1932

Abstract

Low-moisture foods (LMFs) have been defined as those food products with a water activity () less than 0.85 and are generally considered less susceptible to microbial spoilage and the growth of foodborne pathogens. However, in recent years, outbreaks linked to LMFs have increased, with spp., , , spp., O157:H7, non-O157 . , and being the principal pathogens involved. Because of the new concerns raised as a result of recent outbreaks, new approaches need to be developed to control foodborne pathogens in LMFs. This review summarizes the recent research on novel inactivation methods suitable for use on LMFs. Among the methods discussed are the nonthermal inactivation methods as well as other novel methods such as radio-frequency and microwave heating. Additional research is needed to evaluate older technologies and develop new technologies, either alone or in combination, to understand the mechanisms of inactivation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-food-030117-012304
2018-03-25
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/food/9/1/annurev-food-030117-012304.html?itemId=/content/journals/10.1146/annurev-food-030117-012304&mimeType=html&fmt=ahah

Literature Cited

  1. Abida J, Rayees B, Macoodi FA. 2014. Pulsed light technology: a novel method for food preservation. Int. Food Res. J. 21:839–48 [Google Scholar]
  2. Aguirre JS, de Fernando GG, Hierro E, Hospital XF, Ordóñez JA, Fernández M. 2015. Estimation of the growth kinetic parameters of Bacillus cereus spores as affected by pulsed light treatment. Int. J. Food Microbiol. 202:20–26 [Google Scholar]
  3. Akbas MY, Ozdemir M. 2006. Effect of different ozone treatments on aflatoxin degradation and physicochemical properties of pistachios. J. Sci. Food Agric. 86:2099–104 [Google Scholar]
  4. Akbas MY, Ozdemir M. 2008. Effect of gaseous ozone on microbial inactivation and sensory of flaked red peppers. Int. J. Food Sci. Technol. 43:1657–62 [Google Scholar]
  5. Alkawareek MY, Gorman SP, Graham WG, Gilmore BF. 2014. Potential cellular targets and antibacterial efficacy of atmospheric pressure nonthermal plasma. Int. J. Antimicrob. Agents 43:154–60 [Google Scholar]
  6. Almond Board Calif. 2008. Guidelines for validation of propylene oxide pasteurization Rep., Almond Board Calif., Modesto, CA. http://www.almonds.com/sites/default/files/content/attachments/ppo-validation-guidelines.pdf
  7. Amy G, Bull R, Craun GF, Pegram RA, Siddiqui M. 2000. Environmental Health Criteria 216. Disinfectants and Disinfectant By-Products Geneva: World Health Organ http://apps.who.int/iris/bitstream/10665/42274/1/WHO_EHC_216.pdf
  8. Anderson JG, Rowan NJ, MacGregor SJ, Fouracre RA, Parish O. 2000. Inactivation of food-borne enteropathogenic bacteria and spoilage fungi using pulsed-light. IEEE Trans. Plasma Sci. 28:83–88 [Google Scholar]
  9. Angulo FJ, Cahill SM, Wachsmuth IK, de Costarrica L, Ben Embarek PK. 2008. Powdered infant formula as a source of Salmonella infection in infants. Clin. Infect. Dis. 46:268–73 [Google Scholar]
  10. Ansari IA, Datta AK. 2003. An overview of sterilization methods for packaging materials used in aseptic packaging systems. Food Bioprod. Process. 81:57–65 [Google Scholar]
  11. Artíguez ML, Martínez de Marañón I. 2015.a Effect of pulsed light treatment on the germination of Bacillus subtilis spores. Food Bioprocess Technol 8:478–85 [Google Scholar]
  12. Artíguez ML, Martínez de Marañón I. 2015.b Inactivation of spores and vegetative cells of Bacillus subtilis and Geobacillus stearothermophilus by pulsed light. Innov. Food Sci. Emerg. Technol. 28:52–58 [Google Scholar]
  13. Ashtiani S-HM, Salarikia A, Golzarian MR. 2017. Analyzing drying characteristics and modeling of thin layers of peppermint leaves under hot-air and infrared treatments. Inf. Process. Agric. 4:128–39 [Google Scholar]
  14. Ballestra P, Abreu da Silva A, Cuq JL. 1996. Inactivation of Escherichia coli by carbon dioxide under pressure. J. Food Sci. 61:829–31 [Google Scholar]
  15. Ban GH, Kang DH. 2014. Effects of gamma irradiation for inactivating Salmonella Typhimurium in peanut butter product during storage. Int. J. Food Microbiol. 171:48–53 [Google Scholar]
  16. Bank HL, John J, Schmehl MK, Dratch RJ. 1990. Bactericidal effectiveness of modulated UV light. Appl. Environ. Microbiol. 56:3888–89 [Google Scholar]
  17. Basaran P, Basaran-Akgul N, Oksuz L. 2008. Elimination of Aspergillus parasiticus from nut surface with low pressure cold plasma LPCP treatment. Food Microbiol 25:626–32 [Google Scholar]
  18. Begum M, Hocking AD, Miskelly D. 2009. Inactivation of food spoilage fungi by ultra violet UVC irradiation. Int. J. Food Microbiol. 129:74–77 [Google Scholar]
  19. Beuchat LR. 1973. Escherichia coli on pecans: survival under various storage conditions and disinfection with propylene oxide. J. Food Sci. 38:1063–66 [Google Scholar]
  20. Beuchat LR. 1997. Comparison of chemical treatments to kill Salmonella on alfalfa seeds destined for sprout production. Int. J. Food Microbiol. 34:329–33 [Google Scholar]
  21. Beuchat LR, Komitopoulou E, Beckers H, Betts RP, Bourdichon F. et al. 2013. Low-water activity foods: increased concern as vehicles of foodborne pathogens. J. Food Prot. 76:150–72 [Google Scholar]
