1932

Abstract

Centromeres are specialized domains of heterochromatin that provide the foundation for the kinetochore. Centromeric heterochromatin is characterized by specific histone modifications, a centromere-specific histone H3 variant (CENP-A), and the enrichment of cohesin, condensin, and topoisomerase II. Centromere DNA varies orders of magnitude in size from 125 bp (budding yeast) to several megabases (human). In metaphase, sister kinetochores on the surface of replicated chromosomes face away from each other, where they establish microtubule attachment and bi-orientation. Despite the disparity in centromere size, the distance between separated sister kinetochores is remarkably conserved (approximately 1 μm) throughout phylogeny. The centromere functions as a molecular spring that resists microtubule-based extensional forces in mitosis. This review explores the physical properties of DNA in order to understand how the molecular spring is built and how it contributes to the fidelity of chromosome segregation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092033
2014-11-23
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092033.html?itemId=/content/journals/10.1146/annurev-genet-120213-092033&mimeType=html&fmt=ahah

Literature Cited

  1. Anderson DE, Losada A, Erickson HP, Hirano T. 1.  2002. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156:419–24 [Google Scholar]
  2. Anderson M, Haase J, Yeh E, Bloom K. 2.  2009. Function and assembly of DNA looping, clustering, and microtubule attachment complexes within a eukaryotic kinetochore. Mol. Biol. Cell 20:4131–39 [Google Scholar]
  3. Asakura S, Oosawa F. 3.  1954. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22:1255–56 [Google Scholar]
  4. Bachellier-Bassi S, Gadal O, Bourout G, Nehrbass U. 4.  2008. Cell cycle–dependent kinetochore localization of condensin complex in Saccharomyces cerevisiae. J. Struct. Biol. 162:248–59 [Google Scholar]
  5. Bailey AO, Panchenko T, Sathyan KM, Petkowski JJ, Pai PJ. 5.  et al. 2013. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc. Natl. Acad. Sci. USA 110:11827–32 [Google Scholar]
  6. Baldwin M, Warsi T, Bachant J. 6.  2009. Analyzing Top2 distribution on yeast chromosomes by chromatin immunoprecipitation. Methods Mol. Biol. 582:119–30 [Google Scholar]
  7. Bardin AJ, Amon A. 7.  2001. Men and sin: What's the difference?. Nat. Rev. Mol. Cell Biol. 2:815–26 [Google Scholar]
  8. Bergmann JH, Jakubsche JN, Martins NM, Kagansky A, Nakano M. 8.  et al. 2012. Epigenetic engineering: histone H3K9 acetylation is compatible with kinetochore structure and function. J. Cell Sci. 125:411–21 [Google Scholar]
  9. Bergmann JH, Rodriguez MG, Martins NM, Kimura H, Kelly DA. 9.  et al. 2011. Epigenetic engineering shows H3K4me2 is required for HJURP targeting and CENP-A assembly on a synthetic human kinetochore. EMBO J. 30:328–40 [Google Scholar]
  10. Biggins S. 10.  2013. The composition, functions, and regulation of the budding yeast kinetochore. Genetics 194:817–46 [Google Scholar]
  11. Bloom K, Yeh E. 11.  2010. Tension management in the kinetochore. Curr. Biol. 20:R1040–48 [Google Scholar]
  12. Bloom KS. 12.  2008. Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117:103–10 [Google Scholar]
  13. Blower MD, Sullivan BA, Karpen GH. 13.  2002. Conserved organization of centromeric chromatin in flies and humans. Dev. Cell 2:319–30 [Google Scholar]
  14. Brenner S, Pepper D, Berns MW, Tan E, Brinkley BR. 14.  1981. Kinetochore structure, duplication, and distribution in mammalian cells: analysis by human autoantibodies from scleroderma patients. J. Cell Biol. 91:95–102 [Google Scholar]
  15. Brinkley BR, Stubblefield E. 15.  1966. The fine structure of the kinetochore of a mammalian cell in vitro. Chromosoma 19:28–43 [Google Scholar]
  16. Bui M, Walkiewicz MP, Dimitriadis EK, Dalal Y. 16.  2013. The CENP-A nucleosome: a battle between Dr Jekyll and Mr Hyde. Nucleus 4:37–42 [Google Scholar]
