , Rosa-Rosa JM. et al. 2014. A core microRNA signature associated with inducers of the epithelial-to-mesenchymal transition. J. Pathol. 232:319–29 doi:10.1002/path.4289 [Google Scholar]
  33. DuFort CC, Paszek MJ, Weaver VM. 2011. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–19 doi:10.1038/nrm3112 [Google Scholar]
  34. Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA. et al. 2013. How vinculin regulates force transmission. PNAS 110:9788–93 doi:10.1073/pnas.1216209110 [Google Scholar]
  35. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S. et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83 doi:10.1038/nature10137 [Google Scholar]
  36. Egeblad M, Rasch MG, Weaver VM. 2010. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22:697–706 doi:10.1016/j.ceb.2010.08.015 [Google Scholar]
  37. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S. et al. 2005. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 24:2375–85 doi:10.1038/sj.onc.1208429 [Google Scholar]
  38. El Sayegh TY, Arora PD, Fan L, Laschinger CA, Greer PA. et al. 2005. Phosphorylation of N-cadherin-associated cortactin by Fer kinase regulates N-cadherin mobility and intercellular adhesion strength. Mol. Biol. Cell 16:5514–27 doi:10.1091/mbc.E05-05-0410 [Google Scholar]
  39. Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89 doi:10.1016/j.cell.2006.06.044 [Google Scholar]
  40. Fan L, Sebe A, Péterfi Z, Masszi A, Thirone ACP. et al. 2007. Cell contact–dependent regulation of epithelial-myofibroblast transition via the Rho-Rho kinase-phospho-myosin pathway. Mol. Biol. Cell 18:1083–97 doi:10.1091/mbc.E06-07-0602 [Google Scholar]
  41. Farge E. 2003. Mechanical induction of twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13:1365–77 doi:10.1016/S0960-9822(03)00576-1 [Google Scholar]
  42. Friedland JC, Lee MH, Boettiger D. 2009. Mechanically activated integrin switch controls α5β1 function. Science 323:642–44 doi:10.1126/science.1168441 [Google Scholar]
  43. Fu J, Wang Y-K, Yang MT, Desai RA, Yu X. et al. 2010. Mechanical regulation of cell function with geometrically modulated elastomeric substrates. Nat. Methods 7:733–36 doi:10.1038/nmeth.1487 [Google Scholar]
  44. Galbraith CG, Yamada KM, Sheetz MP. 2002. The relationship between force and focal complex development. J. Cell Biol. 159:695–705 doi:10.1083/jcb.200204153 [Google Scholar]
  45. Garside VC, Chang AC, Karsan A, Hoodless PA. 2013. Co-ordinating Notch, BMP, and TGF-β signaling during heart valve development. Cell. Mol. Life Sci. 70:2899–917 doi:10.1007/s00018-012-1197-9 [Google Scholar]
  46. Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP. 2011. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. PNAS 108:14467–72 doi:10.1073/pnas.1105845108 [Google Scholar]
  47. Gehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA. et al. 2009. Filamin A-β1 integrin complex tunes epithelial cell response to matrix tension. Mol. Biol. Cell 20:3224–38 doi:10.1091/mbc.E08-12-1186 [Google Scholar]
  48. Geiger B, Spatz JP, Bershadsky AD. 2009. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33 doi:10.1038/nrm2593 [Google Scholar]
  49. Geneste O, Copeland JW, Treisman R. 2002. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157:831–38 doi:10.1083/jcb.200203126 [Google Scholar]
  50. Gerlitz G, Bustin M. 2010. Efficient cell migration requires global chromatin condensation. J. Cell Sci. 123:2207–17 doi:10.1242/jcs.058271 [Google Scholar]
  51. Giacomini MM, Travis MA, Kudo M, Sheppard D. 2012. Epithelial cells utilize cortical actin/myosin to activate latent TGF-β through integrin αvβ6-dependent physical force. Exp. Cell Res. 318:716–22 doi:10.1016/j.yexcr.2012.01.020 [Google Scholar]
