1932

Abstract

Animals moving through the world are surrounded by potential information. But the components of this rich array that they extract will depend on current behavioral requirements and the animal's own sensory apparatus. Here, we consider the types of information available to social hymenopteran insects, with a specific focus on ants. This topic has a long history and much is known about how ants and other insects use idiothetic information, sky compasses, visual cues, and odor trails. Recent research has highlighted how insects use other sensory information for navigation, such as the olfactory cues provided by the environment. These cues are harder to understand because they submit less easily to anthropomorphic analysis. Here, we take an ecological approach, considering first what information is available to insects, then how different cues might interact, and finally we discuss potential neural correlates of these behaviors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-010715-023703
2016-03-11
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ento/61/1/annurev-ento-010715-023703.html?itemId=/content/journals/10.1146/annurev-ento-010715-023703&mimeType=html&fmt=ahah

Literature Cited

  1. Allman BL, Keniston LP, Meredith MA. 1.  2008. Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: sensory-specific versus non-specific coding. Brain Res. 1242:95–101 [Google Scholar]
  2. Alpert GF, Hein G, Tsai N, Naumer MJ, Knight RT. 2.  2008. Temporal characteristics of audiovisual information processing. J. Neurosci. 28:5344–49 [Google Scholar]
  3. 3. Aristotle 1968. Aristotle's De Anima: Book 2 transl. D.W Hamlyn. Oxford, UK: Clarendon
  4. Aron S, Deneubourg JL, Pasteels JM. 4.  1988. Visual cues and trail-following idiosyncrasy in Leptothorax unifasciatus: an orientation process during foraging. Insectes Soc. 35:355–66 [Google Scholar]
  5. Baader AP. 5.  1996. The significance of visual landmarks for navigation of the giant tropical ant, Paraponera clavata (Formicidae, Ponerinae). Insectes Soc. 43:435–50 [Google Scholar]
  6. Baerends GP. 6.  1941. Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris Jur. Tijdschr. Entomol. Amst. 84:68–275 [Google Scholar]
  7. Beugnon G, Lachaud JP, Chagne P. 7.  2005. Use of long-term stored vector information in the Neotropical ant Gigantiops destructor. J. Insect Behav. 18:415–32 [Google Scholar]
  8. Bisch-Knaden S, Wehner R. 8.  2003. Local vectors in desert ants: context-dependent landmark learning during outbound and homebound runs. J. Comp. Physiol. A 189:181–87 [Google Scholar]
  9. Bos N, d'Ettorre P. 9.  2012. Recognition of social identity in ants. Front. Psychol. 3:83 [Google Scholar]
  10. Buehlmann C, Cheng K, Wehner R. 10.  2011. Vector-based and landmark-guided navigation in desert ants inhabiting landmark-free and landmark-rich environments. J. Exp. Biol. 214:2845–53 [Google Scholar]
  11. Buehlmann C, Graham P, Hansson BS, Knaden M. 11.  2014. Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr. Biol. 24:960–64 [Google Scholar]
  12. Buehlmann C, Graham P, Hansson BS, Knaden M. 12.  2015. Desert ants use olfactory scenes for navigation. Anim. Behav. 106:99–105 [Google Scholar]
  13. Buehlmann C, Hansson BS, Knaden M. 13.  2012. Desert ants learn vibration and magnetic landmarks. PLOS ONE 7:3e33117 [Google Scholar]
  14. Buehlmann C, Hansson BS, Knaden M. 14.  2012. Path integration controls nest-plume following in desert ants. Curr. Biol. 22:645–49 [Google Scholar]
  15. Cartwright BA, Collett TS. 15.  1983. Landmark learning in bees: experiments and models. J. Comp. Physiol. A 151:521–43 [Google Scholar]