  22. Bialka KL, Demirci A, Puri VM. 2008. Modeling the inactivation of Escherichia coli O157:H7 and Salmonella enterica on raspberries and strawberries resulting from exposure to ozone or pulsed UV-light. J. Food Eng. 85:444–49 [Google Scholar]
  23. Bintsis T, Litopoulou-Tzanetaki E, Robinson RK. 2000. Existing and potential applications of ultraviolet light in the food industry—a critical review. J. Sci. Food Agric. 80:637–45 [Google Scholar]
  24. Bolton JR, Linden KG. 2003. Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J. Environ. Eng. 129:209–15 [Google Scholar]
  25. Bone A, Noel H, Le Hello S, Pihier N, Danan C. et al. 2015. Nationwide outbreak of Salmonella enterica serotype 4,12:i:– infections in France, linked to dried pork sausage, March-May 2010.. Eurosurveillance 15:1–3 [Google Scholar]
  26. Bourdoux S, Li D, Rajkovic A, Devlieghere F, Uyttendaele M. 2016. Performance of drying technologies to ensure microbial safety of dried fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 15:1056–66 [Google Scholar]
  27. Bozkurt H, D'Souza DH, Davidson PM. 2013. Determination of the thermal inactivation kinetics of the human norovirus surrogates, murine norovirus and feline calicivirus. J. Food Prot. 76:79–84 [Google Scholar]
  28. Bozkurt H, D'Souza DH, Davidson PM. 2014.a A comparison of the thermal inactivation kinetics of human norovirus surrogates and hepatitis A virus in buffered cell culture medium. Food Microbiol 42:212–17 [Google Scholar]
  29. Bozkurt H, D'Souza DH, Davidson PM. 2014.b Determination of thermal inactivation kinetics of hepatitis A virus in blue mussel Mytilus edulis homogenate. Appl. Environ. Microbiol. 80:3191–97 [Google Scholar]
  30. Bozkurt H, D'Souza DH, Davidson PM. 2014.c Thermal inactivation of human norovirus surrogates in spinach and measurement of its uncertainty. J. Food Prot. 77:276–83 [Google Scholar]
  31. Brickley JL. 1999. Ultraviolet air sterilization device and mobile unit incorporating sterilization device US Patent No. US5968455 A
  32. Bruch CW, Koesterer MG. 1961. The microbicidal activity of gaseous propylene oxide and its application to powdered or flaked foods. J. Food Sci. 26:428–35 [Google Scholar]
  33. Buchholz A, Matthews KR. 2010. Reduction of Salmonella on alfalfa seeds using peroxyacetic acid and a commercial seed washer is as effective as treatment with 20,000 ppm of Ca(OCl)2. Lett. Appl. Microbiol. 51:462–68 [Google Scholar]
  34. Calvo L, Muguerza B, Cienfuegos-Jovellanos E. 2007. Microbial inactivation and butter extraction in a cocoa derivative using high pressure CO2. J. Supercrit. Fluids 42:80–87 [Google Scholar]
  35. Carvalho C, Thomas HL, Balogun K, Tedder R, Pebody R. et al. 2012. A possible outbreak of hepatitis A associated with semidried tomatoes, England, July–November 2011.. Eurosurveillance 17:20083 [Google Scholar]
  36. CDC (Cent. Dis. Control Prev.). 2009. Multistate Outbreak of Salmonella Typhimurium Infections Linked to Peanut Butter, 2008–2009 (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/2009/peanut-butter-2008-2009.html [Google Scholar]
  37. CDC (Cent. Dis. Control Prev.). 2010. Salmonella Montevideo infections associated with salami products made with contaminated imported black and red pepper—United States, July 2009–April 2010. Morb. Mortal. Wkly. Rep. 59:1647–50 [Google Scholar]
  38. CDC (Cent. Dis. Control Prev.). 2011.a Multistate Outbreak of E. coli O157:H7 Infections Associated with In-Shell Hazelnuts (Final Update) Atlanta, GA: CDC http://www.cdc.gov/ecoli/2011/hazelnuts-4-7-11.html [Google Scholar]
  39. CDC (Cent. Dis. Control Prev.). 2011.b Multistate Outbreak of Human Salmonella Enteritidis Infections Linked to Turkish Pine Nuts (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/2011/pine-nuts-11-17-2011.html [Google Scholar]
  40. CDC (Cent. Dis. Control Prev.). 2011.c Multistate Outbreak of Salmonella Serotype Bovismorbificans Infections Associated with Hummus and Tahini—United States, 2011 Atlanta, GA: CDC https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6146a3.htm [Google Scholar]
  41. CDC (Cent. Dis. Control Prev.). 2012.a Multistate Outbreak of Salmonella Bredeney Infections Linked to Peanut Butter Manufactured by Sunland, Inc. (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/bredeney-09-12/index.html [Google Scholar]
  42. CDC (Cent. Dis. Control Prev.). 2012.b Multistate Outbreak of Salmonella Infections Associated with Peanut Butter and Peanut Butter-Containing Products—United States, 2000–2009 Atlanta, GA: CDC https://www.cdc.gov/mmwr/preview/mmwrhtml/mm58e0129a1.htm [Google Scholar]
  43. CDC (Cent. Dis. Control Prev.). 2012.c Multistate Outbreak of Salmonella Montevideo and Salmonella Mbandaka Infections Linked to Tahini Sesame Paste (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/montevideo-tahini-05-13/index.html [Google Scholar]
  44. CDC (Cent. Dis. Control Prev.). 2014.a Multistate Outbreak of Salmonella Braenderup Infections Linked to Nut Butter Manufactured by nSpired Natural Foods, Inc. (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/braenderup-08-14/index.html [Google Scholar]