  52. Giannini AL, Vivanco MDM, Kypta RM. 2000. α-Catenin inhibits β-catenin signaling by preventing formation of a β-catenin·T-cell factor·DNA complex. J. Biol. Chem. 275:21883–88 doi:10.1074/jbc.M001929200 [Google Scholar]
  53. Gilbert PM, Havenstrite KL, Magnusson KEG, Sacco A, Leonardi NA. et al. 2010. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329:1078–81 doi:10.1126/science.1191035 [Google Scholar]
  54. Gingery A, Bradley EW, Pederson L, Ruan M, Horwood NJ, Oursler MJ. 2008. TGF-β coordinately activates TAK1/MEK/AKT/NFκB and SMAD pathways to promote osteoclast survival. Exp. Cell Res. 314:2725–38 doi:10.1016/j.yexcr.2008.06.006 [Google Scholar]
  55. Gomez EW, Chen QK, Gjorevski N, Nelson CM. 2010. Tissue geometry patterns epithelial-mesenchymal transition via intercellular mechanotransduction. J. Cell. Biochem. 110:44–51 doi:10.1002/jcb.22545 [Google Scholar]
  56. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A. et al. 2008. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10:593–601 doi:10.1038/ncb1722 [Google Scholar]
  57. Haegel H, Larue L, Ohsugi M, Fedorov L, Herrenknecht K, Kemler R. 1995. Lack of β-catenin affects mouse development at gastrulation. Development 121:3529–37 [Google Scholar]
  58. Haraguchi M, Okubo T, Miyashita Y, Miyamoto Y, Hayashi M. et al. 2008. Snail regulates cell-matrix adhesion by regulation of the expression of integrins and basement membrane proteins. J. Biol. Chem. 283:23514–23 doi:10.1074/jbc.M801125200 [Google Scholar]
  59. Hay ED. 1995. An overview of epithelio-mesenchymal transformation. Acta Anat. 154:8–20 [Google Scholar]
  60. Helbig G, Christopherson KW, Bhat-Nakshatri P, Kumar S, Kishimoto H. et al. 2003. NF-κB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J. Biol. Chem. 278:21631–38 doi:10.1074/jbc.M300609200 [Google Scholar]
  61. Hirata H, Sokabe M, Lim CT. 2014. Molecular mechanisms underlying the force-dependent regulation of actin-to-ECM linkage at the focal adhesions. Prog. Mol. Biol. Transl. Sci. 126:135–54 doi:10.1016/B978-0-12-394624-9.00006-3 [Google Scholar]
  62. Howard S, Deroo T, Fujita Y, Itasaki N. 2011. A positive role of cadherin in Wnt/β-catenin signalling during epithelial-mesenchymal transition. PLOS ONE 6:e23899 doi:10.1371/journal.pone.0023899 [Google Scholar]
  63. Iyer KV, Pulford S, Mogilner A, Shivashankar GV. 2012. Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport. Biophys. J. 103:1416–28 doi:10.1016/j.bpj.2012.08.041 [Google Scholar]
  64. Izard T, Vonrhein C. 2004. Structural basis for amplifying vinculin activation by talin. J. Biol. Chem. 279:27667–78 doi:10.1074/jbc.M403076200 [Google Scholar]
  65. Johnson RP, Craig SW. 1995. F-actin binding site masked by the intramolecular association of vinculin head and tail domains. Nature 373:261–64 doi:10.1038/373261a0 [Google Scholar]
  66. Kalluri R, Weinberg RA. 2009. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 119:1420–28 doi:10.1172/JCI39104 [Google Scholar]
  67. Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV. 1997. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI3K. Nature 390:632–36 doi:10.1038/37656 [Google Scholar]
  68. Kemler R, Hierholzer A, Kanzler B, Kuppig S, Hansen K. et al. 2004. Stabilization of β-catenin in the mouse zygote leads to premature epithelial-mesenchymal transition in the epiblast. Development 131:5817–24 doi:10.1242/dev.01458 [Google Scholar]
  69. Khachigian LM, Resnick N, Gimbrone MA, Collins T. 1995. Nuclear factor-κB interacts functionally with the platelet-derived growth factor B-chain shear-stress response element in vascular endothelial cells exposed to fluid shear stress. J. Clin. Investig. 96:1169–75 doi:10.1172/JCI118106 [Google Scholar]
  70. Kim E-S, Kim M-S, Moon A. 2004. TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int. J. Oncol. 25:1375–82 [Google Scholar]