  16. Cheng K, Middleton EJT, Wehner R. 16.  2012. Vector-based and landmark-guided navigation in desert ants of the same species inhabiting landmark-free and landmark-rich environments. J. Exp. Biol. 215:3169–74 [Google Scholar]
  17. Cheng K, Shettleworth SJ, Huttenlocher J, Rieser JJ. 17.  2007. Bayesian integration of spatial information. Psychol. Bull. 133:625–37 [Google Scholar]
  18. Clarke D, Whitney H, Sutton G, Robert D. 18.  2013. Detection and learning of floral electric fields by bumblebees. Science 340:66–69 [Google Scholar]
  19. Collett M. 19.  2012. How navigational guidance systems are combined in a desert ant. Curr. Biol. 22:927–32 [Google Scholar]
  20. Collett M, Chittka L, Collett TS. 20.  2013. Spatial memory in insect navigation. Curr. Biol. 23:R789–800 [Google Scholar]
  21. Collett M, Collett TS, Bisch S, Wehner R. 21.  1998. Local and global vectors in desert ant navigation. Nature 394:269–72 [Google Scholar]
  22. Collett TS, Dillmann E, Giger A, Wehner R. 22.  1992. Visual landmarks and route following in desert ants. J. Comp. Physiol. A 170:435–42 [Google Scholar]
  23. Collett TS, Graham P, Harris RA. 23.  2007. Novel landmark-guided routes in ants. J. Exp. Biol. 210:2025–32 [Google Scholar]
  24. Collett TS, Land MF. 24.  1975. Visual and spatial memory in a hoverfly. J. Comp. Physiol. A 100:59–84 [Google Scholar]
  25. Czaczkes TJ, Gruter C, Ratnieks FLW. 25.  2015. Trail pheromones: an integrative view of their role in social insect colony organization. Annu. Rev. Entomol. 60:581–99 [Google Scholar]
  26. Czaczkes TJ, Schlosser L, Heinze J, Witte V. 26.  2014. Ants use directionless odour cues to recall odour-associated locations. Behav. Ecol. Sociobiol. 68:981–88 [Google Scholar]
  27. David CT, Wood DL. 27.  1980. Orientation to trails by a carpenter ant, Camponotus modoc (Hymenoptera, Formicidae), in a giant sequoia forest. Can. Entomol. 112:993–1000 [Google Scholar]
  28. Debelle JS, Heisenberg M. 28.  1994. Associative odor learning in Drosophila abolished by chemical ablation of mushroom bodies. Science 263:692–95 [Google Scholar]
  29. Dill M, Wolf R, Heisenberg M. 29.  1993. Visual-pattern recognition in Drosophila involves retinotopic matching. Nature 365:751–53 [Google Scholar]
  30. Durst C, Eichmüller S, Menzel R. 30.  1994. Development and experience lead to increased volume of subcompartments of the honeybee mushroom body. Behav. Neural Biol. 62:259–63 [Google Scholar]
  31. el Jundi B, Pfeiffer K, Heinze S, Homberg U. 31.  2014. Integration of polarization and chromatic cues in the insect sky compass. J. Comp. Physiol. A 200:575–89 [Google Scholar]
  32. Esch HE, Burns JE. 32.  1996. Distance estimation by foraging honeybees. J. Exp. Biol. 199:155–62 [Google Scholar]
  33. Farris SM. 33.  2013. Evolution of complex higher brain centers and behaviors: behavioral correlates of mushroom body elaboration in insects. Brain Behav. Evol. 82:9–18 [Google Scholar]
  34. Feng B, Wang X, Li Y, Du Y-J. 34.  2013. Synergistic effect of visual and olfactory cues in the food searching behavior of Drosophila melanogaster. Acta Entomol. Sin. 56:792–98 [Google Scholar]
  35. Fourcassie V. 35.  1991. Landmark orientation in natural situations in the red wood ant Formica lugubris Zett (Hymenoptera, Formicidae). Ethol. Ecol. Evol. 3:89–99 [Google Scholar]
  36. Fourcassie V, Dussutour A, Deneubourg J-L. 36.  2010. Ant traffic rules. J. Exp. Biol. 213:2357–63 [Google Scholar]
  37. Fukushi T. 37.  2001. Homing in wood ants, Formica japonica: use of the skyline panorama. J. Exp. Biol. 204:2063–72 [Google Scholar]
  38. Gerber B, Smith BH. 38.  1998. Visual modulation of olfactory learning in honeybees. J. Exp. Biol. 201:2213–17 [Google Scholar]
  39. Graham P, Cheng K. 39.  2009. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19:R935–37 [Google Scholar]
