1932

Abstract

The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-chembioeng-060713-035938
2014-06-07
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/chembioeng/5/1/annurev-chembioeng-060713-035938.html?itemId=/content/journals/10.1146/annurev-chembioeng-060713-035938&mimeType=html&fmt=ahah

Literature Cited

  1. US Energy Inf. Adm 2012. Market Trends, Natural Gas, Annual Energy Outlook 2012. Washington, DC: US Dep. Energy. http://www.eia.gov/forecasts/aeo/pdf/0383(2012).pdf
  2. Int. Energy Agency 2012. World Energy Outlook, November 2012. Paris: Int. Energy Agency. http://www.iea.org/newsroomandevents/pressreleases/2012/november/name,33015,en.html
  3. US Energy Inf. Adm 2013. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States. Washington, DC: US Dep. Energy (June 13, 2013: corrected Executive Summary, Table 5). http://www.eia.gov/analysis/studies/worldshalegas/
  4. US Energy Inf. Adm 2013. Global Natural Gas Production Doubled Between 1980 and 2010. Washington, DC: US Dep. Energy. http://www.eia.gov/todayinenergy/detail.cfm?id=4790
  5. Energy Inf. Adm 2013. Electricity Generation Data, Net Generation by Energy Source. Washington, DC: US Dep. Energy http://www.eia.gov/electricity/monthly/epm_table_grapher.cfm?t=epmt_1_1
  6. Nicot J, Scanlon BR. 6.  2012. Water use for shale-gas production in Texas. Environ. Sci. Technol. 46:3580–86 [Google Scholar]
  7. US Environ. Prot. Agency 2012. Study of the potential impacts of hydraulic fracturing on drinking water resources. EPA 601/R-12/011, Washington, DC
  8. Osborn SG, Vengosh A, Warner NR, Jackson RB. 8.  2011. Methane contamination of drinking water accompanying gas-well drilling and hydraulic fracturing. Proc. Natl. Acad. Sci. USA 108:8172–76 [Google Scholar]
  9. Vidic RD, Brantley SL, Vandenbossche JM, Yoxtheimer D, Abad JD. 9.  2013. Impact of shale gas development on regional water quality. Science 340:6134 [Google Scholar]
  10. Rahm B, Riha S. 10.  2012. Toward strategic management of shale gas development: regional, collective impacts on water resources. Environ. Sci. Policy 17:12–23 [Google Scholar]
  11. McKenzie LM, Witter RZ, Newman LS, Adgate JL. 11.  2012. Human health risk assessment of air emissions from development of unconventional natural gas resources. Sci. Total Environ. 424:79–87 [Google Scholar]
  12. Litovitz A, Curtright A, Abramzon S, Burger N, Samaras C. 12.  2013. Estimation of regional air quality damages from Marcellus Shale natural gas extraction in Pennsylvania. Environ. Res. Lett. 8:014017 [Google Scholar]
  13. Pacsi AP, Alhajeri NS, Zavala-Araiza D, Webster MD, Allen DT. 13.  2013. Regional air quality impacts of increased natural gas production and use in Texas. Environ. Sci. Technol. 47:3521–27 [Google Scholar]
  14. Hayhoe K, Kheshgi HS, Jain AK, Wuebbles DJ. 14.  2002. Substitution of natural gas for coal: climatic effects of utility sector emissions. Clim. Change 54:107–39 [Google Scholar]
  15. Lelieveld J, Lechtenböhmer S, Assonov SS, Brenninkmeijer CAM, Dienst C. 15.  et al. 2005. Low methane leakage from gas pipelines. Nature 434:841–42 [Google Scholar]
  16. Wigley TML. 16.  2011. Coal to gas: the influence of methane leakage. Clim. Change 108:601–8 [Google Scholar]
  17. Howarth RW, Santoro R, Ingraffea A. 17.  2011. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106:679–90 [Google Scholar]
  18. Kargbo DM, Wilhelm RG, Campbell DJ. 18.  2010. Natural gas plays in the Marcellus shale: challenges and potential opportunities. Environ. Sci. Technol. 44:5679–84 [Google Scholar]
  19. Kerr RA. 19.  2010. Natural gas from shale bursts onto the scene. Science 328:1624–26 [Google Scholar]
  20. Laurenzi IJ, Jersey GR. 20.  2013. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas. Environ. Sci. Technol. 47:4896–903 [Google Scholar]
  21. Tex. Comm. Environ. Qual 2012. Barnett Shale Special Inventory, Phase Two Workbook. Austin: Tex. Comm. Environ. Qual. http://www.tceq.texas.gov/assets/public/implementation/air/ie/pseiforms/bshaleworkbook.xls
