1932

Abstract

The ambrosia beetle–fungus farming symbiosis is more heterogeneous than previously thought. There is not one but many ambrosia symbioses. Beetle-fungus specificity is clade dependent and ranges from strict to promiscuous. Each new origin has evolved a new mycangium. The most common relationship with host trees is colonization of freshly dead tissues, but there are also parasites of living trees, vectors of pathogenic fungi, and beetles living in rotten trees with a wood-decay symbiont. Most of these strategies are driven by fungal metabolism whereas beetle ecology is evolutionarily more flexible. The ambrosia lifestyle facilitated a radiation of social strategies, from fungus thieves to eusocial species to communities assembled by attraction to fungal scent. Although over 95% of the symbiotic pairs are economically harmless, there are also three types of pest damage: tree pathogen inoculation, mass accumulation on susceptible hosts, and structural damage. Beetles able to colonize live tree tissues are most likely to become invasive pests.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-ento-031616-035105
2017-01-31
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ento/62/1/annurev-ento-031616-035105.html?itemId=/content/journals/10.1146/annurev-ento-031616-035105&mimeType=html&fmt=ahah

Literature Cited

  1. Alamouti S, Tsui C, Breuil C. 1.  2009. Multigene phylogeny of filamentous ambrosia fungi associated with ambrosia and bark beetles. Mycol. Res. 113:822–35 [Google Scholar]
  2. Aylward FO, Suen G, Biedermann PHW, Adams AS, Scott JJ. 2.  et al. 2014. Convergent bacterial microbiotas in the fungal agricultural systems of insects. mBio 510
  3. Baker J, Norris D. 3.  1968. A complex of fungi mutualistically involved in the nutrition of the ambrosia beetle Xyleborus ferrugineus. J. Invertebr. Pathol. 11:246–50 [Google Scholar]
  4. Bateman CC, Huang Y-T, Simmons D, Kasson MT, Stanley EL, Hulcr J. 4.  2016. Ambrosia beetle Premnobius cavipennis (Scolytinae: Ipini) carries highly divergent ascomycotan ambrosia fungus, Afroraffaelea ambrosiae gen. nov. sp. nov. (Ophiostomatales). Fungal Ecol In press
  5. Batra LR. 5.  1963. Ecology of ambrosia fungi and their dissemination by beetles. Trans. Kans. Acad. Sci. 66213–36
  6. Batra LR. 6.  1966. Ambrosia fungi: extent of specificity to ambrosia beetles. Science 153:193–95 [Google Scholar]
  7. Beaver RA. 7.  1979. Host specificity of temperate and tropical animals. Nature 281:138–41 [Google Scholar]
  8. Beaver RA. 8.  1984. The biology of the ambrosia beetle, Sueus niisimai (Eggers) (Col., Scolytidae), in Fiji. Entomol. Mon. Mag 120:99–102 [Google Scholar]
  9. Beaver RA. 9.  1986. The taxonomy, mycangia and biology of Hypothenemus curtipennis (Schedl), the first known cryphaline ambrosia beetle (Coleoptera, Scolytidae). Entomol. Scand. 17:131–35 [Google Scholar]
  10. Beaver RA, Gebhardt H. 10.  2006. A review of the Oriental species of Scolytoplatypus Schaufuss (Coleoptera, Curculionidae, Scolytinae). Dtsch. Entomol. Z. 53155–78
  11. Belhoucine L, Bouhraoua R, Meijer M, Houbraken J, Harrak M. 11.  et al. 2011. Mycobiota associated with Platypus cylindrus (Coleoptera: Curculionidae, Platypodidae) in cork oak stands of North West Algeria, Africa. Afr. J. Microbiol. Res. 54411–23