  40. Graham P, Cheng K. 40.  2009. Which portion of the natural panorama is used for view-based navigation in the Australian desert ant?. J. Comp. Physiol. A 195:681–89 [Google Scholar]
  41. Greene MJ, Gordon DM. 41.  2007. How patrollers set foraging direction in harvester ants. Am. Nat. 170:943–48 [Google Scholar]
  42. Gronenberg W, Hölldobler B. 42.  1999. Morphologic representation of visual and antennal information in the ant brain. J. Comp. Neurol. 412:229–40 [Google Scholar]
  43. Guo FZ, Guo AK. 43.  2005. Crossmodal interactions between olfactory and visual learning in Drosophila. Science 309:307–10 [Google Scholar]
  44. Hartwick EB, Friend WG, Atwood CE. 44.  1977. Trail-laying behavior of carpenter ant, Camponotus pennsylvanicus (Hymenoptera: Formicidae). Can. Entomol. 109:129–36 [Google Scholar]
  45. Heisenberg M. 45.  2003. Mushroom body memoir: from maps to models. Nat. Rev. Neurosci. 4:266–75 [Google Scholar]
  46. Heusser D, Wehner R. 46.  2002. The visual centring response in desert ants, Cataglyphis fortis. J. Exp. Biol. 205:585–90 [Google Scholar]
  47. Hölldobler B. 47.  1971. Homing in harvester ant Pogonomyrmex badius. Science 171:1149–51 [Google Scholar]
  48. Hölldobler B. 48.  1974. Home range orientation and territoriality in harvesting ants. PNAS 71:3274–77 [Google Scholar]
  49. Hölldobler B. 49.  1976. Recruitment behavior, home range orientation and territoriality in harvester ants, Pogonomyrmex. Behav. Ecol. Sociobiol. 1:3–44 [Google Scholar]
  50. Hourcade B, Muenz TS, Sandoz JC, Rossler W, Devaud JM. 50.  2010. Long-term memory leads to synaptic reorganization in the mushroom bodies: a memory trace in the insect brain?. J. Neurosci. 30:6461–65 [Google Scholar]
  51. Huber R, Knaden M. 51.  2015. Egocentric and geocentric navigation during extremely long foraging paths of desert ants. J. Comp. Physiol. A 201:609–16 [Google Scholar]
  52. Jackson DE, Holcombe M, Ratnieks FLW. 52.  2004. Trail geometry gives polarity to ant foraging networks. Nature 432:907–9 [Google Scholar]
  53. Jacobs LF. 53.  2012. From chemotaxis to the cognitive map: the function of olfaction. PNAS 109:10693–700 [Google Scholar]
  54. Janzen DH. 54.  1971. Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–5 [Google Scholar]
  55. Junger W, Dahmen HJ. 55.  1991. Response to self-motion in waterstriders: visual discrimination between rotation and translation. J. Comp. Physiol. A 169:641–46 [Google Scholar]
  56. Karpati Z, Knaden M, Reinecke A, Hansson BS. 56.  2013. Intraspecific combinations of flower and leaf volatiles act together in attracting hawkmoth pollinators. PLOS ONE 8:9e72805 [Google Scholar]
  57. Kim RS, Seitz AR, Shams L. 57.  2008. Benefits of stimulus congruency for multisensory facilitation of visual learning. PLOS ONE 3:1e1532 [Google Scholar]
  58. Kinoshita M, Shimohigasshi M, Tominaga Y, Arikawa K, Homberg U. 58.  2015. Topographically distinct visual and olfactory inputs to the mushroom body in the swallowtail butterfly, Papilio xuthus. J. Comp. Neurol. 523:162–82 [Google Scholar]
  59. Klotz JH. 59.  1987. Topographic orientation in two species of ants (Hymenoptera, Formicidae). Insectes Soc. 34:236–51 [Google Scholar]
  60. Kohler M, Wehner R. 60.  2005. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83:1–12 [Google Scholar]
  61. Kollmeier T, Röben F, Schenck W, Möller R. 61.  2007. Spectral contrasts for landmark navigation. J. Opt. Soc. Am. A 24:1–10 [Google Scholar]
  62. Komischke B, Sandoz JC, Malun D, Giurfa M. 62.  2005. Partial unilateral lesions of the mushroom bodies affect olfactory learning in honeybees Apis mellifera L. Eur. J. Neurosci. 21:477–85 [Google Scholar]