  71. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG. et al. 2006. Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. PNAS 103:13180–85 doi:10.1073/pnas.0605669103 [Google Scholar]
  72. Klingberg F, Chow ML, Koehler A, Boo S, Buscemi L. et al. 2014. Prestress in the extracellular matrix sensitizes latent TGF-β1 for activation. J. Cell Biol. 207:283–97 doi:10.1083/jcb.201402006 [Google Scholar]
  73. Kobayashi T, Masaki T, Nozaki E, Sugiyama M, Nagashima F. et al. 2015. Microarray analysis of gene expression at the tumor front of colon cancer. Anticancer Res. 35:6577–81 [Google Scholar]
  74. Kojic N, Chung E, Kho AT, Park J-A, Huang A. et al. 2010. An EGFR autocrine loop encodes a slow-reacting but dominant mode of mechanotransduction in a polarized epithelium. FASEB J. 24:1604–15 doi:10.1096/fj.09–145367 [Google Scholar]
  75. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA. et al. 2011. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat. Med. 17:1101–1108 doi:10.1038/nm.2401 [Google Scholar]
  76. Korpal M, Lee ES, Hu G, Kang Y. 2008. The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J. Biol. Chem. 283:14910–14 doi:10.1074/jbc.C800074200 [Google Scholar]
  77. Lakins JN, Chin AR, Weaver VM. 2012. Exploring the link between human embryonic stem cell organization and fate using tension-calibrated extracellular matrix functionalized polyacrylamide gels. Methods Mol. Biol. 916:317–50 doi:10.1007/978-1-61779-980-8_24 [Google Scholar]
  78. Lamar JM, Stern P, Liu H, Schindler JW, Jiang Z-G, Hynes RO. 2012. The Hippo pathway target, YAP, promotes metastasis through its TEAD-interaction domain. PNAS 109:E2441–50 doi:10.1073/pnas.1212021109 [Google Scholar]
  79. Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15:178–96 doi:10.1038/nrm3758 [Google Scholar]
  80. le Duc Q, Shi Q, Blonk I, Sonnenberg A, Wang N. et al. 2010. Vinculin potentiates E-cadherin mechanosensing and is recruited to actin-anchored sites within adherens junctions in a myosin II–dependent manner. J. Cell Biol. 189:1107–15 [Google Scholar]
  81. Lee SE, Kamm RD, Mofrad MRK. 2007. Force-induced activation of talin and its possible role in focal adhesion mechanotransduction. J. Biomech. 40:2096–106 doi:10.1016/j.jbiomech.2007.04.006 [Google Scholar]
  82. Lehembre F, Yilmaz M, Wicki A, Schomber T, Strittmatter K. et al. 2008. NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin. EMBO J. 27:2603–15 doi:10.1038/emboj.2008.178 [Google Scholar]
  83. Lei Q-Y, Zhang H, Zhao B, Zha Z-Y, Bai F. et al. 2008. TAZ promotes cell proliferation and epithelial-mesenchymal transition and is inhibited by the Hippo pathway. Mol. Cell. Biol. 28:2426–36 doi:10.1128/MCB.01874-07 [Google Scholar]
  84. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. 2012. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:781–91 doi:10.1091/mbc.E11-06-0537 [Google Scholar]
  85. Leong KG, Niessen K, Kulic I, Raouf A, Eaves C. et al. 2007. Jagged1-mediated Notch activation induces epithelial-to-mesenchymal transition through Slug-induced repression of E-cadherin. J. Exp. Med. 204:2935–48 [Google Scholar]
  86. Levental KR, Yu H, Kass L, Lakins JN, Egeblad M. et al. 2009. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139:891–906 doi:10.1016/j.cell.2009.10.027 [Google Scholar]
  87. Li Q, Makhija E, Hameed FM, Shivashankar GV. 2015. Micropillar displacements by cell traction forces are mechanically correlated with nuclear dynamics. Biochem. Biophys. Res. Commun. 461:372–77 doi:10.1016/j.bbrc.2015.04.041 [Google Scholar]
  88. Liebner S, Cattelino A, Gallini R, Rudini N, Iurlaro M. et al. 2004. β-Catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. J. Cell Biol. 166:359–67 doi:10.1083/jcb.200403050 [Google Scholar]