  12. Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. 12.  2010. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 10189
  13. Berkov A, Feinstein J, Small J, Nkamany M. 13.  2007. Yeasts isolated from neotropical wood-boring beetles in SE Peru. Biotropica 39530–38
  14. Biedermann PH, Klepzig KD, Taborsky M, Six DL. 14.  2013. Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). FEMS Microbiol. Ecol. 83711–23
  15. Biedermann PH, Taborsky M. 15.  2011. Larval helpers and age polyethism in ambrosia beetles. PNAS 108:17064–69 [Google Scholar]
  16. Bracewell R, Six D. 16.  2014. Broadscale specificity in a bark beetle–fungal symbiosis: a spatio-temporal analysis of the mycangial fungi of the western pine beetle. Microb. Ecol. 68859–70
  17. Browne FG. 17.  1961. The Biology of Malayan Scolytidae and Platypodidae Malay. Forest Rec. Ser. 22. Malaya: Gov. Press
  18. Cameron R, Hanula J, Fraedrich S, Bates C. 18.  2015. Progression and impact of laurel wilt disease within redbay and sassafras populations in southeast Georgia. Southeast. Nat. 14:650–74 [Google Scholar]
  19. Campbell A. 19.  2014. Characterizing pathogen-vector-host interactions in laurel wilt, a disease of avocado PhD Thesis, Univ. Florida, Gainesville
  20. Carrillo D, Duncan R, Ploetz J, Campbell A, Ploetz R, Pena J. 20.  2014. Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 6354–62
  21. Carrillo D, Narvaez T, Cosse A, Stouthamer R, Cooperband M. 21.  2015. Attraction of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae) to lures containing quercivorol. Fla. Entomol. 98780–82
  22. Davis T. 22.  2015. The ecology of yeasts in the bark beetle holobiont: a century of research revisited. Microb. Ecol. 69723–32
  23. Diamond J. 23.  2002. Evolution, consequences and future of plant and animal domestication. Nature 418:700–7 [Google Scholar]
  24. Dreaden T, Davis J, de Beer Z, Ploetz R, Soltis P. 24.  et al. 2014. Phylogeny of ambrosia beetle symbionts in the genus Raffaelea. Fungal Biol 118:970–78 [Google Scholar]
  25. Eskalen A, Stouthamer R, Lynch S, Rugman-Jones P, Twizeyimana M. 25.  et al. 2013. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Dis 97938–51
  26. 26. FAO (Food Agric. Organ.), CONAF (Corp. Nac. For.) 2008. Manual de Plagas y Enfermedades del Bosque Nativo en Chile. Asistencia para la Recuperación y Revitalización de los Bosques Templados de Chile, con Énfasis en los Nothofagus Caducifolios FAO RLC (Reg. Off. Lat. Am. Caribb.), Santiago, Chile [Google Scholar]
  27. Faccoli M, Frigimelica G, Mori N, Toffolo E, Vettorazzo M, Simonato M. 27.  2009. First record of Ambrosiodmus (Hopkins, 1915) (Coleoptera: Curculionidae, Scolytinae) in Europe. Zootaxa 2303:57–60 [Google Scholar]
  28. Formby J, Krishnan N, Riggins J. 28.  2013. Supercooling in the redbay ambrosia beetle (Coleoptera: Curculionidae). Fla. Entomol. 961530–40
  29. Francke-Grosmann H. 29.  1967. Ectosymbiosis in wood-inhabiting insects. Symbiosis 2141–205
  30. Frank S, Sadof C. 30.  2011. Reducing insecticide volume and nontarget effects of ambrosia beetle management in nurseries. J. Econ. Entomol. 104:1960–68 [Google Scholar]
  31. Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausov E. 31.  et al. 2015. Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis 68:115–28 [Google Scholar]