  45. CDC (Cent. Dis. Control Prev.). 2014.b Multistate Outbreak of Salmonella Infections Linked to Organic Sprouted Chia Powder (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/newport-05-14/index.html [Google Scholar]
  46. CDC (Cent. Dis. Control Prev.). 2016.a Multistate Outbreak of Salmonella Montevideo and Salmonella Senftenberg Infections Linked to Wonderful Pistachios (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/montevideo-03-16/index.html [Google Scholar]
  47. CDC (Cent. Dis. Control Prev.). 2016.b Multistate Outbreak of Salmonella Paratyphi B variant L(+) Tartrate(+) Infections Linked to JEM Raw Brand Sprouted Nut Butter Spreads (Final Update) Atlanta, GA: CDC https://www.cdc.gov/salmonella/paratyphi-b-12-15/ [Google Scholar]
  48. CDC (Cent. Dis. Control Prev.). 2016.c Multistate Outbreak of Shiga Toxin-Producing Escherichia coli Infections Linked to Flour (Final Update) Atlanta, GA: CDC https://www.cdc.gov/ecoli/2016/o121-06-16/index.html [Google Scholar]
  49. CFIA (Can. Food Insp. Agency). 2011. Allergy Alert—Certain Bulk and Prepackaged Raw Shelled Walnuts May Contain E. coli O157:H7 Bacteria Ottawa, Ont: CFIA http://www.inspection.gc.ca/about-the-cfia/newsroom/food-recall-warnings/complete-listing/2011-04-03/eng/1359548340192/1359548340223 [Google Scholar]
  50. Chang JCH, Ossoff SF, Lobe DC, Dorfman MH, Dumais CM. et al. 1985. UV inactivation of pathogenic and indicator microorganisms. Appl. Environ. Microbiol. 49:1361–65 [Google Scholar]
  51. Chang SL. 1971. Modern concept of disinfection. J. Sanit. Eng. Div. 97:689–707 [Google Scholar]
  52. Cheon HL, Shin JY, Park KH, Chung MS, Kang DH. 2015. Inactivation of foodborne pathogens in powdered red pepper Capsicum annuum L. using combined UV-C irradiation and mild heat treatment. Food Control 50:441–45 [Google Scholar]
  53. Chirokov A, Gutsol A, Fridman A. 2005. Atmospheric pressure plasma of dielectric barrier discharges. Pure Appl. Chem. 77:487–95 [Google Scholar]
  54. Choi MS, Cheigh CI, Jeong EA, Shin JK, Park JY. et al. 2009. Inactivation of Enterobacter sakazakii inoculated on formulated infant foods by intense pulsed light treatment. Food Sci. Biotechnol. 18:1537–40 [Google Scholar]
  55. Clavero MR, Monk JD, Beuchat LR, Doyle MP, Brackett RE. 1994. Inactivation of Escherichia coli O157:H7, salmonellae, and Campylobacter jejuni in raw ground beef by gamma irradiation. Appl. Environ. Microbiol. 60:2069–75 [Google Scholar]
  56. Cordier J-L. 2014. Methodological and sampling challenges to testing spices and low water activity food for the presence of foodborne pathogens. The Microbiological Safety of Low Water Activity Foods and Spices J Gurtler, MP Doyle, JL Kornacki 367–86 New York: Springer [Google Scholar]
  57. Critzer FJ, Kelly-Wintenberg K, South SL, Golden DA. 2007. Atmospheric plasma inactivation of foodborne pathogens on fresh produce surfaces. J. Food Prot. 70:2290–96 [Google Scholar]
  58. Dababneh BF. 2013. An innovative microwave process for microbial decontamination of spices and herbs. Afr. J. Microbiol. Res. 7:636–45 [Google Scholar]
  59. Danyluk MD, Uesugi AR, Harris LJ. 2005. Survival of Salmonella Enteritidis PT 30 on inoculated almonds after commercial fumigation with propylene oxide. J. Food Prot. 68:1613–22 [Google Scholar]
  60. Datta AK, Davidson PM. 2000. Microwave and radio frequency processing. J. Food Sci. 65:32–41 [Google Scholar]
  61. Deng S, Ruan R, Mok CK, Huang G, Lin X, Chen P. 2007. Inactivation of Escherichia coli on almonds using nonthermal plasma. J. Food Sci. 72:2M62–66 [Google Scholar]
  62. Diels AMJ, Callewaert L, Wuytack EY, Masschalck B, Michiels CW. 2005. Inactivation of Escherichia coli by high-pressure homogenisation is influenced by fluid viscosity but not by water activity and product composition. Int. J. Food Microbiol. 101:281–91 [Google Scholar]
  63. Diffey BL. 1991. Solar ultraviolet radiation effects on biological systems. Phys. Med. Biol. 36:299–328 [Google Scholar]
  64. Ditzler LC, Coles CM. 2010. Disinfection of dried foodstuffs US Patent No. US20100028510 A1
  65. Donnan EJ, Fielding JE, Gregory JE, Lalor K, Rowe S. et al. 2012. A multistate outbreak of hepatitis A associated with semidried tomatoes in Australia, 2009.. Clin. Infect. Dis. 54:775–81 [Google Scholar]
  66. Duan X, Zhang M, Mujumdar AS. 2007. Studies on the microwave freeze drying technique and sterilization characteristics of cabbage. Dry. Technol. 25:1725–31 [Google Scholar]
  67. Duncan SE, Moberg K, Amin KN, Wright M, Newkirk JJ. et al. 2017. Processes to preserve spice and herb quality and sensory integrity during pathogen inactivation. J. Food Sci. 82:1208–15 [Google Scholar]
  68. Dunn JE, Clark RW, Asmus JF, Pearlman JS, Boyer K. et al. 1989. Methods for preservation of foodstuffs US Patent No. US4871559A
  69. Eliasson L, Isaksson S, Lovenklev M, Ahrne L. 2015. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder. Front. Microbiol. 6:1071 [Google Scholar]
  70. EPA (US Environ. Prot. Agency). 2006. Reregistration eligibility decision for propylene oxide: reregistration eligibility decision (RED) document for propylene oxide https://archive.epa.gov/pesticides/reregistration/web/pdf/propylene_oxide_red.pdf