  17. Carbone L, Nergadze SG, Magnani E, Misceo D, Francesca Cardone M. 17.  et al. 2006. Evolutionary movement of centromeres in horse, donkey, and zebra. Genomics 87:777–82 [Google Scholar]
  18. Chan KM, Liu YT, Ma CH, Jayaram M, Sau S. 18.  2013. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence. Plasmid 70:2–17 [Google Scholar]
  19. Cheerambathur DK, Desai A. 19.  2014. Linked in: formation and regulation of microtubule attachments during chromosome segregation. Curr. Opin. Cell Biol. 26:113–22 [Google Scholar]
  20. Cherry LM, Faulkner AJ, Grossberg LA, Balczon R. 20.  1989. Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. J. Cell Sci. 92:Pt. 2281–89 [Google Scholar]
  21. Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S. 21.  et al. 1994. Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–73 [Google Scholar]
  22. Chikashige Y, Tsutsumi C, Yamane M, Okamasa K, Haraguchi T, Hiraoka Y. 22.  2006. Meiotic proteins bqt1 and bqt2 tether telomeres to form the bouquet arrangement of chromosomes. Cell 125:59–69 [Google Scholar]
  23. Clarke L, Baum MP. 23.  1990. Functional analysis of a centromere from fission yeast: a role for centromere-specific repeated DNA sequences. Mol. Cell. Biol. 10:1863–72 [Google Scholar]
  24. Clarke L, Carbon J. 24.  1980. Isolation of a yeast centromere and construction of functional small circular chromosomes. Nature 287:504–9 [Google Scholar]
  25. Cuylen S, Metz J, Haering CH. 25.  2011. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18:894–901 [Google Scholar]
  26. Cuylen S, Metz J, Hruby A, Haering CH. 26.  2013. Entrapment of chromosomes by condensin rings prevents their breakage during cytokinesis. Dev. Cell. 27:469–78 [Google Scholar]
  27. D'Ambrosio C, Schmidt CK, Katou Y, Kelly G, Itoh T. 27.  et al. 2008. Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev. 22:2215–27 [Google Scholar]
  28. D'Amours D, Stegmeier F, Amon A. 28.  2004. Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–69 [Google Scholar]
  29. de Gennes PG. 29.  1979. Scaling Concepts in Polymer Physics Ithaca, NY: Cornell Univ. Press
  30. De Rop V, Padeganeh A, Maddox PS. 30.  2012. CENP-A: the key player behind centromere identity, propagation, and kinetochore assembly. Chromosoma 121:527–38 [Google Scholar]
  31. Deng Y, Sun M, Shaevitz JW. 31.  2011. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107:158101 [Google Scholar]
  32. Ding R, McDonald KL, McIntosh JR. 32.  1993. Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J. Cell Biol. 120:141–51 [Google Scholar]
  33. Doheny KF, Sorger PK, Hyman AA, Tugendreich S, Spencer F, Hieter P. 33.  1993. Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–74 [Google Scholar]
  34. Doi M, Edwards SF. 34.  1986. The Theory of Polymer Dynamics Oxford, UK: Oxford Univ. Press
  35. Dorsett D. 35.  2011. Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev. 21:199–206 [Google Scholar]
  36. Dorsett D, Merkenschlager M. 36.  2013. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr. Opin. Cell Biol. 25:327–33 [Google Scholar]
  37. Duan Z, Andronescu M, Schutz K, McIlwain S, Kim YJ. 37.  et al. 2010. A three-dimensional model of the yeast genome. Nature 465:363–67 [Google Scholar]
  38. Durand-Dubief M, Will WR, Petrini E, Theodorou D, Harris RR. 38.  et al. 2012. SWI/SNF-like chromatin remodeling factor Fun30 supports point centromere function in S. cerevisiae. PLOS Genet. 8:e1002974 [Google Scholar]
  39. Eckert CA, Gravdahl DJ, Megee PC. 39.  2007. The enhancement of pericentromeric cohesin association by conserved kinetochore components promotes high-fidelity chromosome segregation and is sensitive to microtubule-based tension. Genes Dev. 21:278–91 [Google Scholar]
  40. Falk SJ, Black BE. 40.  2013. Centromeric chromatin and the pathway that drives its propagation. Biochim. Biophys. Acta 1819:313–21 [Google Scholar]
  41. Feynman RP. 41.  1960. There's plenty of room at the bottom. Caltech Eng. Sci. 23:22–36 [Google Scholar]