  89. Lin Y, Li X-Y, Willis AL, Liu C, Chen G, Weiss SJ. 2014. Snail1-dependent control of embryonic stem cell pluripotency and lineage commitment. Nat. Commun. 5:3070 doi:10.1038/ncomms4070 [Google Scholar]
  90. Lindsley RC, Gill JG, Kyba M, Murphy TL, Murphy KM. 2006. Canonical Wnt signaling is required for development of embryonic stem cell–derived mesoderm. Development 133:3787–96 doi:10.1242/dev.02551 [Google Scholar]
  91. Liu C, Li Y, Semenov M, Han C, Baeg G-H. et al. 2002. Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–47 doi:10.1016/S0092-8674(02)00685-2 [Google Scholar]
  92. Lo H-W, Hsu S-C, Xia W, Cao X, Shih J-Y. et al. 2007. Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial-mesenchymal transition in cancer cells via up-regulation of TWIST gene expression. Cancer Res. 67:9066–76 doi:10.1158/0008-5472.CAN-07-0575 [Google Scholar]
  93. Lu Z, Ghosh S, Wang Z, Hunter T. 2003. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of β-catenin, and enhanced tumor cell invasion. Cancer Cell 4:499–515 [Google Scholar]
  94. Ma L, Teruya-Feldstein J, Weinberg RA. 2007. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449:682–88 doi:10.1038/nature06174 [Google Scholar]
  95. Maly IV, Lee RT, Lauffenburger DA. 2004. A model for mechanotransduction in cardiac muscle: effects of extracellular matrix deformation on autocrine signaling. Ann. Biomed. Eng. 32:1319–35 [Google Scholar]
  96. Mammoto A, Mammoto T, Ingber DE. 2012. Mechanosensitive mechanisms in transcriptional regulation. J. Cell Sci. 125:3061–73 [Google Scholar]
  97. McDonald PC, Fielding AB, Dedhar S. 2008. Integrin-linked kinase: essential roles in physiology and cancer biology. J. Cell Sci. 121:3121–32 doi:10.1242/jcs.017996 [Google Scholar]
  98. Medici D, Hay ED, Goodenough DA. 2006. Cooperation between Snail and LEF-1 transcription factors is essential for TGF-β1-induced epithelial-mesenchymal transition. Mol. Biol. Cell 17:1871–79 doi:10.1091/mbc.E05-08-0767 [Google Scholar]
  99. Medici D, Hay ED, Olsen BR. 2008. Snail and Slug promote epithelial-mesenchymal transition through β-catenin-T-cell factor-4-dependent expression of transforming growth factor-β3. Mol. Biol. Cell 19:4875–87 doi:10.1091/mbc.E08-05-0506 [Google Scholar]
  100. Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP. et al. 2001. Down-regulation of E-cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. Cancer Res. 61:3508–17 [Google Scholar]
  101. Micalizzi DS, Farabaugh SM, Ford HL. 2010. Epithelial-mesenchymal transition in cancer: parallels between normal development and tumor progression. J. Mammary Gland Biol. Neoplasia 15:117–34 doi:10.1007/s10911-010-9178-9 [Google Scholar]
  102. Miralles F, Posern G, Zaromytidou A-I, Treisman R. 2003. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–42 doi:10.1016/S0092-8674(03)00278-2 [Google Scholar]
  103. Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A. et al. 2004. Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br. J. Cancer 90:1265–73 doi:10.1038/sj.bjc.6601685 [Google Scholar]
  104. Morgan MR, Byron A, Humphries MJ, Bass MD. 2009. Giving off mixed signals—distinct functions of α5β1 and αvβ3 integrins in regulating cell behaviour. IUBMB Life 61:731–38 doi:10.1002/iub.200 [Google Scholar]
  105. Morita T, Mayanagi T, Sobue K. 2007. Dual roles of myocardin-related transcription factors in epithelial-mesenchymal transition via Slug induction and actin remodeling. J. Cell Biol. 179:1027–42 doi:10.1083/jcb.200708174 [Google Scholar]
  106. Morris CE. 1990. Mechanosensitive ion channels. J. Membr. Biol. 113:93–107 [Google Scholar]
  107. Morse EM, Brahme NN, Calderwood DA. 2014. Integrin cytoplasmic tail interactions. Biochemistry 53:810–20 doi:10.1021/bi401596q [Google Scholar]
