1932

Abstract

The unique properties of wheat reside primarily in its gluten-forming storage proteins. Their intrinsic viscoelastic behavior is responsible for the characteristics of different wheat-based foods and for the use of wheat gluten proteins in different food products. Wheat-based food processing generally develops and sets the gluten protein network. Heat-induced gluten aggregation proceeds through cross-linking within and between its protein fractions. Prominent reactions include sulfhydryl (SH) oxidation and SH-disulfide (SS) interchange, which lead to SS cross-links. Other covalent bonds are also formed. Gluten functionality can be (bio-) chemically impacted. We focus on bread making, in which gluten proteins contribute to dough properties, bread loaf volume, and structure, and on pasta production, in which gluten proteins generate the desired cooking quality. Furthermore, it is speculated that the structure and texture of soft wheat products are also, at least to some degree, shaped by the heat-induced changes in the gluten protein fraction.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-022811-101303
2012-04-10
2024-03-29
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-food-022811-101303
Loading
/content/journals/10.1146/annurev-food-022811-101303
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error