  32. Funk A. 32.  1970. Fungal symbionts of the ambrosia beetle Gnathotrichus sulcatus. Can. J. Bot. 481445–48
  33. Furniss MM, Woo JY, Deyrup MA, Atkinson TH. 33.  1987. Prothoracic mycangium on pine-infesting Pityoborus spp. (Coleoptera: Scolytidae). Ann. Entomol. Soc. Am. 80692–96
  34. Ganter PF. 34.  2006. Yeast and invertebrate associations. . In Biodiversity and Ecophysiology of Yeasts, ed. G Péter, CA Rosa 303–70 Berlin: Springer [Google Scholar]
  35. Gebhardt H, Weiss M, Oberwinkler F. 35.  2005. Dryadomyces amasae: a nutritional fungus associated with ambrosia beetles of the genus Amasa (Coleoptera: Curculionidae, Scolytinae). Mycol. Res 109687–96
  36. Grubbs K, Biedermann P, Suen G, Adams S, Moeller J. 36.  et al. 2011. Genome sequence of Streptomyces griseus strain XylebKG-1, an ambrosia beetle-associated actinomycete. J. Bacteriol. 193:2890–91 [Google Scholar]
  37. Harrington TC. 37.  2005. Ecology and evolution of mycophagous bark beetles and their fungal partners. Insect-Fungal Associations: Ecology and Evolution FE Vega, M Blackwell 257–92 New York: Oxford Univ. Press [Google Scholar]
  38. Harrington TC, Aghayeva D, Fraedrich S. 38.  2010. New combinations in Raffaelea, Ambrosiella, and Hyalorhinocladiella, and four new species from the redbay ambrosia beetle, Xyleborus glabratus. Mycotaxon 111:337–61 [Google Scholar]
  39. Harrington TC, Fraedrich S. 39.  2010. Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:1118–23 [Google Scholar]
  40. Harrington TC, McNew D, Mayers C, Fraedrich S, Reed S. 40.  2014. Ambrosiella roeperi sp. nov. is the mycangial symbiont of the granulate ambrosia beetle, Xylosandrus crassiusculus. Mycologia 106:835–45 [Google Scholar]
  41. Hazarika LK, Bhuyan M, Hazarika BN. 41.  2009. Insect pests of tea and their management. Annu. Rev. Entomol. 54267–84
  42. Hubbard HG. 42.  1897. The ambrosia beetles of the United States. USDA Div. Entomol. Bull. (New Ser.) 79–30 [Google Scholar]
  43. Hughes MA. 43.  2013. The evaluation of natural resistance to laurel wilt disease in redbay (Persea borbonia) PhD Thesis, Univ. Florida, Gainesville [Google Scholar]
  44. Hughes MA, Smith J, Ploetz R, Kendra P, Mayfield A III. 44.  et al. 2015. Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Prog. 16:174–210 [Google Scholar]
  45. Hulcr J, Adams AS, Raffa K, Hofstetter RW, Klepzig KD, Currie CR. 45.  2010. Presence and diversity of Streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb. Ecol. 61:759–68 [Google Scholar]
  46. Hulcr J, Atkinson T, Cognato A, Jordal B, McKenna D. 46.  2015. Morphology, taxonomy and phylogenetics of bark beetles. See Reference 100 41–84
  47. Hulcr J, Cognato A. 47.  2010. Repeated evolution of crop theft in fungus-farming ambrosia beetles. Evolution 643205–12
  48. Hulcr J, Dunn R. 48.  2011. The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc. R. Soc. B 278:2866–73 [Google Scholar]
  49. Hulcr J, Mann R, Stelinski LL. 49.  2011. The scent of a partner: ambrosia beetles are attracted to volatiles from their fungal symbionts. J. Chem. Ecol. 371374–77
  50. Hulcr J, Mogia M, Isua B, Novotny V. 50.  2007. Host specificity of ambrosia and bark beetles (Col., Curculionidae: Scolytinae and Platypodinae) in a New Guinea rainforest. Ecol. Entomol. 32762–72