  108. Mouw JK, Ou G, Weaver VM. 2014a. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15:771–85 doi:10.1038/nrm3902 [Google Scholar]
  109. Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN. et al. 2014b. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20:360–67 doi:10.1038/nm.3497 [Google Scholar]
  110. Munger JS, Huang X, Kawakatsu H, Griffiths MJ, Dalton SL. et al. 1999. The integrin αvβ6 binds and activates latent TGFβ1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell 96:319–28 [Google Scholar]
  111. Nagase H, Miyamasu M, Yamaguchi M, Fujisawa T, Ohta K. et al. 2000. Expression of CXCR4 in eosinophils: functional analyses and cytokine-mediated regulation. J. Immunol. 164:5935–43 doi:10.4049/jimmunol.164.11.5935 [Google Scholar]
  112. Nagathihalli NS, Merchant NB. 2012. Src-mediated regulation of E-cadherin and EMT in pancreatic cancer. Front. Biosci. Landmark Ed. 17:2059–69 [Google Scholar]
  113. Narumiya S, Tanji M, Ishizaki T. 2009. Rho signaling, ROCK and mDia1, in transformation, metastasis and invasion. Cancer Metastasis Rev. 28:65–76 doi:10.1007/s10555-008-9170-7 [Google Scholar]
  114. Nisticò P, Bissell MJ, Radisky DC. 2012. Epithelial-mesenchymal transition: general principles and pathological relevance with special emphasis on the role of matrix metalloproteinases. Cold Spring Harb. Perspect. Biol. 4:a011908 doi:10.1101/cshperspect.a011908 [Google Scholar]
  115. Nobes CD, Hall A. 1995. Rho, Rac, and Cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62 doi:10.1016/0092-8674(95)90370-4 [Google Scholar]
  116. Noren NK, Arthur WT, Burridge K. 2003. Cadherin engagement inhibits RhoA via p190RhoGAP. J. Biol. Chem. 278:13615–18 doi:10.1074/jbc.C200657200 [Google Scholar]
  117. Noren NK, Liu BP, Burridge K, Kreft B. 2000. p120 catenin regulates the actin cytoskeleton via Rho family GTPases. J. Cell Biol. 150:567–80 [Google Scholar]
  118. Noren NK, Niessen CM, Gumbiner BM, Burridge K. 2001. Cadherin engagement regulates Rho family GTPases. J. Biol. Chem. 276:33305–8 doi:10.1074/jbc.C100306200 [Google Scholar]
  119. Oft M, Heider KH, Beug H. 1998. TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr. Biol. 8:1243–52 [Google Scholar]
  120. Okada T, Sinha S, Esposito I, Schiavon G, López-Lago MA. et al. 2015. The Rho GTPase Rnd1 suppresses mammary tumorigenesis and EMT by restraining Ras-MAPK signalling. Nat. Cell Biol. 17:81–94 [Google Scholar]
  121. Oloumi A, Syam S, Dedhar S. 2006. Modulation of Wnt3a-mediated nuclear β-catenin accumulation and activation by integrin-linked kinase in mammalian cells. Oncogene 25:7747–57 doi:10.1038/sj.onc.1209752 [Google Scholar]
  122. Pajerowski JD, Dahl KN, Zhong FL, Sammak PJ, Discher DE. 2007. Physical plasticity of the nucleus in stem cell differentiation. PNAS 104:15619–24 doi:10.1073/pnas.0702576104 [Google Scholar]
  123. Park S-M, Gaur AB, Lengyel E, Peter ME. 2008. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22:894–907 doi:10.1101/gad.1640608 [Google Scholar]
  124. Parks AL, Klueg KM, Stout JR, Muskavitch MA. 2000. Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development 127:1373–85 [Google Scholar]
  125. Paszek MJ, Boettiger D, Weaver VM, Hammer DA. 2009. Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLOS Comput. Biol. 5:e1000604 doi:10.1371/journal.pcbi.1000604 [Google Scholar]
  126. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI. et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54 doi:10.1016/j.ccr.2005.08.010 [Google Scholar]
  127. Peinado H, Quintanilla M, Cano A. 2003. Transforming growth factor β-1 induces Snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J. Biol. Chem. 278:21113–23 doi:10.1074/jbc.M211304200 [Google Scholar]