  71. Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM. et al. 2011. Bactericidal effects of nonthermal argon plasma in vitro, in biofilms and in the animal model of infected wounds. J. Med. Microbiol 60:75–83 [Google Scholar]
  72. Fang Y, Hu J, Xiong S, Zhao S. 2011. Effect of low-dose microwave radiation on Aspergillus parasiticus. Food Control 22:1078–84 [Google Scholar]
  73. Farkas J. 1998. Irradiation as a method for decontaminating food: a review. Int. J. Food Microbiol. 44:189–204 [Google Scholar]
  74. FDA (US Food Drug Admin.). 2014. FDA investigation summary—multistate outbreak of Salmonella Senftenberg infections associated with pistachios from a California roaster http://www.fda.gov/Food/RecallsOutbreaksEmergencies/Outbreaks/ucm386377.htm [Google Scholar]
  75. FDA (US Food Drug Admin.). 2016. Food irradiation: what you need to know http://www.fda.gov/downloads/Food/IngredientsPackagingLabeling/UCM262295.pdf
  76. FDA (US Food Drug Admin.). 2017.a Frito-Lay recalls jalapeño flavored Lay's Kettle Cooked potato chips and jalapeño flavored Miss Vickie's Kettle Cooked potato chips due to potential presence of Salmonella. https://www.fda.gov/Safety/Recalls/ucm554447.htm
  77. FDA (US Food Drug Admin.). 2017.b Now Health Group Inc. voluntarily recalls select Ellyndale®Nutty InfusionsTM https://www.fda.gov/Safety/Recalls/ucm556745.htm
  78. FDA (US Food Drug Admin.). 2017.c Pro Sports Club recalls yogurt peanut crunch bar because of possible health risk https://www.fda.gov/Safety/Recalls/ucm548563.htm
  79. Feng K, Divers E, Ma Y, Li J. 2011. Inactivation of a human norovirus surrogate, human norovirus virus-like particles, and vesicular stomatitis virus by gamma irradiation. Appl. Environ. Microbiol. 77:3507–17 [Google Scholar]
  80. Ferrentino G, Spilimbergo S. 2011. High pressure carbon dioxide pasteurization of solid foods: current knowledge and future outlooks. Trends Food Sci. Technol. 22:427–41 [Google Scholar]
  81. Fett WF, Cooke PH. 2003. Reduction of Escherichia coli O157:H7 and Salmonella on laboratory-inoculated alfalfa seed with commercial citrus-related products. J. Food Prot. 66:1158–65 [Google Scholar]
  82. Finnegan M, Linley E, Denyer SP, McDonnell G, Simons C, Maillard JY. 2010. Mode of action of hydrogen peroxide and other oxidizing agents: differences between liquid and gas forms. J. Antimicrob. Chemother. 65:2108–15 [Google Scholar]
  83. Fournet N, Baas D, Van Pelt W, Swaan C, Ober HJ. et al. 2012. Another possible food-borne outbreak of hepatitis A in the Netherlands indicated by two closely related molecular sequences, July to October 2011. Eurosurveillance 17:20079 [Google Scholar]
  84. Freitas-Silva O, Venâncio A. 2010. Ozone applications to prevent and degrade mycotoxins: a review. Drug Metab. Rev. 42:612–20 [Google Scholar]
  85. Gabel MM, Zhongli P, Amaratunga KSP, Harris LJ, Thompson JF. 2006. Catalytic infrared dehydration of onions. J. Food Sci. 71:9E351–57 [Google Scholar]
  86. Georget E, Sevenich R, Reineke K, Mathys A, Heinz V. et al. 2015. Inactivation of microorganisms by high isostatic pressure processing in complex matrices: a review. Innov. Food Sci. Emerg. Technol. 27:1–14 [Google Scholar]
  87. Goh ELC, Hocking AD, Stewart CM, Buckle KA, Fleet GH. 2007. Baroprotective effect of increased solute concentrations on yeast and molds during high pressure processing. Innov. Food Sci. Emerg. Technol. 8:535–42 [Google Scholar]
  88. Gómez-López VM, Ragaert P, Debevere J, Devlieghere F. 2007. Pulsed light for food decontamination: a review. Trends Food Sci. Technol. 18:464–73 [Google Scholar]
  89. Guan D, Gray P, Kang DH, Tang J, Shafer B. et al. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. J. Food Sci. 68:1428–32 [Google Scholar]
  90. Guerrero-Beltrán JA, Barbosa-Cánovas GV. 2004. Advantages and limitations on processing foods by UV light. Food Sci. Technol. Int. 10:137–47 [Google Scholar]
  91. Guzel-Seydim ZB, Greene AK, Seydim AC. 2004. Use of ozone in the food industry. LWT Food Sci. Technol. 37:453–60 [Google Scholar]
  92. Ha JW, Kim SY, Ryu SR, Kang DH. 2013. Inactivation of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 in peanut butter cracker sandwiches by radio-frequency heating. Food Microbiol 34:145–50 [Google Scholar]
  93. Hamada K, Nakatomi Y, Shimada S. 1992. Direct induction of tetraploids or homozygous diploids in the industrial yeast Saccharomyces cerevisiae by hydrostatic pressure. Curr. Genet. 22:371–76 [Google Scholar]
  94. Hertwig C, Reineke K, Ehlbeck J, Erdoğdu B, Rauh C, Schlüter O. 2015. Impact of remote plasma treatment on natural microbial load and quality parameters of selected herbs and spices. J. Food Eng. 167:12–17 [Google Scholar]
  95. Hierro E, Manzano S, Ordóñez JA, de la Hoz L, Fernández M. 2009. Inactivation of Salmonella enterica serovar Enteritidis on shell eggs by pulsed light technology. Int. J. Food Microbiol. 135:125–30 [Google Scholar]
  96. Hijnen WAM, Beerendonk EF, Medema GJ. 2006. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40:3–22 [Google Scholar]