  42. Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N. 42.  2013. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153:882–95 [Google Scholar]
  43. Fitzgerald-Hayes M, Clarke L, Carbon J. 43.  1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235–44 [Google Scholar]
  44. Flemming W. 44.  1882. Zellsubstanz, Kern und Zelltheilung Leipzig, Ger.: Vogel424
  45. Foltz DR, Jansen LE, Black BE, Bailey AO, Yates JR 3rd, Cleveland DW. 45.  2006. The human CENP-A centromeric nucleosome-associated complex. Nat. Cell Biol. 8:458–69 [Google Scholar]
  46. Fritzler MJ, Kinsella TD. 46.  1980. The CREST syndrome: a distinct serologic entity with anticentromere antibodies. Am. J. Med. 69:520–26 [Google Scholar]
  47. Fu S, Lv Z, Gao Z, Wu H, Pang J. 47.  et al. 2013. De novo centromere formation on a chromosome fragment in maize. Proc. Natl. Acad. Sci. USA 110:6033–36 [Google Scholar]
  48. Gartenberg M. 48.  2009. Heterochromatin and the cohesion of sister chromatids. Chromosome Res. 17:229–38 [Google Scholar]
  49. Gascoigne KE, Takeuchi K, Suzuki A, Hori T, Fukagawa T, Cheeseman IM. 49.  2011. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell 145:410–22 [Google Scholar]
  50. Gent JI, Dawe RK. 50.  2012. RNA as a structural and regulatory component of the centromere. Annu. Rev. Genet. 46:443–53 [Google Scholar]
  51. Ghosh SK, Huang CC, Hajra S, Jayaram M. 51.  2010. Yeast cohesin complex embraces 2 micron plasmid sisters in a tri-linked catenane complex. Nucleic Acids Res. 38:570–84 [Google Scholar]
  52. Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E. 52.  et al. 2004. Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLOS Biol. 2:E259 [Google Scholar]
  53. Glynn M, Kaczmarczyk A, Prendergast L, Quinn N, Sullivan KF. 53.  2010. Centromeres: assembling and propagating epigenetic function. Subcell. Biochem. 50:223–49 [Google Scholar]
  54. Goh PY, Kilmartin JV. 54.  1993. NDC10: a gene involved in chromosome segregation in Saccharomyces cerevisiae. J. Cell Biol. 121:503–12 [Google Scholar]
  55. Gopalakrishnan S, Sullivan BA, Trazzi S, Della Valle G, Robertson KD. 55.  2009. DNMT3B interacts with constitutive centromere protein CENP-C to modulate DNA methylation and the histone code at centromeric regions. Hum. Mol. Genet. 18:3178–93 [Google Scholar]
  56. Goshima G, Yanagida M. 56.  2000. Establishing biorientation occurs with precocious separation of the sister kinetochores, but not the arms, in the early spindle of budding yeast. Cell 100:619–33 [Google Scholar]
  57. Granick S, Rubinstein M. 57.  2004. Polymers: a multitude of macromolecules. Nat. Mater. 3:586–87 [Google Scholar]
  58. Greulich KO, Wachtel E, Ausio J, Seger D, Eisenberg H. 58.  1987. Transition of chromatin from the “10 nm” lower order structure, to the “30 nm” higher order structure as followed by small angle X-ray scattering. J. Mol. Biol. 193:709–21 [Google Scholar]
  59. Grewal SI. 59.  2010. RNAi-dependent formation of heterochromatin and its diverse functions. Curr. Opin. Genet. Dev. 20:134–41 [Google Scholar]
  60. Grewal SI, Jia S. 60.  2007. Heterochromatin revisited. Nat. Rev. Genet. 8:35–46 [Google Scholar]
  61. Grosberg AY, Khokhlov AR. 61.  1997. Giant Molecules Here, There, and Everywhere. San Diego, CA: Acad. Press244
  62. Haase J, Mishra PK, Stephens A, Haggerty R, Quammen C. 62.  et al. 2013. A 3D map of the yeast kinetochore reveals the presence of core and accessory centromere-specific histone. Curr. Biol. 23:1939–44 [Google Scholar]
  63. Haase J, Stephens A, Verdaasdonk J, Yeh E, Bloom K. 63.  2012. Bub1 kinase and Sgo1 modulate pericentric chromatin in response to altered microtubule dynamics. Curr. Biol. 22:471–81 [Google Scholar]
  64. Haering CH, Lowe J, Hochwagen A, Nasmyth K. 64.  2002. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9:773–88 [Google Scholar]
