1932

Abstract

Gene duplication-amplification (GDA) processes are highly relevant biologically because they generate extensive and reversible genetic variation on which adaptive evolution can act. Whenever cellular growth is restricted, escape from these growth restrictions often occurs by GDA events that resolve the selective problem. In addition, GDA may facilitate subsequent genetic change by allowing a population to grow and increase in number, thereby increasing the probability for subsequent adaptive mutations to occur in the amplified genes or in unrelated genes. Mathematical modeling of the effect of GDA on the rate of adaptive evolution shows that GDA will facilitate adaptation, especially when the supply of mutations in the population is rate-limiting. GDA can form via several mechanisms, both RecA-dependent and RecA-independent, including rolling-circle amplification and nonequal crossing over between sister chromatids. Due to the high intrinsic instability and fitness costs associated with GDAs, they are generally transient in nature, and consequently their evolutionary and medical importance is often underestimated.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-102108-134805
2009-12-01
2024-04-18
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-genet-102108-134805
Loading
/content/journals/10.1146/annurev-genet-102108-134805
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error