  97. Himmelfarb P, El Bisi HM, Read RBJ, Litsky W. 1962. Effect of relative humidity on the bactericidal activity of propylene oxide vapor. Appl. Microbiol. 10:431–35 [Google Scholar]
  98. Hiramatsu R, Matsumoto M, Sakae K, Miyazaki Y. 2005. Ability of Shiga toxin–producing Escherichia coli and Salmonella spp. to survive in a desiccation model system and in dry foods. Appl. Environ. Microbiol. 71:6657–63 [Google Scholar]
  99. Hirneisen KA, Markland SM, Kniel KE. 2011. Ozone inactivation of norovirus surrogates on fresh produce. J. Food Prot. 74:836–39 [Google Scholar]
  100. Horrungsiwat S, Therdthai N, Ratphitagsanti W. 2016. Effect of combined microwave–hot air drying and superheated steam drying on physical and chemical properties of rice. Int. J. Food Sci. Technol. 51:1851–59 [Google Scholar]
  101. Ignat A, Manzocco L, Maifreni M, Bartolomeoli I, Nicoli MC. 2014. Surface decontamination of fresh-cut apple by pulsed light: effects on structure, colour and sensory properties. Postharvest Biol. Technol. 9:122–27 [Google Scholar]
  102. Inan F, Pala M, Doymaz I. 2007. Use of ozone in detoxification of aflatoxin B1 in red pepper. J. Stored Prod. Res. 43:425–29 [Google Scholar]
  103. Janković SM, Milošev MZ, Novaković ML. 2014. The effects of microwave radiation on microbial cultures. Hosp. Pharmacol. 1:102–8 [Google Scholar]
  104. Jaquette CB, Beuchat LR. 1998. Survival and growth of psychrotrophic Bacillus cereus in dry and reconstituted infant rice cereal. J. Food Prot. 61:1629–35 [Google Scholar]
  105. Jean J, Morales-Rayas R, Anoman MN, Lamhoujeb S. 2011. Inactivation of hepatitis A virus and norovirus surrogate in suspension and on food-contact surfaces using pulsed UV light (pulsed light inactivation of food-borne viruses). Food Microbiol 28:568–72 [Google Scholar]
  106. Jeong S, Marks BP, Ryser ET, Harte JB. 2012. The effect of X-ray irradiation on Salmonella inactivation and sensory quality of almonds and walnuts as a function of water activity. Int. J. Food Microbiol. 153:365–71 [Google Scholar]
  107. Jeong S-G, Baik O-D, Kang D-H. 2017. Evaluation of radio-frequency heating in controlling Salmonella enterica in raw shelled almonds. Int. J. Food Microbiol. 254:54–61 [Google Scholar]
  108. Jeong S-G, Kang D-H. 2017. Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in ready-to-bake cookie dough by gamma and electron beam irradiation. Food Microbiol 64:172–78 [Google Scholar]
  109. Jernberg C, Hjertqvist M, Sundborger C, Castro E, Lofdahl M. et al. 2015. Outbreak of Salmonella Enteritidis phage type 13a infection in Sweden linked to imported dried-vegetable spice mixes, December 2014 to July 2015. Eurosurveillance 20:21194 [Google Scholar]
  110. Jiao R, Gao J, Zhang X, Zhang M, Chen J. et al. 2016. Effects of vacuum freeze-drying on inactivation of Cronobacter sakazakii ATCC29544 in liquid media with different initial inoculum levels. J. Dairy Sci. 1003:1674–78 [Google Scholar]
  111. Jofré A, Garriga M, Aymerich T. 2008. Inhibition of Salmonella sp., Listeria monocytogenes and Staphylococcus aureus in cooked ham by combining antimicrobials, high hydrostatic pressure and refrigeration. Meat Sci 78:53–59 [Google Scholar]
  112. Jourdan N, Le Hello S, Delmas G, Clouzeau J, Manteau C. et al. 2008. Nationwide outbreak of Salmonella enterica serotype gives infections in infants in France, linked to infant milk formula, September 2008.. Eurosurveillance 13:18994 [Google Scholar]
  113. Jun S, Irudayaraj J, Demirci A, Geiser D. 2003. Pulsed UV-light treatment of corn meal for inactivation of Aspergillus niger spores. Int. J. Food Sci. Technol. 38:883–88 [Google Scholar]
  114. Khadre MA, Yousef AE. 2001. Sporicidal action of ozone and hydrogen peroxide: a comparative study. Int. J. Food Microbiol. 71:131–38 [Google Scholar]
  115. Khadre MA, Yousef AE, Kim J-G. 2001. Microbiological aspects of ozone applications in food: a review. J. Food Sci. 66:1242–52 [Google Scholar]
  116. Kim JE, Lee DU, Min SC. 2014. Microbial decontamination of red pepper powder by cold plasma. Food Microbiol 38:128–36 [Google Scholar]
  117. Kim S-S, Sung HJ, Kwak HS, Joo IS, Lee JS. et al. 2016. Effect of power levels on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in tomato paste using 915-megahertz microwave and ohmic heating. J. Food Prot. 79:1616–22 [Google Scholar]
  118. Kim S-Y, Sagong H-G, Choi SH, Ryu S, Kang D-H. 2012. Radio-frequency heating to inactivate Salmonella Typhimurium and Escherichia coli O157:H7 on black and red pepper spice. Int. J. Food Microbiol. 153:171–75 [Google Scholar]
  119. Kitis M. 2004. Disinfection of wastewater with peracetic acid: a review. Environ. Int. 30:47–55 [Google Scholar]
  120. Klaus Z. 1995. Closed circuit for treating drinking water with UV treatment and filtering US Patent No. US5628895 A
  121. Koopmans M, Duizer E. 2004. Foodborne viruses: an emerging problem. Int. J. Food Microbiol. 90:23–41 [Google Scholar]
  122. Kozempel MF, Annous BA, Cook RD, Scullen OJ, Whiting RC. 1998. Inactivation of microorganisms with microwaves at reduced temperatures. J. Food Prot. 61:582–85 [Google Scholar]