  22. Green DW, Perry RH. 22.  2007. Perry's Chemical Engineers' Handbook Blacklick, OH: McGraw Hill, 8th ed..
  23. US Energy Inf. Adm 2012. Natural Gas Data for 2011. Washington, DC: US Dep. Energy. http://www.eia.gov/naturalgas/data.cfm#production
  24. Intergov. Panel Clim. Change 2007. Climate Change 2007, Direct Global Warming Potentials. Geneva: Intergov. Panel Clim. Change. http://www.ipcc.ch/publications_and_data/ar4/wg1/en/ch2s2-10-2.html
  25. Alvarez RA, Pacala SW, Winebrake JJ, Chameides WL, Hamburg SP. 25.  2012. Greater focus needed on methane leakage from natural gas infrastructure. Proc. Natl. Acad. Sci. USA 1096435–40
  26. Wang M, Hanjie L, Molburg J. 26.  2004. Allocation of energy use in petroleum refineries to petroleum products. Int. J. Life Cycle Assess. 9:134–44 [Google Scholar]
  27. Ekvall T, Tillman A-M. 27.  1997. Open-loop recycling: criteria for allocation procedures. Int. J. Life Cycle Assess. 2:3155–62 [Google Scholar]
  28. Babusiaux D, Pierru A. 28.  2007. Modelling and allocation of CO2 emissions in multiproduct industry: the case of oil refining. Appl. Energy 84:828–41 [Google Scholar]
  29. US Environ. Prot. Agency 2010. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2008 EPA 430-R-10-006, Washington, DC
  30. US Environ. Prot. Agency 2011. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2009. EPA 430-R-11-005, Washington, DC
  31. US Environ. Prot. Agency 2012. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2010. EPA 430-R-12-001, Washington, DC
  32. US Environ. Prot. Agency 2013. Inventory of U.S. greenhouse gas emissions and sinks: 1990–2011 EPA 430-R-13-001, Washington, DC
  33. MacKay DJC, Stone TJ. 33.  2013. Potential Greenhouse Gas Emissions Associated with Shale Gas Extraction and Use London: Dep. Energy Clim. Change
  34. Allen DT, Torres VM, Thomas J, Sullivan D, Harrison M. 34.  et al. 2013. Measurements of methane emissions at natural gas production sites in the United States. Proc. Natl. Acad. Sci. USA 11017768–73
  35. Harrison MR, Galloway KE, Hendler A, Shires TM, Allen D. 35.  et al. 2011. Natural Gas Industry Methane Emission Factor Improvement Study, Final Report, Cooperative Agreement (with US EPA) XA-83376101 Austin: Univ. Tex. http://www.utexas.edu/research/ceer/GHG/files/FReports/XA_83376101_Final_Report.pdf [Google Scholar]
  36. Harrison MR, Shires TM, Wessels JK, Cowgill RM. 36.  1996. Methane emissions from the natural gas industry, volumes 1–15 Final Report, GRI-94/0257 and EPA-600/R-96-080, Appendix B-1, Gas Res. Inst./US Environ. Prot. Agency, Washington, DC
  37. Lamb BK, Shorter JH, McManus JB, Kolb CE, Mosher BW. 37.  et al. 1995. Development of atmosphere tracer methods to measure methane emissions from natural gas facilities and urban areas. Environ. Sci. Technol. 29:1468–78 [Google Scholar]
  38. Shorter JH, McManus JB, Kolb CE, Allwine EJ, Siverson R. 38.  et al. 1997. Collection of leakage statistics in the natural gas system by tracer methods. Environ. Sci. Technol. 31:2012–19 [Google Scholar]
  39. Kolb CE, Herndon SC, McManus JB, Shorter JH, Zahniser MS. 39.  et al. 2004. Mobile laboratory with rapid response instruments for real-time measurements of urban and regional trace gas and particulate distributions and emission source characteristics. Environ. Sci. Technol. 38:5694–703 [Google Scholar]