  65. Haeusler RA, Pratt-Hyatt M, Good PD, Gipson TA, Engelke DR. 65.  2008. Clustering of yeast tRNA genes is mediated by specific association of condensin with tRNA gene transcription complexes. Genes Dev. 22:2204–14 [Google Scholar]
  66. Hall LE, Mitchell SE, O'Neill RJ. 66.  2012. Pericentric and centromeric transcription: a perfect balance required. Chromosome Res. 20:535–46 [Google Scholar]
  67. Harrington JJ, Van Bokkelen G, Mays RW, Gustashaw K, Willard HF. 67.  1997. Formation of de novo centromeres and construction of first-generation human artificial microchromosomes. Nat. Genet. 15:345–55 [Google Scholar]
  68. Hayden KE, Strome ED, Merrett SL, Lee HR, Rudd MK, Willard HF. 68.  2013. Sequences associated with centromere competency in the human genome. Mol. Cell. Biol. 33:763–72 [Google Scholar]
  69. He X, Asthana S, Sorger PK. 69.  2000. Transient sister chromatid separation and elastic deformation of chromosomes during mitosis in budding yeast. Cell 101:763–75 [Google Scholar]
  70. Hill A, Bloom K. 70.  1987. Genetic manipulation of centromere function. Mol. Cell. Biol. 7:2397–405 [Google Scholar]
  71. Hill A, Bloom K. 71.  1989. Acquisition and processing of a conditional dicentric chromosome in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:1368–70 [Google Scholar]
  72. Hirano T. 72.  2006. At the heart of the chromosome: SMC proteins in action. Nat. Rev. Mol. Cell Biol. 7:311–22 [Google Scholar]
  73. Hopper AK, Pai DA, Engelke DR. 73.  2010. Cellular dynamics of tRNAs and their genes. FEBS Lett. 584:310–17 [Google Scholar]
  74. Hori T, Shang WH, Takeuchi K, Fukagawa T. 74.  2013. The CCAN recruits CENP-A to the centromere and forms the structural core for kinetochore assembly. J. Cell Biol. 200:45–60 [Google Scholar]
  75. Hsieh CL, Lin CL, Liu H, Chang YJ, Shih CJ. 75.  et al. 2011. WDHD1 modulates the post-transcriptional step of the centromeric silencing pathway. Nucleic Acids Res. 39:4048–62 [Google Scholar]
  76. Hu B, Itoh T, Mishra A, Katoh Y, Chan KL. 76.  et al. 2011. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21:12–24 [Google Scholar]
  77. Iwasaki O, Tanaka A, Tanizawa H, Grewal SI, Noma K. 77.  2010. Centromeric localization of dispersed Pol III genes in fission yeast. Mol. Biol. Cell 21:254–65 [Google Scholar]
  78. Johzuka K, Horiuchi T. 78.  2007. RNA polymerase I transcription obstructs condensin association with 35S rRNA coding regions and can cause contraction of long repeat in Saccharomyces cerevisiae. Genes Cells 12:759–71 [Google Scholar]
  79. Johzuka K, Horiuchi T. 79.  2009. The cis element and factors required for condensin recruitment to chromosomes. Mol. Cell 34:26–35 [Google Scholar]
  80. Jokelainen PT. 80.  1967. The ultrastructure and spatial organization of the metaphase kinetochore in mitotic rat cells. J. Ultrastruct. Res. 19:19–44 [Google Scholar]
  81. Joshi MC, Bourniquel A, Fisher J, Ho BT, Magnan D. 81.  et al. 2011. Escherichia coli sister chromosome separation includes an abrupt global transition with concomitant release of late-splitting intersister snaps. Proc. Natl. Acad. Sci. USA 108:2765–70 [Google Scholar]
  82. Jun S, Mulder B. 82.  2006. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc. Natl. Acad. Sci. USA 103:12388–93 [Google Scholar]
  83. Jun S, Wright A. 83.  2010. Entropy as the driver of chromosome segregation. Nat. Rev. Microbiol. 8:600–7 [Google Scholar]
  84. Kendall A, Hull MW, Bertrand E, Good PD, Singer RH, Engelke DR. 84.  2000. A CBF5 mutation that disrupts nucleolar localization of early tRNA biosynthesis in yeast also suppresses tRNA gene-mediated transcriptional silencing. Proc. Natl. Acad. Sci. USA 97:13108–13 [Google Scholar]
  85. Kiermaier E, Woehrer S, Peng Y, Mechtler K, Westermann S. 85.  2009. A Dam1-based artificial kinetochore is sufficient to promote chromosome segregation in budding yeast. Nat. Cell Biol. 11:1109–15 [Google Scholar]
  86. Kim JH, Zhang T, Wong NC, Davidson N, Maksimovic J. 86.  et al. 2013. Condensin I associates with structural and gene regulatory regions in vertebrate chromosomes. Nat Commun. 4:2537 [Google Scholar]