  128. Pellon-Cardenas O, Clancy J, Uwimpuhwe H, D'Souza-Schorey C. 2013. ARF6-regulated endocytosis of growth factor receptors links cadherin-based adhesion to canonical Wnt signaling in epithelia. Mol. Cell. Biol. 33:2963–75 doi:10.1128/MCB.01698-12 [Google Scholar]
  129. Pérez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F. et al. 2001. A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J. Biol. Chem. 276:27424–31 [Google Scholar]
  130. Polakis P. 2012. Wnt signaling in cancer. Cold Spring Harb. Perspect. Biol. 4:a008052 doi:10.1101/cshperspect.a008052 [Google Scholar]
  131. Portella G, Cumming SA, Liddell J, Cui W, Ireland H. et al. 1998. Transforming growth factor β is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ. 9:393–404 [Google Scholar]
  132. Przybyla L, Lakins JN, Sunyer R, Trepat X, Weaver VM. 2015. Monitoring developmental force distributions in reconstituted embryonic epithelia. Methods 94:101–13 doi:10.1016/j.ymeth.2015.09.003 [Google Scholar]
  133. Rallis C, Pinchin SM, Ish-Horowicz D. 2010. Cell-autonomous integrin control of Wnt and Notch signalling during somitogenesis. Development 137:3591–601 doi:10.1242/dev.050070 [Google Scholar]
  134. Riaz M, Sieuwerts AM, Look MP, Timmermans MA, Smid M. et al. 2012. High TWIST1 mRNA expression is associated with poor prognosis in lymph node–negative and estrogen receptor–positive human breast cancer and is co-expressed with stromal as well as ECM related genes. Breast Cancer Res. 14:R123 doi:10.1186/bcr3317 [Google Scholar]
  135. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T. et al. 2001. Focal contacts as mechanosensors: Externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–86 [Google Scholar]
  136. Roura S, Miravet S, Piedra J, García de Herreros A, Duñach M. 1999. Regulation of E-cadherin/catenin association by tyrosine phosphorylation. J. Biol. Chem. 274:36734–40 doi:10.1074/jbc.274.51.36734 [Google Scholar]
  137. Rubashkin MG, Cassereau L, Bainer R, DuFort CC, Yui Y. et al. 2014. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 74:4597–611 doi:10.1158/0008-5472.CAN-13-3698 [Google Scholar]
  138. Salbreux G, Charras G, Paluch E. 2012. Actin cortex mechanics and cellular morphogenesis. Trends Cell Biol. 22:536–45 doi:10.1016/j.tcb.2012.07.001 [Google Scholar]
  139. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D. et al. 2011. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–91 doi:10.1016/j.ccr.2011.05.008 [Google Scholar]
  140. Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C. et al. 2011. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30:2325–35 doi:10.1038/emboj.2011.157 [Google Scholar]
  141. Scarpa E, Szabó A, Bibonne A, Theveneau E, Parsons M, Mayor R. 2015. Cadherin switch during EMT in neural crest cells leads to contact inhibition of locomotion via repolarization of forces. Dev. Cell 34:421–34 doi:10.1016/j.devcel.2015.06.012 [Google Scholar]
  142. Shao DD, Xue W, Krall EB, Bhutkar A, Piccioni F. et al. 2014. KRAS and YAP1 converge to regulate EMT and tumor survival. Cell 158:171–84 doi:10.1016/j.cell.2014.06.004 [Google Scholar]
  143. Shi M, Zhu J, Wang R, Chen X, Mi L. et al. 2011. Latent TGF-β structure and activation. Nature 474:343–49 doi:10.1038/nature10152 [Google Scholar]
  144. Shih W, Yamada S. 2012. N-cadherin as a key regulator of collective cell migration in a 3D environment. Cell Adhes. Migr. 6513–17
  145. Shintani Y, Maeda M, Chaika N, Johnson KR, Wheelock MJ. 2008. Collagen I promotes epithelial-to-mesenchymal transition in lung cancer cells via transforming growth factor-β signaling. Am. J. Respir. Cell Mol. Biol. 38:95–104 doi:10.1165/rcmb.2007-0071OC [Google Scholar]
  146. Shivashankar GV. 2011. Mechanosignaling to the cell nucleus and gene regulation. Annu. Rev. Biophys. 40:361–78 doi:10.1146/annurev-biophys-042910-155319 [Google Scholar]