  63. Land MF, Nilsson D-E. 63.  2002. Animal Eyes. Oxford, UK: Oxford Univ. Press
  64. Legge ELG, Wystrach A, Spetch ML, Cheng K. 64.  2014. Combining sky and earth: Desert ants (Melophorus bagoti) show weighted integration of celestial and terrestrial cues. J. Exp. Biol. 217:4159–66 [Google Scholar]
  65. Li YS, Strausfeld NJ. 65.  1997. Morphology and sensory modality of mushroom body extrinsic neurons in the brain of the cockroach, Periplaneta americana. J. Comp. Neurol. 387:631–50 [Google Scholar]
  66. Macquart D, Garnier L, Combe M, Beugnon G. 66.  2006. Ant navigation en route to the goal: Signature routes facilitate way-finding of Gigantiops destructor. J. Comp. Physiol. A 192:221–34 [Google Scholar]
  67. Mangan M, Webb B. 67.  2012. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23:944–54 [Google Scholar]
  68. Martuzzi R, Murray MM, Michel CM, Thiran J-P, Maeder PP. 68.  et al. 2007. Multisensory interactions within human primary cortices revealed by BOLD dynamics. Cereb. Cortex 17:1672–79 [Google Scholar]
  69. Matsumoto Y, Sandoz J-C, Devaud J-M, Lormant F, Mizunami M, Giurfa M. 69.  2014. Cyclic nucleotide-gated channels, calmodulin, adenylyl cyclase, and calcium/calmodulin-dependent protein kinase II are required for late, but not early, long-term memory formation in the honeybee. Learn. Mem. 21:272–86 [Google Scholar]
  70. Menzel R, Geiger K, Joerges J, Müller U, Chittka L. 70.  1998. Bees travel novel homeward routes by integrating separately acquired vector memories. Anim. Behav. 55:139–52 [Google Scholar]
  71. Merkle T, Knaden M, Wehner R. 71.  2006. Uncertainty about nest position influences systematic search strategies in desert ants. J. Exp. Biol. 209:3545–49 [Google Scholar]
  72. Mizunami M, Weibrecht JM, Strausfeld NJ. 72.  1998. Mushroom bodies of the cockroach: their participation in place memory. J. Comp. Neurol. 402:520–37 [Google Scholar]
  73. Möller R. 73.  2002. Insects could exploit UV-green contrast for landmark navigation. J. Theor. Biol. 214:619–31 [Google Scholar]
  74. Moffett MW. 74.  1987. Ants that go with the flow: a new method of orientation by mass communication. Naturwissenschaften 74:551–53 [Google Scholar]
  75. Müller M, Wehner R. 75.  1994. The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J. Comp. Physiol. A 175:525–30 [Google Scholar]
  76. Müller M, Wehner R. 76.  2007. Wind and sky as compass cues in desert ant navigation. Naturwissenschaften 94:589–94 [Google Scholar]
  77. Narendra A. 77.  2007. Homing strategies of the Australian desert ant Melophorus bagoti. I. Proportional path-integration takes the ant half-way home. J. Exp. Biol. 210:1798–803 [Google Scholar]
  78. Narendra A. 78.  2007. Homing strategies of the Australian desert ant Melophorus bagoti. II. Interaction of the path integrator with visual cue information. J. Exp. Biol. 210:1804–12 [Google Scholar]
  79. Narendra A, Gourmaud S, Zeil J. 79.  2013. Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc. R. Soc. B 280:176520130683 [Google Scholar]
  80. Ofstad TA, Zuker CS, Reiser MB. 80.  2011. Visual place learning in Drosophila melanogaster. Nature 474:204–7 [Google Scholar]
  81. Oliveira PS, Hölldobler B. 81.  1989. Orientation and communication in the Neotropical ant Odontomachus bauri Emery (Hymenoptera, Formicidae, Ponerinae). Ethology 83:154–66 [Google Scholar]
  82. Paulk AC, Gronenberg W. 82.  2008. Higher order visual input to the mushroom bodies in the bee, Bombus impatiens. Arthropod Struct. Dev. 37:443–58 [Google Scholar]
  83. Reid SF, Narendra A, Hemmi JM, Zeil J. 83.  2011. Polarised skylight and the landmark panorama provide night-active bull ants with compass information during route following. J. Exp. Biol. 214:363–70 [Google Scholar]