  51. Hulcr J, Rountree N, Diamond S, Stelinski L, Fierer N, Dunn RR. 51.  2012. Mycangia of ambrosia beetles host communities of bacteria. Microb. Ecol. 64784–93
  52. Inch S, Ploetz R, Held B, Blanchette R. 52.  2012. Histological and anatomical responses in avocado, Persea americana, induced by the vascular wilt pathogen, Raffaelea lauricola. Botany 90627–35
  53. Jordal B. 53.  2015. Molecular phylogeny and biogeography of the weevil subfamily Platypodinae reveals evolutionarily conserved range patterns. Mol. Phylogenet. Evol. 92294–307
  54. Jordal B, Cognato A. 54.  2012. Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol. Biol. 12:133 [Google Scholar]
  55. Kajii C, Morita T, Jikumaru S, Kajimura H, Yamaoka Y, Kuroda K. 55.  2013. Xylem dysfunction in Ficus carica infected with wilt fungus Ceratocystis ficicola and the role of the vector beetle Euwallacea interjectus. IAWA J. 34301–12
  56. Kasson M, O'Donnell K, Rooney A, Sink S, Ploetz R. 56.  et al. 2013. An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet. Biol. 56147–57
  57. Kasson M, Wickert K, Stauder C, Macias A, Berger M. 57.  et al. 2016. Mutualism with aggressive wood-degrading Flavodon ambrosius (Polyporales) facilitates niche expansion and communal social structure in Ambrosiophilus ambrosia beetles. Fungal Ecol 23:86–96 [Google Scholar]
  58. Kendra P, Montgomery W, Niogret J, Pruett G, Mayfield A. 58.  et al. 2014. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). PLOS ONE 9e102086
  59. Kent D, Simpson J. 59.  1992. Eusociality in the beetle Austroplatypus incompertus (Coleoptera, Curculionidae). Naturwissenschaften 7986–87
  60. Kim K, Choi Y, Seo S, Shin H. 60.  2009. Raffaelea quercus-mongolicae sp. nov. associated with Platypus koryoensis on oak in Korea. Mycotaxon 110:189–97 [Google Scholar]
  61. Kinuura H. 61.  1995. Symbiotic fungi associated with ambrosia beetles. Jpn. Agric. Res. Q. 29:57–63 [Google Scholar]
  62. Kirkendall LR, Biedermann PH, Jordal BH. 62.  2015. Evolution and diversity of bark and ambrosia beetles. See Reference 100 85–156
  63. Kolarik M, Hulcr J. 63.  2009. Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: Curculionidae, Scolytinae). Mycol. Res 113:44–60 [Google Scholar]
  64. Kolarik M, Kirkendall L. 64.  2010. Evidence for a new lineage of primary ambrosia fungi in Geosmithia Pitt (Ascomycota: Hypocreales). Fungal Biol. 114:676–89 [Google Scholar]
  65. Kostovcik M, Bateman C, Kolarik M, Stelinski L, Jordal B, Hulcr J. 65.  2015. The ambrosia symbiosis is specific in some species and promiscuous in others: evidence from community pyrosequencing. ISME J. 9126–38
  66. Kubono T, Ito S. 66.  2002. Raffaelea quercivora sp. nov. associated with mass mortality of Japanese oak, and the ambrosia beetle (Platypus quercivorus). Mycoscience 43255–60
  67. Kuhns EH, Tribuiani Y, Martini X, Meyer WL, Peña J. 67.  et al. 2014. Volatiles from the symbiotic fungus Raffaelea lauricola are synergistic with manuka lures for increased capture of the redbay ambrosia beetle Xyleborus glabratus. Agric. Forest Entomol. 16:87–94 [Google Scholar]
  68. La Spina S, De Cannière C, Dekri A, Grégoire J. 68.  2013. Frost increases beech susceptibility to scolytine ambrosia beetles. Agric. Forest Entomol. 15:157–67 [Google Scholar]