  147. Sim JY, Moeller J, Hart KC, Ramallo D, Vogel V. et al. 2015. Spatial distribution of cell–cell and cell–ECM adhesions regulates force balance while maintaining E-cadherin molecular tension in cell pairs. Mol. Biol. Cell 26:2456–65 [Google Scholar]
  148. Smith PG, Roy C, Zhang YN, Chauduri S. 2003. Mechanical stress increases RhoA activation in airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol. 28:436–42 doi:10.1165/rcmb.4754 [Google Scholar]
  149. Sotiropoulos A, Gineitis D, Copeland J, Treisman R. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–69 [Google Scholar]
  150. Speight P, Nakano H, Kelley TJ, Hinz B, Kapus A. 2013. Differential topical susceptibility to TGFβ in intact and injured regions of the epithelium: key role in myofibroblast transition. Mol. Biol. Cell 24:3326–36 doi:10.1091/mbc.E13-04-0220 [Google Scholar]
  151. Tachibana K, Hirota S, Iizasa H, Yoshida H, Kawabata K. et al. 1998. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393:591–94 doi:10.1038/31261 [Google Scholar]
  152. Takagi J, Petre BM, Walz T, Springer TA. 2002. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 110:599–611 [Google Scholar]
  153. Tan H, Biechler S, Junor L, Yost MJ, Dean D, Li J. et al. 2013. Fluid flow forces and rhoA regulate fibrous development of the atrioventricular valves. Dev. Biol.3 74:345–56 [Google Scholar]
  154. Toh Y-C, Voldman J. 2011. Fluid shear stress primes mouse embryonic stem cells for differentiation in a self-renewing environment via heparan sulfate proteoglycans transduction. FASEB J. 25:1208–17 doi:10.1096/fj.10–168971 [Google Scholar]
  155. Tominaga T, Sahai E, Chardin P, McCormick F, Courtneidge SA, Alberts AS. 2000. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5:13–25 [Google Scholar]
  156. Tsai W-B, Zhang X, Sharma D, Wu W, Kinsey WH. 2005. Role of Yes kinase during early zebrafish development. Dev. Biol. 277:129–41 doi:10.1016/j.ydbio.2004.08.052 [Google Scholar]
  157. Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM. et al. 2008. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10:837–48 doi:10.1038/ncb1748 [Google Scholar]
  158. Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K. et al. 2010. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19:831–44 doi:10.1016/j.devcel.2010.11.012 [Google Scholar]
  159. Vogelmann R, Nguyen-tat M-D, Giehl K, Adler G, Wedlich D, Menke A. 2005. TGFβ-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J. Cell Sci. 118:4901–12 doi:10.1242/jcs.02594 [Google Scholar]
  160. Walsh LA, Nawshad A, Medici D. 2011. Discoidin domain receptor 2 is a critical regulator of epithelial-mesenchymal transition. Matrix Biol. 30:243–47 doi:10.1016/j.matbio.2011.03.007 [Google Scholar]
  161. Wang N, Tytell JD, Ingber DE. 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82 doi:10.1038/nrm2594 [Google Scholar]
  162. Wang Z, Li Y, Kong D, Banerjee S, Ahmad A. et al. 2009. Acquisition of epithelial-mesenchymal transition phenotype of gemcitabine-resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 69:2400–7 doi:10.1158/0008-5472.CAN-08-4312 [Google Scholar]
  163. Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH. et al. 2015. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17:678–88 doi:10.1038/ncb3157 [Google Scholar]
  164. Wheelock MJ, Shintani Y, Maeda M, Fukumoto Y, Johnson KR. 2008. Cadherin switching. J. Cell Sci. 121:727–35 [Google Scholar]
  165. Wildenberg GA, Dohn MR, Carnahan RH, Davis MA, Lobdell NA. et al. 2006. p120-catenin and p190RhoGAP regulate cell-cell adhesion by coordinating antagonism between Rac and Rho. Cell 127:1027–39 doi:10.1016/j.cell.2006.09.046 [Google Scholar]
  166. Wipff P-J, Rifkin DB, Meister J-J, Hinz B. 2007. Myofibroblast contraction activates latent TGF-β1 from the extracellular matrix. J. Cell Biol. 179:1311–23 doi:10.1083/jcb.200704042 [Google Scholar]