  84. Reinhard J, Srinivasan MV, Zhang SW. 84.  2004. Olfaction: scent-triggered navigation in honeybees. Nature 427:411 [Google Scholar]
  85. Reynolds AM, Schultheiss P, Cheng K. 85.  2014. Does the Australian desert ant Melophorus bagoti approximate a Levy search by an intrinsic bi-modal walk?. J. Theor. Biol. 340:17–22 [Google Scholar]
  86. Rivault C, Durier V. 86.  2004. Homing in German cockroaches, Blattella germanica (L.) (Insecta: Dictyoptera): multi-channelled orientation cues. Ethology 110:761–77 [Google Scholar]
  87. Robinson EJH, Jackson DE, Holcombe M, Ratnieks FLW. 87.  2005. Insect communication: ‘no entry’ signal in ant foraging. Nature 438:442 [Google Scholar]
  88. Rosengren R. 88.  1971. Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zool. Fenn. 133:1–106 [Google Scholar]
  89. Rosengren R, Pamilo P. 89.  1978. Effect of winter timber felling on behaviour of foraging wood ants (Formica rufa group) in early spring. Memorab. Zool. 29:143–55 [Google Scholar]
  90. Ruano F, Tinaut A, Soler JJ. 90.  2000. High surface temperatures select for individual foraging in ants. Behav. Ecol. 11:396–404 [Google Scholar]
  91. Santschi F. 91.  1913. Comment s'orientent les fourmis. Rev. Suisse Zool. 21:347–426 [Google Scholar]
  92. Scheiner R, Weiss A, Malun D, Erber J. 92.  2000. Chemical mushroom-body ablation, sucrose perception and positional antennal learning in the honey bee. Eur. J. Neurosci. 12:92 [Google Scholar]
  93. Seitz AR, Kim R, Shams L. 93.  2006. Sound facilitates visual learning. Curr. Biol. 16:1422–27 [Google Scholar]
  94. Shorey HH. 94.  1973. Behavioral responses to insect pheromones. Annu. Rev. Entomol. 18:349–80 [Google Scholar]
  95. Sommer S, Weibel D, Blaser N, Furrer A, Wenzler NE. 95.  et al. 2013. Group recruitment in a thermophilic desert ant, Ocymyrmex robustior. J. Comp. Physiol. A 199:711–22 [Google Scholar]
  96. Southwick EE, Buchmann SL. 96.  1995. Effects of horizon landmarks on homing success in honey bees. Am. Nat. 146:748–64 [Google Scholar]
  97. Srinivasan MV. 97.  2014. Going with the flow: a brief history of the study of the honeybee's navigational ‘odometer.’. J. Comp. Physiol. A 200:563–73 [Google Scholar]
  98. Steck K, Hansson BS, Knaden M. 98.  2009. Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to pinpoint the nest. Front. Zool. 6:5 [Google Scholar]
  99. Steck K, Hansson BS, Knaden M. 99.  2011. Desert ants benefit from combining visual and olfactory landmarks. J. Exp. Biol. 214:1307–12 [Google Scholar]
  100. Steck K, Knaden M, Hansson BS. 100.  2010. Do desert ants smell the scenery in stereo?. Anim. Behav. 79:939–45 [Google Scholar]
  101. Stieb SM, Muenz TS, Wehner R, Roessler W. 101.  2010. Visual experience and age affect synaptic organization in the mushroom bodies of the desert ant Cataglyphis fortis. Dev. Neurobiol. 70:408–23 [Google Scholar]
  102. Sturgis SJ, Greene MJ, Gordon DM. 102.  2011. Hydrocarbons on harvester ant (Pogonomyrmex barbatus) middens guide foragers to the nest. J. Chem. Ecol. 37:514–24 [Google Scholar]
  103. Stürzl W, Mallot HA. 103.  2006. Efficient visual homing based on Fourier transformed panoramic images. Robot. Auton. Syst. 54:300–13 [Google Scholar]
  104. Tinbergen N. 104.  1951. The Study of Instinct New York: Oxford Univ. Press
  105. Towne WF, Moscrip H. 105.  2008. The connection between landscapes and the solar ephemeris in honeybees. J. Exp. Biol. 211:3729–36 [Google Scholar]
  106. Tully T, Quinn WG. 106.  1985. Classical conditioning and retention in normal and mutant Drosophila melanogaster. J. Comp. Physiol. A 157:263–77 [Google Scholar]