  69. Li Q, Zhang G, Guo H, He L, Liu B. 69.  2014. Euwallacea fornicatus, an important pest insect attacking Acer buergerianum. Forest Pest Dis. 33:25–27 [Google Scholar]
  70. Francke-Grosmann H. 70.  1956. Hautdrüsen als träger der pilzsymbiose bei ambrosiakäfern. Z. Morphol. Ökol Tiere. 45:275–308 [Google Scholar]
  71. Li Y, Simmons DR, Bateman CC, Short DPG, Kasson MT. 71.  et al. 2015. New fungus-insect symbiosis: culturing, molecular, and histological methods determine saprophytic Polyporales mutualists of Ambrosiodmus ambrosia beetles. PLOS ONE 10e0137689
  72. Lindgren B, Fraser R. 72.  1994. Control of ambrosia beetle damage by mass trapping at a dryland log sorting area in British Columbia. For. Chron. 70159–63
  73. Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F. 73.  et al. 2016. Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–29 [Google Scholar]
  74. Maner M, Hanula J, Horn S. 74.  2014. Population trends of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae): Does utilization of small diameter redbay allow populations to persist?. Fla. Entomol. 97208–16
  75. Mayers CG, McNew DL, Harrington TC, Roeper RA, Fraedrich SW. 75.  et al. 2015. Three genera in the Ceratocystidaceae are the respective symbionts of three independent lineages of ambrosia beetles with large, complex mycangia. Fungal Biol. 119:1075–92 [Google Scholar]
  76. MacLean DB, Giese RL. 76.  1967. The life history of the ambrosia beetle Xyloterinus politus (Coleoptera: Scolytidae). Can. Entomol 99:285–99 [Google Scholar]
  77. Mendel Z, Protasov A, Sharon M, Zveibil A, Ben Yehuda S. 77.  et al. 2012. An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40235–38
  78. Miller KE, Hopkins K, Inward DJG, Vogler AP. 78.  2016. Metabarcoding of fungal communities associated with bark beetles. Ecol. Evol. 6:1590–1600 [Google Scholar]
  79. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR. 79.  2005. The evolution of agriculture in insects. Annu. Rev. Ecol. Evol. Syst. 36563–95
  80. Nakashima T. 80.  1989. Observation on the ambrosia fungus, Ambrosiella sp., growing in the gallery of Scolytoplatypus shogun Blandford (Coleoptera, Scolytidae) and on the concurrent damage of wood tissue. J. Fac. Agric. Hokkaido Univ. 6499–105
  81. O'Donnell K, Sink S, Libeskind-Hadas R, Hulcr J, Kasson MT. 81.  et al. 2015. Discordant phylogenies suggest repeated host shifts in the Fusarium-Euwallacea ambrosia beetle mutualism. Fungal Genet. Biol. 82277–90
  82. Ranger C, Reding M, Schultz P, Oliver J, Frank S. 82.  et al. 2016. Biology, ecology, and management of nonnative ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in ornamental plant nurseries. J. Integr. Pest Manag. 7:9 [Google Scholar]
  83. Reding M, Oliver J, Schultz P, Ranger C. 83.  2010. Monitoring flight activity of ambrosia beetles in ornamental nurseries with ethanol-baited traps: influence of trap height on captures. J. Environ. Hortic. 2885
  84. Reding M, Ranger C, Oliver J, Schultz P. 84.  2013. Monitoring attack and flight activity of Xylosandrus spp. (Coleoptera: Curculionidae: Scolytinae): the influence of temperature on activity. J. Econ. Entomol. 106:1780–87 [Google Scholar]
  85. Saito K. 85.  1959. Outbreak of Crossotarus quercivorus. For. Pests 87:101–2 [Google Scholar]