  87. Kundukad B, van der Maarel JR. 87.  2010. Control of the flow properties of DNA by topoisomerase II and its targeting inhibitor. Biophys. J. 99:1906–15 [Google Scholar]
  88. Lacefield S, Lau DT, Murray AW. 88.  2009. Recruiting a microtubule-binding complex to DNA directs chromosome segregation in budding yeast. Nat. Cell Biol. 11:1116–20 [Google Scholar]
  89. Lechner J, Carbon J. 89.  1991. A 240 kd multisubunit protein complex, CBF3, is a major component of the budding yeast centromere. Cell 64:717–25 [Google Scholar]
  90. Lejeune E, Bayne EH, Allshire RC. 90.  2010. On the connection between RNAi and heterochromatin at centromeres. Cold Spring Harb. Symp. Quant. Biol. 75:275–83 [Google Scholar]
  91. Lisby M, Barlow JH, Burgess RC, Rothstein R. 91.  2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713 [Google Scholar]
  92. Liu ST, Rattner JB, Jablonski SA, Yen TJ. 92.  2006. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J. Cell Biol. 175:41–53 [Google Scholar]
  93. Losada A, Hirano M, Hirano T. 93.  2002. Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev. 16:3004–16 [Google Scholar]
  94. Maddox PS, Portier N, Desai A, Oegema K. 94.  2006. Molecular analysis of mitotic chromosome condensation using a quantitative time-resolved fluorescence microscopy assay. Proc. Natl. Acad. Sci. USA 103:15097–102 [Google Scholar]
  95. Masumoto H, Ikeno M, Nakano M, Okazaki T, Grimes B. 95.  et al. 1998. Assay of centromere function using a human artificial chromosome. Chromosoma 107:406–16 [Google Scholar]
  96. McClintock B. 96.  1938. The production of homozygous deficient tissues with mutant characteristics by means of the aberrant mitotic behavior of ring-shaped chromosomes. Genetics 23:315–76 [Google Scholar]
  97. McClintock B. 97.  1953. Induction of instability at selected loci in maize. Genetics 38:579–99 [Google Scholar]
  98. McIntosh JR, Molodtsov MI, Ataullakhanov FI. 98.  2012. Biophysics of mitosis. Q. Rev. Biophys. 45:147–207 [Google Scholar]
  99. Megee PC, Mistrot C, Guacci V, Koshland D. 99.  1999. The centromeric sister chromatid cohesion site directs Mcd1p binding to adjacent sequences. Mol. Cell 4:445–50 [Google Scholar]
  100. Minc N, Boudaoud A, Chang F. 100.  2009. Mechanical forces of fission yeast growth. Curr. Biol. 19:1096–101 [Google Scholar]
  101. Mishra PK, Ottmann AR, Basrai M. 101.  2013. Structural integrity of centromeric chromatin and faithful chromosome segregation requires Pat1. Genetics 195:2369–79 [Google Scholar]
  102. Molineux IJ, Panja D. 102.  2013. Popping the cork: mechanisms of phage genome ejection. Nat. Rev. Microbiol. 11:194–204 [Google Scholar]
  103. Moroi Y, Hartman AL, Nakane PK, Tan EM. 103.  1981. Distribution of kinetochore (centromere) antigen in mammalian cell nuclei. J. Cell Biol. 90:254–59 [Google Scholar]
  104. Moroi Y, Peebles C, Fritzler MJ, Steigerwald J, Tan EM. 104.  1980. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl. Acad. Sci. USA 77:1627–31 [Google Scholar]
  105. Musacchio A, Ciliberto A. 105.  2012. The spindle-assembly checkpoint and the beauty of self-destruction. Nat. Struct. Mol. Biol. 19:1059–61 [Google Scholar]
  106. Mythreye K, Bloom KS. 106.  2003. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J. Cell Biol. 160:833–43 [Google Scholar]
  107. Nakano M, Cardinale S, Noskov VN, Gassmann R, Vagnarelli P. 107.  et al. 2008. Inactivation of a human kinetochore by specific targeting of chromatin modifiers. Dev. Cell 14:507–22 [Google Scholar]
  108. Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M. 108.  1986. Chromosome walking shows a highly homologous repetitive sequence present in all the centromere regions of fission yeast. EMBO J. 5:1011–21 [Google Scholar]
  109. Nasmyth K, Haering CH. 109.  2009. Cohesin: its roles and mechanisms. Annu. Rev. Genet. 43:525–58 [Google Scholar]