  123. Kubra IR, Kumar D, Rao LJM. 2016. Emerging trends in microwave processing of spices and herbs. Crit. Rev. Food Sci. Nutr. 56:2160–73 [Google Scholar]
  124. Lakshmanan R, Dalgaard P. 2004. Effects of high-pressure processing on Listeria monocytogenes, spoilage microflora and multiple compound quality indices in chilled cold-smoked salmon. J. Appl. Microbiol. 96:398–408 [Google Scholar]
  125. Laroussi M, Lu X. 2005. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 87:11 [Google Scholar]
  126. Laroussi M, Mendis DA, Rosenberg M. 2003. Plasma interaction with microbes. New J. Phys. 5:411–10 [Google Scholar]
  127. Ledet Müller L, Hjertqvist M, Payne L, Pettersson H, Olsson A. et al. 2007. Cluster of Salmonella Enteritidis in Sweden 2005–2006—suspected source: almonds. Eurosurveillance 12:E9–10 [Google Scholar]
  128. Lee H, Kim JE, Chung MS, Min SC. 2015. Cold plasma treatment for the microbiological safety of cabbage, lettuce, and dried figs. Food Microbiol 51:74–80 [Google Scholar]
  129. Lee K, Paek K, Ju W-T, Lee Y. 2006. Sterilization of bacteria, yeast, and bacterial endospores by atmospheric-pressure cold plasma using helium and oxygen. J. Microbiol. 44:269–75 [Google Scholar]
  130. Legnani PP, Leoni E, Righi F, Zarabini LA. 2001. Effect of microwave heating and gamma irradiation on microbiological quality of spices and herbs. Ital. J. Food Sci. 13:337–45 [Google Scholar]
  131. Lerouge S, Wertheimer MR, Marchand R, Tabrizian M, Yahia L. 2000. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization. J. Biomed. Mater. Res 51:128–35 [Google Scholar]
  132. MacGregor SJ, Rowan NJ, McIlvaney L, Anderson JG, Fouracre RA, Farish O. 1998. Light inactivation of food-related pathogenic bacteria using a pulsed power source. Lett. Appl. Microbiol. 27:67–70 [Google Scholar]
  133. Magan N, Hope R, Cairns V, Aldred D. 2003. Post-harvest fungal ecology: impact of fungal growth and mycotoxin accumulation in stored grain. Eur. J. Plant Pathol. 109:723–30 [Google Scholar]
  134. Maltini E, Torreggiani D, Venir E, Bertolo G. 2003. Water activity and the preservation of plant foods. Food Chem 82:79–86 [Google Scholar]
  135. Margosch D, Gänzle MG, Ehrmann MA, Vogel RF. 2004. Pressure inactivation of Bacillus endospores. Appl. Environ. Microbiol. 70:7321–28 [Google Scholar]
  136. Martinelli JA, Martinelli M, Fulcher RG. 2005. Process to improve the quality of grains and seeds US Patent No. US6927192 B2
  137. Mathieu J, Dillon N, Dagher F, Michaud DT, Whitesides SK. 2016. Method for sanitizing edible seeds, particularly mucilage producing seeds US Patent No. US20160066572 A1 [Google Scholar]
  138. Misra NN, Tiwari BK, Raghavarao KSMS, Cullen PJ. 2011. Nonthermal plasma inactivation of food-borne pathogens. Food Eng. Rev. 3:159–70 [Google Scholar]
  139. Mobeen AK, Aftab A, Asif A, Zuzzer AS. 2011. Aflatoxins B1 and B2 contamination of peanut and peanut products and subsequent microwave detoxification. J. Pharm. Nutr. Sci. 1:1–3 [Google Scholar]
  140. Monk JD, Beuchat LR, Doyle MP. 1995. Irradiation inactivation of food-borne microorganisms. J. Food Prot. 58:197–208 [Google Scholar]
  141. Moseley BEB. 1989. Ionizing radiation: action and repair. Mechanism of Action of Food Preservation Procedures GW Gould 43–70 London: Elsevier Appl. Sci [Google Scholar]
  142. Mshanaa SE, Gerwing L, Minde M, Hain T, Domann E. et al. 2011. Outbreak of a novel Enterobacter sp. carrying blaCTX-M-15 in a neonatal unit of a tertiary care hospital in Tanzania. Int. J. Antimicrob. Agents 38:265–69 [Google Scholar]
  143. Mujica-Paz H, Valdez-Fragoso A, Samson CT, Welti-Chanes J, Torres JA. 2011. High-pressure processing technologies for the pasteurization and sterilization of foods. Food Bioprocess Technol 4:969–85 [Google Scholar]
  144. Najdovski L, Dragaš AZ, Kotnik V. 1991. The killing activity of microwaves on some non-sporogenic and sporogenic medically important bacterial strains. J. Hosp. Infect. 19:239–47 [Google Scholar]
  145. Natl. Advis. Comm. Microbiol. Criteria Food. 1999. Microbiological safety evaluations and recommendations on sprouted seed FDA Rep., Food Drug Adm., Silver Spring, MD. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/ProducePlantProducts/ucm078789.htm
  146. Nebot Sanz E, Salcedo Dávila I, Andrade Balao JA, Quiroga Alonso JM. 2007. Modelling of reactivation after UV disinfection: effect of UV-C dose on subsequent photoreactivation and dark repair. Water Res 41:3141–51 [Google Scholar]
  147. Neetoo H, Pizzolato T, Chen H. 2009. Elimination of Escherichia coli O157:H7 from alfalfa seeds through a combination of high hydrostatic pressure and mild heat. Appl. Environ. Microbiol. 75:1901–7 [Google Scholar]
  148. Neil KP, Biggerstaff G, MacDonald JK, Trees E, Medus C. et al. 2012. A novel vehicle for transmission of Escherichia coli O157:H7 to humans: multistate outbreak of E. coli O157:H7 infections associated with consumption of ready-to-bake commercial prepackaged cookie dough—United States; 2009. Clin. Infect. Dis. 54:511–18 [Google Scholar]
  149. Niemira BA. 2012. Cold plasma decontamination of foods. Annu. Rev. Food Sci. Technol. 3:125–42 [Google Scholar]