  40. Herndon SC, Jayne JT, Zahniser MS, Worsnop DR, Knighton B. 40.  et al. 2005. Characterization of urban pollutant emission fluxes and ambient concentration distributions using a mobile laboratory with rapid response instrumentation. Faraday Discuss. 130:327–39 [Google Scholar]
  41. Herndon SC, Floerchinger C, Roscioli JR, Yacovitch TI, Franklin JF. 41.  et al. 2013. Measuring methane emissions from industrial and waste processing sites using the dual tracer flux ratio method Presented at Annu. Meet. Am. Geophys. Union, Dec. 2013, San Francisco
  42. Allen DT, Torres VM, Thomas J, Sullivan D, Harrison M. 42.  et al. 2013. Measurements of Methane Emissions at Natural Gas Production Sites: Study Appendices and Database Austin: Univ. Tex. http://dept.ceer.utexas.edu/methane/study/
  43. East. Res. Group/Sage Environ. Consult 2011. City of Fort Worth natural gas air quality study: final report July 13, Fort Worth, TX. Accessed Jan. 2013. http://fortworthtexas.gov/uploadedFiles/Gas_Wells/AirQualityStudy_final.pdf
  44. Petron G, Frost G, Miller BR, Hirsch AI, Montzka SA. 44.  et al. 2012. Hydrocarbon emissions characterization in the Colorado front range: a pilot study. J. Geophys. Res. 117:D4D04304 [Google Scholar]
  45. Peischl J, Ryerson TB, Brioude J, Aikin KC, Andrews AE. 45.  et al. 2013. Quantifying sources of methane using light alkanes in the Los Angeles Basin, California. J. Geophys. Res. Atmos. 118:4974–90 [Google Scholar]
  46. Karion A, Sweeney C, Pétron G, Frost G, Hardesty RM. 46.  et al. 2013. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. 40:4393–97 [Google Scholar]
  47. Cent. Altern. Fuels Engines Emiss 2013. New collaborative study at WVU will measure methane emissions associated with natural gas vehicles and fueling stations. WVU Today March 4. http://wvutoday.wvu.edu/n/2013/03/04/scemr-release
  48. Engines Energy Convers. Lab 2013. Colorado State University Researchers Measuring Methane Emissions from Natural Gas Transmission. Fort Collins: Colo. State Univ. http://www.news.colostate.edu/Release/6889
  49. Lab. Atmos. Res 2013. Natural Gas Methane Emissions Focus of New Study. Pullman: Wash. State Univ. https://news.wsu.edu/pages/publications.asp?Action=Detail&PublicationID=35902&TypeID=1
  50. Tex. Comm. Environ. Qual 2013. Dallas-Fort Worth and the State Implementation Plan. Austin: Tex. Comm. Environ. Qual. http://www.tceq.texas.gov/airquality/sip/dfw/sip-dfw
  51. Medlock KB. 51.  2012. Modeling the implications of expanded US shale gas production. Energy Strateg. Rev. 1:33–41 [Google Scholar]
  52. Railr. Comm. Tex 2014. Texas Gas Well Gas Production in the Newark, East (Barnett Shale) Field—1993–2014 Austin: Railr. Comm. Tex. http://www.rrc.state.tx.us/barnettshale/barnettshale_1993_012014_day.pdf [Google Scholar]
  53. US Energy Inf. Adm 2012. Monthly Natural Gas Gross Production Report. Washington, DC: US Dep. Energy. http://www.eia.gov/oil_gas/natural_gas/data_publications/eia914/eia914.html
  54. Tex. Comm. Environ. Qual 2012. Barnett Shale Geological Area. Austin: Texas Comm. Environ. Qual. http://www.tceq.texas.gov/airquality/barnettshale
  55. Univ. Tex. Bur. Econ. Geol 2013. New, rigorous assessment of shale gas reserves forecasts reliable supply from Barnett Shale through 2030. Press Release, Feb. 28.. http://www.utexas.edu/news/2013/02/28/new-rigorous-assessment-of-shale-gas-reserves-forecasts-reliable-supply-from-barnett-shale-through-2030/