  107. van Swinderen B, Greenspan RJ. 107.  2003. Salience modulates 20–30 Hz brain activity in Drosophila. Nat. Neurosci. 6:579–86 [Google Scholar]
  108. Vardy A, Möller R. 108.  2005. Biologically plausible visual homing methods based on optical flow techniques. Connect. Sci. 17:47–89 [Google Scholar]
  109. Vogt K, Schnaitmann C, Dylla KV, Knapek S, Aso Y. 109.  et al. 2014. Shared mushroom body circuits underlie visual and olfactory memories in Drosophila. eLife 3:e02395 [Google Scholar]
  110. von Frisch K. 110.  1950. Die Sonne als Kompass im Leben der Bienen. Experientia 6:210–21 [Google Scholar]
  111. von Frisch K, Lindauer M. 111.  1954. Himmel und Erde in Konkurrenz bei der Orientierung der Bienen. Naturwissenschaften 41:245–53 [Google Scholar]
  112. von Kriegstein K, Giraud A-L. 112.  2006. Implicit multisensory associations influence voice recognition. PLOS Biol. 4:1809–20 [Google Scholar]
  113. Wajnberg E, Acosta-Avalos D, Alves OC, de Oliveira JF, Srygley RB, Esquivel DMS. 113.  2010. Magnetoreception in eusocial insects: an update. J. R. Soc. Interface 7:S207–25 [Google Scholar]
  114. Wallraff HG. 114.  2004. Avian olfactory navigation: its empirical foundation and conceptual state. Anim. Behav. 67:189–204 [Google Scholar]
  115. Wallraff HG. 115.  2014. Do olfactory stimuli provide positional information for home-oriented avian navigation?. Anim. Behav. 90:E1–6 [Google Scholar]
  116. Wehner R. 116.  1981. Astronomischer Kompass bei duftspurlegenden Ameisen (Messor spp.). Jahrb. Akad. Wiss. Lit. Mainz 81:112–16 [Google Scholar]
  117. Wehner R, Michel B, Antonsen P. 117.  1996. Visual navigation in insects: coupling of egocentric and geocentric information. J. Exp. Biol. 199:129–40 [Google Scholar]
  118. Wehner R, Müller M. 118.  2006. The significance of direct sunlight and polarized skylight in the ant's celestial system of navigation. PNAS 103:12575–79 [Google Scholar]
  119. Wehner R, Raber F. 119.  1979. Visual spatial memory in desert ants, Cataglyphis bicolor (Hymenoptera, Formicidae). Experientia 35:1569–71 [Google Scholar]
  120. Wehner R, Srinivasan MV. 120.  1981. Searching behavior of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. Comp. Physiol. A 142:315–38 [Google Scholar]
  121. Wehner R, Srinivasan MV. 121.  2003. Path integration in insects. The Neurobiology of Spatial Behaviour KJ Jeffery 9–30 Oxford, UK: Oxford Univ. Press [Google Scholar]
  122. Wessnitzer J, Mangan M, Webb B. 122.  2008. Place memory in crickets. Proc. R. Soc. B 275:915–21 [Google Scholar]
  123. Wittlinger M, Wehner R, Wolf H. 123.  2006. The ant odometer: stepping on stilts and stumps. Science 312:1965–67 [Google Scholar]
  124. Wolf H, Wehner R. 124.  2000. Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. J. Exp. Biol. 203:857–68 [Google Scholar]
  125. Wolf H, Wehner R. 125.  2005. Desert ants compensate for navigation uncertainty. J. Exp. Biol. 208:4223–30 [Google Scholar]
  126. Wystrach A, Beugnon G, Cheng K. 126.  2011. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8:21 [Google Scholar]
  127. Wystrach A, Mangan M, Webb B. 127.  2015. Optimal cue integration in ants. Proc. R. Soc. B 282:20151484 [Google Scholar]
  128. Zeil J. 128.  2012. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22:285–93 [Google Scholar]
  129. Zeil J, Hofmann MI, Chahl JS. 129.  2003. Catchment areas of panoramic snapshots in outdoor scenes. J. Opt. Soc. Am. A 20:450–69 [Google Scholar]
  130. Zollikofer CPE, Wehner R, Fukushi T. 130.  1995. Optical scaling in conspecific Cataglyphis ants. J. Exp. Biol. 198:1637–46 [Google Scholar]
/content/journals/10.1146/annurev-ento-010715-023703
Loading
/content/journals/10.1146/annurev-ento-010715-023703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error