  110. Nicklas RB. 110.  1988. The forces that move chromosomes in mitosis. Annu. Rev. Biophys. Biophys. Chem. 17:431–49 [Google Scholar]
  111. Nogales E, Ramey VH. 111.  2009. Structure-function insights into the yeast Dam1 kinetochore complex. J. Cell Sci. 122:3831–36 [Google Scholar]
  112. Ocampo-Hafalla MT, Uhlmann F. 112.  2011. Cohesin loading and sliding. J. Cell Sci. 124:685–91 [Google Scholar]
  113. Ogiyama Y, Ohno Y, Kubota Y, Ishii K. 113.  2013. Epigenetically induced paucity of histone H2A.Z stabilizes fission-yeast ectopic centromeres. Nat. Struct. Mol. Biol. 20:1397–406 [Google Scholar]
  114. Ohkuni K, Kitagawa K. 114.  2011. Endogenous transcription at the centromere facilitates centromere activity in budding yeast. Curr. Biol. 21:1695–703 [Google Scholar]
  115. Ohkuni K, Kitagawa K. 115.  2012. Role of transcription at centromeres in budding yeast. Transcription 3:193–97 [Google Scholar]
  116. Okumura Y, Ito K. 116.  2001. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13:485–87 [Google Scholar]
  117. Onn I, Heidinger-Pauli JM, Guacci V, Unal E, Koshland DE. 117.  2008. Sister chromatid cohesion: a simple concept with a complex reality. Annu. Rev. Cell Dev. Biol. 24:105–29 [Google Scholar]
  118. Pearson CG, Maddox PS, Salmon ED, Bloom K. 118.  2001. Budding yeast chromosome structure and dynamics during mitosis. J. Cell Biol. 152:1255–66 [Google Scholar]
  119. Pelletier J, Halvorsen K, Ha BY, Paparcone R, Sandler SJ. 119.  et al. 2012. Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc. Natl. Acad. Sci. USA 109:E2649–56 [Google Scholar]
  120. Phillips-Cremins JE, Corces VG. 120.  2013. Chromatin insulators: linking genome organization to cellular function. Mol. Cell 50:461–74 [Google Scholar]
  121. Pidoux AL, Allshire RC. 121.  2005. The role of heterochromatin in centromere function. Philos. Trans. R. Soc. Lond. B 360:569–79 [Google Scholar]
  122. Piras FM, Nergadze SG, Magnani E, Bertoni L, Attolini C. 122.  et al. 2010. Uncoupling of satellite DNA and centromeric function in the genus Equus. PLOS Genet. 6:e1000845 [Google Scholar]
  123. Prasad TK, Robertson RB, Visnapuu ML, Chi P, Sung P, Greene EC. 123.  2007. A DNA-translocating Snf2 molecular motor: Saccharomyces cerevisiae Rdh54 displays processive translocation and extrudes DNA loops. J. Mol. Biol. 369:940–53 [Google Scholar]
  124. Prior CP, Cantor CR, Johnson EM, Littau VC, Allfrey VG. 124.  1983. Reversible changes in nucleosome structure and histone H3 accessibility in transcriptionally active and inactive states of rDNA chromatin. Cell 34:1033–42 [Google Scholar]
  125. Przewloka MR, Glover DM. 125.  2009. The kinetochore and the centromere: a working long distance relationship. Annu. Rev. Genet. 43:439–65 [Google Scholar]
  126. Qi LL, Wu JJ, Friebe B, Qian C, Gu YQ. 126.  et al. 2013. Sequence organization and evolutionary dynamics of Brachypodium-specific centromere retrotransposons. Chromosome Res 21:507–21 [Google Scholar]
  127. Renshaw MJ, Ward JJ, Kanemaki M, Natsume K, Nedelec FJ, Tanaka TU. 127.  2010. Condensins promote chromosome recoiling during early anaphase to complete sister chromatid separation. Dev. Cell 19:232–44 [Google Scholar]
  128. Ribeiro SA, Gatlin JC, Dong Y, Joglekar A, Cameron L. 128.  et al. 2009. Condensin regulates the stiffness of vertebrate centromeres. Mol. Biol. Cell 20:2371–80 [Google Scholar]
  129. Rock JM, Amon A. 129.  2009. The FEAR network. Curr. Biol. 19:R1063–68 [Google Scholar]
  130. Rouse PE. 130.  1953. A theory of the linear viscoelastic properties of dilute solutions of coiling polymer. J. Chem. Phys. 21:1272–80 [Google Scholar]
  131. Rubinstein M, Colby RH. 131.  2003. Polymer Physics Oxford, UK: Oxford Univ. Press441
  132. Salmon ED. 132.  1975. Pressure-induced depolymerization of spindle microtubules. II. Thermodynamics of in vivo spindle assembly. J. Cell Biol. 66:114–27 [Google Scholar]
  133. Salmon ED, Goode D, Maugel TK, Bonar DB. 133.  1976. Pressure-induced depolymerization of spindle microtubules. III. Differential stability in HeLa cells. J. Cell Biol. 69:443–54 [Google Scholar]