  150. Niemira BA. 2014. Irradiation, microwave and alternative energy-based treatments for low water activity foods. The Microbiological Safety of Low Water Activity Foods and Spices JB Gurtler, MP Doyle, JL Kornacki 389–401 New York: Springer [Google Scholar]
  151. O'Connor N, Cahill O, Daniels S, Galvin S, Humphreys H. 2014. Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections?. J. Hosp. Infect. 88:59–65 [Google Scholar]
  152. Ogawa H, Fukuhisa K, Kubo Y, Fukumoto H. 1990. Pressure inactivation of yeasts, molds, and pectinesterase in satsuma mandarin juice: effects of juice concentration, pH, and organic acids, and comparison with heat sanitation. Agric. Biol. Chem. 54:1219–25 [Google Scholar]
  153. Orfeuil M. 1987. Electric Process Heating: Technologies, Equipment, Applications Columbus, OH: Battelle [Google Scholar]
  154. OzFoodNet Work. Group. 2010. OzFoodNet quarterly report, 1 April to 30 June 2010. Commun. Dis. Intell. 34:3345–54 [Google Scholar]
  155. Paine S, Thornley C, Wilson M, Dufour M, Sexton K. et al. 2014. An outbreak of multiple serotypes of Salmonella in New Zealand linked to consumption of contaminated tahini imported from Turkey. Foodborne Pathog. Dis. 11:887–92 [Google Scholar]
  156. Pala ÇU, Toklucu AK. 2013. Effects of UV-C light processing on some quality characteristics of grape juices. Food Bioprocess Technol 6:719–25 [Google Scholar]
  157. Pao S, Kalantari A, Huang G. 2006. Utilizing acidic sprays for eliminating Salmonella enterica on raw almonds. J. Food Sci. 71:M14–19 [Google Scholar]
  158. Patterson MF. 1993. Food irradiation and food safety. Rev. Med. Microbiol. 4:151–58 [Google Scholar]
  159. Patterson MF. 2005. Microbiology of pressure-treated foods. J. App. Microbiol. 98:1400–9 [Google Scholar]
  160. Pereira RN, Vicente AA. 2010. Environmental impact of novel thermal and nonthermal technologies in food processing. Food Res. Int. 43:1936–43 [Google Scholar]
  161. Phungamngoen C, Chiewchan N, Devahastin S. 2011. Thermal resistance of Salmonella enterica serovar Anatum on cabbage surfaces during drying: effects of drying methods and conditions. Int. J. Food Microbiol. 147:127–33 [Google Scholar]
  162. Pillai SD, Shayanfar S. 2017. Electron beam technology and other irradiation technology applications in the food industry. Top. Curr. Chem. 375:6 [Google Scholar]
  163. Podolak R, Enache E, Stone W, Black DG, Elliott PH. 2010. Sources and risk factors for contamination, survival, persistence, and heat resistance of Salmonella in low-moisture foods. J. Food Prot. 73:1919–36 [Google Scholar]
  164. Public Health Agency Can. 2014. Outbreak of Salmonella infections related to sprouted chia seed powder Public Health Rep., Public Health Agency Can., Ottawa, ON. http://www.phac-aspc.gc.ca/phn-asp/2014/salmonella-nh-053114-eng.php [Google Scholar]
  165. Rabsch W, Prager R, Koch J, Stark K, Roggentin P. et al. 2005. Molecular epidemiology of Salmonella enterica serovar Agona: characterization of a diffuse outbreak caused by aniseed-fennel-caraway infusion. Epidemiol. Infect. 133:837–44 [Google Scholar]
  166. Rendueles E, Omer MK, Alvseike O, Alonso-Calleja C, Capita R, Prieto M. 2011. Microbiological food safety assessment of high hydrostatic pressure processing: a review. LWT Food Sci. Technol. 44:1251–60 [Google Scholar]
  167. Rice RG, Robson CM, Miller GW, Hill AG. 1981. Uses of ozone in drinking water treatment. J. Am. Water Work. Assoc. 73:44–57 [Google Scholar]
  168. Richards GM, Gurtler JB, Beuchat LR. 2005. Survival and growth of Enterobacter sakazakii in infant rice cereal reconstituted with water, milk, liquid infant formula, or apple juice. J. Appl. Microbiol. 99:844–50 [Google Scholar]
  169. Ritcher Reis F, Ivahashi MM, Guéniat Rosa AH. 2017. Effect of vacuum drying temperature on drying kinetics, effective moisture diffusivity and quality of peeled litchi (Litchi chinessis Sonn.). J. Food Process Eng. 40:e12419 [Google Scholar]
  170. Russell AD. 2003. Similarities and differences in the responses of microorganisms to biocides. J. Antimicrob. Chemother. 52:750–63 [Google Scholar]
  171. Sagar VR, Suresh Kumar P. 2010. Recent advances in drying and dehydration of fruits and vegetables: a review. J. Food Sci. Technol. 47:15–26 [Google Scholar]
  172. Sapers GM. 2001. Efficacy of washing and sanitizing methods of fresh fruit and vegetable products. Food Technol. Biotechnol. 39:305–11 [Google Scholar]
  173. Sastry SK, Datta AK, Worobo RW. 2000. Ultraviolet light. J. Food Sci. 65:90–92 [Google Scholar]
  174. Sehrawat R, Nema PK, Kaur BP. 2016. Effect of superheated steam drying on properties of foodstuffs and kinetic modeling. Innov. Food Sci. Emerg. Technol. 34:285–301 [Google Scholar]
  175. Setikaite I, Koutchma T, Patazca E, Parisi B. 2009. Effects of water activity in model systems on high-pressure inactivation of Escherichia coli. Food Bioprocess Technol 2:213–21 [Google Scholar]
  176. Sevenich R, Reineke K, Hecht P, Fröhling A, Rauh C. et al. 2015. Impact of different water activities (aw) adjusted by solutes on high pressure high temperature inactivation of Bacillus amyloliquefaciens spores. Front. Microbiol. 6:689 [Google Scholar]