  86. Schedl K. 86.  1959. Scolytidae und Platypodidae Afrikas. Band 1. Familie Scolytidae. Rev. Entomol. Moçam. 2357–422
  87. Schedl W. 87.  1962. Ein Beitrag zur Kenntnis der Pilzübertragungsweise bei xylomycetophagen Scolytiden (Coleoptera) Vienna: Springer-Verlag [Google Scholar]
  88. Schmidberger J. 88.  1836. Naturgeschichte des Apfelborkenkäfers Apate dispar. Beitr. Obstbaumzucht Naturgeschichte Obstbäumen schädlichen Insekten 4213–30
  89. Seifert KA, de Beer ZW, Wingfield MJ. 89.  2013. The Ophiostomatoid Fungi: Expanding Frontiers CBS-KNAW Fungal Biodivers. Cent., Utrecht, Neth. [Google Scholar]
  90. Shoda-Kagaya E, Saito S, Okada M, Nozaki A, Nunokawa K, Tsuda Y. 90.  2010. Genetic structure of the oak wilt vector beetle Platypus quercivorus: inferences toward the process of damaged area expansion. BMC Ecol 10:1 [Google Scholar]
  91. Six DL. 91.  2012. Ecological and evolutionary determinants of bark beetle—fungus symbioses. Insects 3339–66
  92. Six DL, Bracewell R. 92.  2015. Dendroctonus See Reference 100 305–50
  93. Smith SM. 93.  2013. Phylogenetics of the Scolytini (Coleoptera: Curculionidae: Scolytinae) and host-use evolution PhD Thesis, Michigan State Univ., East Lansing [Google Scholar]
  94. Snyder JR. 94.  2014. Ecological implications of laurel wilt infestation on Everglades tree islands, southern Florida Open-File Rep. 2014-1225, US Geol. Surv., Reston, VA
  95. Spence D, Smith J, Ploetz R, Hulcr J, Stelinski L. 95.  2013. Effect of chipping on emergence of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae) and recovery of the laurel wilt pathogen from infested wood chips. J. Econ. Entomol. 106:2093–100 [Google Scholar]
  96. Steininger M, Hulcr J, Šigut M, Lucky A. 96.  2015. Simple and efficient trap for bark and ambrosia beetles (Coleoptera: Curculionidae) to facilitate invasive species monitoring and citizen involvement. J. Econ. Entomol. 108:1115–23 [Google Scholar]
  97. Suh SO, Zhou J. 97.  2010. Yeasts associated with the curculionid beetle Xyloterinus politus: Candida xyloterini sp. nov., Candida palmyrensis sp. nov. and three common ambrosia yeasts. Int. J. Syst. Evol. Microbiol 60:1702–8 [Google Scholar]
  98. Sullivan BT. 98.  2011. Southern pine beetle behavior and semiochemistry. Southern Pine Beetle II RN Coulson, KD Klepzig 25–50 Gen. Tech. Rep. SRS-140, US Dep. Agric. Forest Serv., Asheville, NC
  99. van der Walt J. 99.  1972. The yeast genus Ambrosiozyma gen. nov. (Ascomycetes). Mycopathol. Mycol. Appl. 46305–15
  100. Vega FE, Hofstetter RW. 100.  2015. Bark Beetles: Biology and Ecology of Native and Invasive Species London: Academic
  101. Wallace A. 101.  1859. Note on the habits of Scolytidae and Bostrichidae. Trans. Entomol. Soc. Lond. 5:218–20 [Google Scholar]
  102. Wood SLW. 102.  2007. Bark and Ambrosia Beetles of South America (Coleoptera, Scolytidae) Monte L. Bean Life Sci. Mus., Brigham Young Univ., Provo, UT [Google Scholar]
  103. Yearian W, Gouger R, Wilkinson R. 103.  1972. Effects of the bluestain fungus, Ceratocystis ips, on development of Ips bark beetles in pine bolts. Ann. Entomol. Soc. Am. 65481–87
/content/journals/10.1146/annurev-ento-031616-035105
Loading
/content/journals/10.1146/annurev-ento-031616-035105
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error