  134. Samel A, Cuomo A, Bonaldi T, Ehrenhofer-Murray AE. 134.  2012. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc. Natl. Acad. Sci. USA 109:9029–34 [Google Scholar]
  135. Samoshkin A, Arnaoutov A, Jansen LE, Ouspenski I, Dye L. 135.  et al. 2009. Human condensin function is essential for centromeric chromatin assembly and proper sister kinetochore orientation. PLOS ONE 4:e6831 [Google Scholar]
  136. Sato H, Masuda F, Takayama Y, Takahashi K, Saitoh S. 136.  2012. Epigenetic inactivation and subsequent heterochromatinization of a centromere stabilize dicentric chromosomes. Curr. Biol. 22:658–67 [Google Scholar]
  137. Saunders WS, Hoyt MA. 137.  1992. Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451–58 [Google Scholar]
  138. Saunders WS, Koshland D, Eshel D, Gibbons IR, Hoyt MA. 138.  1995. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128:617–24 [Google Scholar]
  139. Schmidt JC, Arthanari H, Boeszoermenyi A, Dashkevich NM, Wilson-Kubalek EM. 139.  et al. 2012. The kinetochore-bound Ska1 complex tracks depolymerizing microtubules and binds to curved protofilaments. Dev. Cell 23:968–80 [Google Scholar]
  140. Scott KC, Sullivan BA. 140.  2014. Neocentromeres: a place for everything and everything in its place. Trends Genet 30:66–74 [Google Scholar]
  141. Shang WH, Hori T, Martins NM, Toyoda A, Misu S. 141.  et al. 2013. Chromosome engineering allows the efficient isolation of vertebrate neocentromeres. Dev. Cell 24:635–48 [Google Scholar]
  142. Stephens AD, Haase J, Vicci L, Taylor RM 2nd, Bloom K. 142.  2011. Cohesin, condensin, and the intramolecular centromere loop together generate the mitotic chromatin spring. J. Cell Biol. 193:1167–80 [Google Scholar]
  143. Stephens AD, Quammen CW, Chang B, Haase J, Taylor RM 2nd, Bloom K. 143.  2013. The spatial segregation of pericentric cohesin and condensin in the mitotic spindle. Mol. Biol. Cell 24:3909–19 [Google Scholar]
  144. Stimpson KM, Song IY, Jauch A, Holtgreve-Grez H, Hayden KE. 144.  et al. 2010. Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLOS Genet. 6:1–19 [Google Scholar]
  145. Stoler S, Keith KC, Curnick KE, Fitzgerald-Hayes M. 145.  1995. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9:573–86 [Google Scholar]
  146. Straight AF, Belmont AS, Robinett CC, Murray AW. 146.  1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6:1599–608 [Google Scholar]
  147. Sullivan BA. 147.  2009. The Centromere New York: Springer509
  148. Sullivan NL, Marquis KA, Rudner DZ. 148.  2009. Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137:697–707 [Google Scholar]
  149. Sun M, Kawamura R, Marko JF. 149.  2011. Micromechanics of human mitotic chromosomes. Phys. Biol. 8:015003 [Google Scholar]
  150. Takeuchi K, Fukagawa T. 150.  2012. Molecular architecture of vertebrate kinetochores. Exp. Cell Res. 318:1367–74 [Google Scholar]
  151. Tanaka T, Cosma MP, Wirth K, Nasmyth K. 151.  1999. Identification of cohesin association sites at centromeres and along chromosome arms. Cell 98:847–58 [Google Scholar]
  152. Tanaka T, Fuchs J, Loidl J, Nasmyth K. 152.  2000. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2:492–99 [Google Scholar]
  153. Taylor EW. 153.  1965. Brownian and saltatory movements of cytoplasmic granules and the movement of anaphase chromosomes. Proc. Int. Congr. Rheol. Symp. Biorheol. 4th, Providence, RI175–91 New York: Interscience [Google Scholar]
  154. Thakur J, Sanyal K. 154.  2013. Efficient neocentromere formation is suppressed by gene conversion to maintain centromere function at native physical chromosomal loci in Candida albicans. Genome Res. 23:638–52 [Google Scholar]
  155. Topp CN, Okagaki RJ, Melo JR, Kynast RG, Phillips RL, Dawe RK. 155.  2009. Identification of a maize neocentromere in an oat-maize addition line. Cytogenet. Genome Res. 124:228–38 [Google Scholar]