  56. Tex. Comm. Environ. Qual 2013. Automated Gas Chromatographs (AutoGCs) Barnett Shale Monitoring Network. Austin: Tex. Comm. Environ. Qual. http://www.tceq.texas.gov/airquality/monops/agc/agc_barnett.html [Google Scholar]
  57. Zavala-Araiza D, Sullivan DW, Allen DT. 57.  2012. Analyses of atmospheric hydrocarbon concentrations in a shale gas production region Presented at Air Waste Assoc. Annu. Meet., Ext. Abstr. 2012-A-311-AWMA, June, San Antonio, TX
  58. Natl. Aeronaut. Space Adm 2013. Aura: Ozone Monitoring Instrument. Greenbelt, MD: Goddard Space Flight Cent. http://www.nasa.gov/mission_pages/aura/spacecraft/omi.html
  59. Levelt PF, van der Oord GH, Dobber MR, Malkki A, Visser H. 59.  et al. 2006. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 44:1093–101 [Google Scholar]
  60. Boersma KF, Jacob DJ, Bucsela EJ, Perring AE, Dirksen R. 60.  et al. 2008. Validation of OMI tropospheric NO2 observations during INTEX-B and application to constrain NOx emissions over the eastern United States and Mexico. Atmos. Environ. 42:4480–97 [Google Scholar]
  61. Bucsela EJ, Celarier EA, Wenig MO, Gleason JF, Veefkind JP. 61.  et al. 2006. Algorithm for NO2 vertical column retrieval from the Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 44:1245–58 [Google Scholar]
  62. Franke K, Richter A, Bovensmann H, Eyring V, Jockel P. 62.  et al. 2009. Ship emitted NO2 in the Indian Ocean: comparison of model results with satellite data. Atmos. Chem. Phys. 9:7289–301 [Google Scholar]
  63. Jaegle L, Steinberger L, Martin RV, Chance K. 63.  2005. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 130:407–23 [Google Scholar]
  64. Kaynak B, Hu Y, Martin RV, Sioris CE, Russell AG. 64.  2009. Comparison of weekly cycle of NO2 satellite retrievals and NOx emission inventories for the continental United States. J. Geophys. Res. 114:D05302 doi:10.1029/2008JD010714 [Google Scholar]
  65. Feldman MS. 65.  2010. Applications of satellite remote sensing data for regional air quality modeling PhD Thesis, Univ. Tex., Austin
  66. Electr. Reliab. Counc. Tex 2012. ERCOT Quick Facts. Austin: Electr. Reliab. Counc. Tex. Accessed July 2012. http://www.ercot.com/content/news/presentations/2012/ERCOT_Quick_Facts_July_%202012.pdf
  67. Venkatesh A, Jaramillo P, Griffin WM, Matthews HS. 67.  2012. Implications of changing natural gas prices in the United States electricity sector for SO2, NOx, and life cycle of GHG emissions. Environ. Res. Lett. 7:034018 [Google Scholar]
  68. Jaramillo P, Griffin WM, Matthews HS. 68.  2007. Comparative lifecycle air emissions of coal, domestic natural gas, LNG, and SNG for electricity generation. Environ. Sci. Technol. 41:6290–96 [Google Scholar]
  69. Tex. Comm. Environ. Qual 2010. Summary of UT Special Audit Report Austin: Tex. Comm. Environ. Qual. http://www.tceq.texas.gov/assets/public/compliance/monops/air/agc/agc_ut_audit.pdf
  70. Olaguer EP. 70.  2012. The potential near-source ozone impacts of upstream oil and gas industry emissions. J. Air Waste Manag. Assoc. 62:966–77 [Google Scholar]
  71. Rich A, Grover JP, Sattler ML. 71.  2013. An exploratory study of air emissions associated with shale gas development and production in the Barnett Shale. J. Air Waste Manag. Assoc. 64:61–72 [Google Scholar]
/content/journals/10.1146/annurev-chembioeng-060713-035938
Loading
/content/journals/10.1146/annurev-chembioeng-060713-035938
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error