  177. Shafaei S, Klamerth N, Zhang Y, McPhedran K, Boltona JR, El-Din MG. 2017. Impact of environmental conditions on bacterial photoreactivation in wastewater effluents. Environ. Sci. Process. Impacts 19:31–37 [Google Scholar]
  178. Shamis Y, Taube A, Mitik-Dineva N, Croft R, Crawford RJ, Ivanova EP. 2011. Specific electromagnetic effects of microwave radiation on Escherichia coli. Appl. Environ. Microbiol. 77:3017–22 [Google Scholar]
  179. Sharma A, Ghanekar AS, Padwal Desai SR, Nadkarni GB. 1984. Microbiological status and antifungal properties of gamma irradiated spices. J. Agric. Food Chem. 32:1061–63 [Google Scholar]
  180. Sheth AN, Hoekstra M, Patel N, Ewald G, Lord C. et al. 2011. A national outbreak of Salmonella serotype Tennessee infections from contaminated peanut butter: a new food vehicle for salmonellosis in the United States. Clin. Infec. Dis. 53:356–62 [Google Scholar]
  181. Shigehisa T, Ohmori T, Saito A, Taji S, Hayashi R. 1991. Effects of high hydrostatic pressure on characteristics of pork slurries and inactivation of microorganisms associated with meat and meat products. Int. J. Food Microbiol. 12:207–15 [Google Scholar]
  182. Shimada S, Andou M, Naito N, Yamada N, Osumi M, Hayashi R. 1993. Effects of hydrostatic pressure on the ultrastructure and leakage of internal substances in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 40:123–31 [Google Scholar]
  183. Smelt JPP. 1998. Recent advances in the microbiology of high pressure processing. Trends Food Sci. Technol. 9:152–58 [Google Scholar]
  184. Song W-J, Kang D-H. 2016. Influence of water activity on inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in peanut butter by microwave heating. Food Microbiol 60:104–11 [Google Scholar]
  185. Suhaj M, Racova J, Polovka M, Brezova V. 2006. Effect of γ-irradiation on antioxidant activity of black pepper Piper nigrum L. Food Chem 97:696–704 [Google Scholar]
  186. Tyrrell RM, Peak MJ. 1978. Interactions between UV radiation of different energies in the inactivation of bacteria. J. Bacteriol. 136:437–40 [Google Scholar]
  187. Varga L, Szigeti J. 2016. Use of ozone in the dairy industry: a review. Int. J. Dairy Technol. 6:157–68 [Google Scholar]
  188. Vela GR, Wu JF. 1979. Mechanism of lethal action of 2,450-MHz radiation on microorganisms. Appl. Environ. Microbiol. 37:550–53 [Google Scholar]
  189. Venkitasamy C, Brandl MT, Wang B, McHugh TH, Zhang R, Pan Z. 2017. Drying and decontamination of raw pistachios with sequential infrared drying, tempering and hot air drying. Int. J. Food Microbiol. 246:85–91 [Google Scholar]
  190. Wekhof A, Trompeter F-J, Franken O. 2001. Pulsed UV disintegration PUVD: a new sterilisation mechanism for packaging and broad medical-hospital applications. First Int. Conf. Ultrav. Technol. June 14–16 Washington, DC: http://steribeam.com/info/AW-UVcongr2001.pdf [Google Scholar]
  191. Weller LD, Daeschel MA, Durham CA, Morrissey MT. 2013. Effects of water, sodium hypochlorite, peroxyacetic acid, and acidified sodium chlorite on in-shell hazelnuts inoculated with Salmonella enterica serovar Panama. J. Food Sci. 78:M1885–91 [Google Scholar]
  192. Werber D, Dreesman J, Feil F, Van Treeck U, Fell G. et al. 2005. International outbreak of Salmonella Oranienburg due to German chocolate. BMC Infect. Dis. 5:7 [Google Scholar]
  193. Whitworth J. 2012. FSANZ warning follows salmonella outbreak in raw almonds. Food Quality News Oct. 23, http://www.foodqualitynews.com/Food-Outbreaks/FSANZ-warning-follows-salmonella-outbreak-in-raw-almonds
  194. Willford J, Mendonca A, Goodridge LD. 2008. Water pressure effectively reduces Salmonella enterica serovar Enteritidis on the surface of raw almonds. J. Food Prot. 71:825–29 [Google Scholar]
  195. Wutzler P, Sauerbrei A. 2000. Virucidal efficacy of a combination of 0.2% peracetic acid and 80% v/v ethanol PAA-ethanol as a potential hand disinfectant. J. Hosp. Infect. 46:304–8 [Google Scholar]
  196. Wuytack EY, Phuong LD, Aertsen A, Reyns KM, Marquenie D. et al. 2003. Comparison of sublethal injury induced in Salmonella enterica serovar Typhimurium by heat and by different nonthermal treatments. J. Food Prot. 66:31–37 [Google Scholar]
  197. Yaghmaee P, Durance T. 2007. Efficacy of vacuum microwave drying in microbial decontamination of dried vegetables. Dry. Technol. 25:1109–14 [Google Scholar]
  198. Young I, Waddell L, Cahill S, Kojima M, Clarke R. et al. 2015. Application of a rapid knowledge synthesis and transfer approach to assess the microbial safety of low-moisture foods. J. Food Prot. 78:2264–78 [Google Scholar]
  199. Zhang W, Luan D, Tang J, Sablani SS, Rasco B. et al. 2015. Dielectric properties and other physical properties of low-acyl gellan gel as relevant to microwave assisted pasteurization process. J. Food Eng. 149:195–203 [Google Scholar]
  200. Zhao J, Cranston PM. 1995. Microbial decontamination of black pepper by ozone and the effect of the treatment on volatile oil constituents of the spice. J. Sci. Food Agric. 68:11–18 [Google Scholar]
/content/journals/10.1146/annurev-food-030117-012304
Loading
/content/journals/10.1146/annurev-food-030117-012304
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error