  156. Underhill PT, Doyle PS. 156.  2004. On the coarse-graining of polymers into bead-spring chains. J. Non-Newton. Fluid Mech. 122:3–31 [Google Scholar]
  157. Van der Maarel JR. 157.  2008. Introduction to Biopolymer Physics Hackensack, NJ: World Sci. Publ246
  158. Varma D, Salmon ED. 158.  2012. The KMN protein network: chief conductors of the kinetochore orchestra. J. Cell Sci. 125:5927–36 [Google Scholar]
  159. Varma D, Wan X, Cheerambathur D, Gassmann R, Suzuki A. 159.  et al. 2013. Spindle assembly checkpoint proteins are positioned close to core microtubule attachment sites at kinetochores. J. Cell Biol. 202:735–46 [Google Scholar]
  160. Venkei Z, Przewloka MR, Ladak Y, Albadri S, Sossick A. 160.  et al. 2012. Spatiotemporal dynamics of Spc105 regulates the assembly of the Drosophila kinetochore. Open Biol. 2:110032 [Google Scholar]
  161. Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D. 161.  et al. 2004. Recurrent sites for new centromere seeding. Genome Res. 14:1696–703 [Google Scholar]
  162. Verdaasdonk JS, Vasquez PA, Barry RM, Barry T, Goodwin S. 162.  et al. 2013. Centromere tethering confines chromosome domains. Mol. Cell 52:819–31 [Google Scholar]
  163. Verma R, Crocker JC, Lubensky TC, Yodh AG. 163.  1998. Entropic colloidal interactions in concentrated DNA solutions. Phys. Rev. Lett. 81:4004–7 [Google Scholar]
  164. Waigh TA. 164.  2007. Applied Biophysics: A Molecular Approach for Physical Scientists West Sussex, UK: Wiley421
  165. Waizenegger IC, Hauf S, Meinke A, Peters JM. 165.  2000. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103:399–410 [Google Scholar]
  166. Wang X, Tang OW, Riley EP, Rudner DZ. 166.  2014. The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr. Biol. 24:287–92 [Google Scholar]
  167. Watrin E, Schleiffer A, Tanaka K, Eisenhaber F, Nasmyth K, Peters JM. 167.  2006. Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr. Biol. 16:863–74 [Google Scholar]
  168. Weber SA, Gerton JL, Polancic JE, DeRisi JL, Koshland D, Megee PC. 168.  2004. The kinetochore is an enhancer of pericentric cohesin binding. PLOS Biol. 2:E260 [Google Scholar]
  169. Weber SC, Spakowitz AJ, Theriot JA. 169.  2010. Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104:238102 [Google Scholar]
  170. Weber SC, Spakowitz AJ, Theriot JA. 170.  2012. Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc. Natl. Acad. Sci. USA 109:7338–43 [Google Scholar]
  171. Weber SC, Theriot JA, Spakowitz AJ. 171.  2010. Subdiffusive motion of a polymer composed of subdiffusive monomers. Phys. Rev. E 82:011913 [Google Scholar]
  172. Welburn JP, Cheeseman IM. 172.  2008. Toward a molecular structure of the eukaryotic kinetochore. Dev. Cell 15:645–55 [Google Scholar]
  173. Welburn JP, Grishchuk EL, Backer CB, Wilson-Kubalek EM, Yates JR 3rd, Cheeseman IM. 173.  2009. The human kinetochore Ska1 complex facilitates microtubule depolymerization-coupled motility. Dev. Cell 16:374–85 [Google Scholar]
  174. Westhorpe FG, Straight AF. 174.  2013. Functions of the centromere and kinetochore in chromosome segregation. Curr. Opin. Cell Biol. 25:334–40 [Google Scholar]
  175. Yeh E, Haase J, Paliulis LV, Joglekar A, Bond L. 175.  et al. 2008. Pericentric chromatin is organized into an intramolecular loop in mitosis. Curr. Biol. 18:81–90 [Google Scholar]
  176. Yeh E, Skibbens RV, Cheng JW, Salmon ED, Bloom K. 176.  1995. Spindle dynamics and cell cycle regulation of dynein in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 130:687–700 [Google Scholar]
  177. Zhu X, Kundukad B, van der Maarel JR. 177.  2008. Viscoelasticity of entangled λ-phage DNA solutions. J. Chem. Phys. 129:185103 [Google Scholar]
  178. Zimm BH. 178.  1956. Dynamics of polymer molecules in dilute solution: viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 24:269–78 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092033
Loading
/content/journals/10.1146/annurev-genet-120213-092033
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error