  167. Wu X, Tu X, Joeng KS, Hilton MJ, Williams DA, Long F. 2008. Rac1 activation controls nuclear localization of β-catenin during canonical Wnt signaling. Cell 133:340–53 doi:10.1016/j.cell.2008.01.052 [Google Scholar]
  168. Xu C, Liu Y, Xiao L, Guo C, Deng S. et al. 2016. The involvement of anterior gradient 2 in the stromal cell-derived factor 1–induced epithelial-mesenchymal transition of glioblastoma. Tumour Biol. 37(5)6091–97. doi:10.1007/s13277-015-4481-0
  169. Xu H, Bihan D, Chang F, Huang PH, Farndale RW, Leitinger B. 2012. Discoidin domain receptors promote α1β1- and α2β1-integrin mediated cell adhesion to collagen by enhancing integrin activation. PLOS ONE 7:e52209 doi:10.1371/journal.pone.0052209 [Google Scholar]
  170. Xu J, Lamouille S, Derynck R. 2009. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 19:156–72 doi:10.1038/cr.2009.5 [Google Scholar]
  171. Xu R, Nelson CM, Muschler JL, Veiseh M, Vonderhaar BK, Bissell MJ. 2009. Sustained activation of STAT5 is essential for chromatin remodeling and maintenance of mammary-specific function. J. Cell Biol. 184:57–66 doi:10.1083/jcb.200807021 [Google Scholar]
  172. Yan J, Yao M, Goult BT, Sheetz MP. 2015. Talin dependent mechanosensitivity of cell focal adhesions. Cell. Mol. Bioeng. 8:151–59 doi:10.1007/s12195-014-0364-5 [Google Scholar]
  173. Yang M-H, Hsu DS-S, Wang H-W, Wang H-J, Lan H-Y. et al. 2010. Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat. Cell Biol. 12:982–92 doi:10.1038/ncb2099 [Google Scholar]
  174. Yang Y, Ahn Y-H, Gibbons DL, Zang Y, Lin W. et al. 2011. The Notch ligand Jagged2 promotes lung adenocarcinoma metastasis through a miR-200-dependent pathway in mice. J. Clin. Investig. 121:1373–85 doi:10.1172/JCI42579 [Google Scholar]
  175. Yao M, Qiu W, Liu R, Efremov AK, Cong P. et al. 2014. Force-dependent conformational switch of α-catenin controls vinculin binding. Nat. Commun. 5:4525 doi:10.1038/ncomms5525 [Google Scholar]
  176. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M. et al. 2005. Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil. Cytoskelet. 60:24–34 doi:10.1002/cm.20041 [Google Scholar]
  177. Yilmaz M, Christofori G. 2009. EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev. 28:15–33 doi:10.1007/s10555-008-9169-0 [Google Scholar]
  178. Yoneda A, Multhaupt HAB, Couchman JR. 2005. The Rho kinases I and II regulate different aspects of myosin II activity. J. Cell Biol. 170:443–53 doi:10.1083/jcb.200412043 [Google Scholar]
  179. Yook JI, Li X-Y, Ota I, Hu C, Kim HS. et al. 2006. A Wnt-Axin2-GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat. Cell Biol. 8:1398–406 doi:10.1038/ncb1508 [Google Scholar]
  180. Zeisberg M, Neilson EG. 2009. Biomarkers for epithelial-mesenchymal transitions. J. Clin. Investig. 119:1429–37 doi:10.1172/JCI36183 [Google Scholar]
  181. Zhang K, Corsa CA, Ponik SM, Prior JL, Piwnica-Worms D. et al. 2013. The collagen receptor discoidin domain receptor 2 stabilizes SNAIL1 to facilitate breast cancer metastasis. Nat. Cell Biol. 15:677–87 doi:10.1038/ncb2743 [Google Scholar]
  182. Zhou BP, Deng J, Xia W, Xu J, Li YM. et al. 2004. Dual regulation of Snail by GSK-3β-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat. Cell Biol. 6:931–40 doi:10.1038/ncb1173 [Google Scholar]
  183. Ziegler WH, Liddington RC, Critchley DR. 2006. The structure and regulation of vinculin. Trends Cell Biol. 16:453–60 doi:10.1016/j.tcb.2006.07.004 [Google Scholar]
  184. Zou Y-R, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393:595–99 doi:10.1038/31269 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111315-125150
Loading
/content/journals/10.1146/annurev-cellbio-111315-125150
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error