1932

Abstract

Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092323
2014-11-23
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092323.html?itemId=/content/journals/10.1146/annurev-genet-120213-092323&mimeType=html&fmt=ahah

Literature Cited

  1. Allis CD, Jenuwein T, Reinberg D. 1.  2007. Epigenetics Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press502
  2. Almada AE, Wu X, Kriz AJ, Burge CB, Sharp PA. 2.  2013. Promoter directionality is controlled by U1 snRNP and polyadenylation signals. Nature 499:360–63 [Google Scholar]
  3. Amrein H, Axel R. 3.  1997. Genes expressed in neurons of adult male Drosophila. Cell 88:459–69 [Google Scholar]
  4. Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, Bornholdt J. 4.  et al. 2014. An atlas of active enhancers across human cell types and tissues. Nature 507:455–61 [Google Scholar]
  5. Batish M, Raj A, Tyagi S. 5.  2011. Single molecule imaging of RNA in situ. Methods Mol. Biol. 714:3–13 [Google Scholar]
  6. Bender W. 6.  2008. MicroRNAs in the Drosophila bithorax complex. Genes Dev. 22:14–19 [Google Scholar]
  7. Berezney R, Coffey DS. 7.  1974. Identification of a nuclear protein matrix. Biochem. Biophys. Res. Commun. 60:1410–17 [Google Scholar]
  8. Bernstein E, Duncan EM, Masui O, Gil J, Heard E, Allis CD. 8.  2006. Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol. Cell. Biol. 26:2560–69 [Google Scholar]
  9. Berretta J, Pinskaya M, Morillon A. 9.  2008. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev. 22:615–26 [Google Scholar]
  10. Bertani S, Sauer S, Bolotin E, Sauer F. 10.  2011. The noncoding RNA Mistral activates Hoxa6 and Hoxa7 expression and stem cell differentiation by recruiting MLL1 to chromatin. Mol. Cell 43:1040–46 [Google Scholar]
  11. Bonasio R, Lecona E, Narendra V, Voigt P, Parisi F, Kluger Y, Reinberg D. 11.  2014. Interactions with RNA direct SCML2 to chromatin where it represses PRC1 target genes. eLife 3:e02637 [Google Scholar]
  12. Brockdorff N. 12.  2013. Noncoding RNA and polycomb recruitment. RNA 19:429–42 [Google Scholar]
  13. Bumgarner SL, Dowell RD, Grisafi P, Gifford DK, Fink GR. 13.  2009. Toggle involving cis-interfering noncoding RNAs controls variegated gene expression in yeast. Proc. Natl. Acad. Sci. USA 106:18321–26 [Google Scholar]
  14. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B. 14.  et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–27 [Google Scholar]
  15. Cairns BR. 15.  2009. The logic of chromatin architecture and remodelling at promoters. Nature 461:193–98 [Google Scholar]
  16. Camblong J, Beyrouthy N, Guffanti E, Schlaepfer G, Steinmetz LM, Stutz F. 16.  2009. Trans-acting antisense RNAs mediate transcriptional gene cosuppression in S. cerevisiae. Genes Dev. 23:1534–45 [Google Scholar]
  17. Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. 17.  2007. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131:706–17 [Google Scholar]
  18. Castel SE, Martienssen RA. 18.  2013. RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14:100–12 [Google Scholar]
  19. Casu F, Duggan BM, Hennig M. 19.  2013. The arginine-rich RNA-binding motif of HIV-1 Rev is intrinsically disordered and folds upon RRE binding. Biophys. J. 105:1004–17 [Google Scholar]
  20. Cech TR. 20.  2012. The RNA worlds in context. Cold Spring Harb. Perspect. Biol. 4:a006742 [Google Scholar]
  21. Cech TR, Steitz JA. 21.  2014. The noncoding RNA revolution: trashing old rules to forge new ones. Cell 157:77–94 [Google Scholar]
  22. Cerase A, Smeets D, Tang YA, Gdula M, Kraus F. 22.  et al. 2014. Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc. Natl. Acad. Sci. USA 111:2235–40 [Google Scholar]
  23. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. 23.  2011. Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. Mol. Cell 44:667–78 [Google Scholar]
  24. Clemson CM, McNeil JA, Willard HF, Lawrence JB. 24.  1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132:259–75 [Google Scholar]
  25. Cléry A, Blatter M, Allain FH. 25.  2008. RNA recognition motifs: boring? Not quite. Curr. Opin. Struct. Biol. 18:290–98 [Google Scholar]
  26. Cong L, Ran FA, Cox D, Lin S, Barretto R. 26.  et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–23 [Google Scholar]
  27. Conrad T, Akhtar A. 27.  2011. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat. Rev. Genet. 13:123–34 [Google Scholar]
  28. Cordero P, Kladwang W, VanLang CC, Das R. 28.  2012. Quantitative dimethyl sulfate mapping for automated RNA secondary structure inference. Biochemistry 51:7037–39 [Google Scholar]
  29. Core LJ, Waterfall JJ, Lis JT. 29.  2008. Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–48 [Google Scholar]
  30. Crick FH. 30.  1968. The origin of the genetic code. J. Mol. Biol. 38:367–79 [Google Scholar]
  31. Daugherty MD, D'Orso I, Frankel AD. 31.  2008. A solution to limited genomic capacity: using adaptable binding surfaces to assemble the functional HIV Rev oligomer on RNA. Mol. Cell 31:824–34 [Google Scholar]
  32. Daugherty MD, Liu B, Frankel AD. 32.  2010. Structural basis for cooperative RNA binding and export complex assembly by HIV Rev. Nat. Struct. Mol. Biol. 17:1337–42 [Google Scholar]
  33. David L, Huber W, Granovskaia M, Toedling J, Palm CJ. 33.  et al. 2006. A high-resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. USA 103:5320–25 [Google Scholar]
  34. Davidovich C, Zheng L, Goodrich KJ, Cech TR. 34.  2013. Promiscuous RNA binding by Polycomb repressive complex 2. Nat. Struct. Mol. Biol. 20:1250–57 [Google Scholar]
  35. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S. 35.  et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–89 [Google Scholar]
  36. De Santa F, Barozzi I, Mietton F, Ghisletti S, Polletti S. 36.  et al. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLOS Biol. 8:e1000384 [Google Scholar]
  37. Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA. 37.  et al. 2013. DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–76 [Google Scholar]
  38. Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T. 38.  et al. 2012. Landscape of transcription in human cells. Nature 489:101–8 [Google Scholar]
  39. Eddy SR. 39.  2002. Computational genomics of noncoding RNA genes. Cell 109:137–40 [Google Scholar]
  40. 40. ENCODE Proj. Consort 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816 [Google Scholar]
  41. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K. 41.  et al. 2013. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science 341:1237973 [Google Scholar]
  42. Ferguson-Smith AC. 42.  2011. Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12:565–75 [Google Scholar]
  43. Fischle W, Wang Y, Jacobs S, Kim Y, Allis C, Khorasanizadeh S. 43.  2003. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. Genes Dev. 17:1870–81 [Google Scholar]
  44. Friedersdorf MB, Keene JD. 44.  2014. Advancing the functional utility of PAR-CLIP by quantifying background binding to mRNAs and lncRNAs. Genome Biol. 15:R2 [Google Scholar]
  45. Gao Z, Zhang J, Bonasio R, Strino F, Sawai A. 45.  et al. 2012. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes. Mol. Cell 45:344–56 [Google Scholar]
  46. Gilbert W. 46.  1986. Origin of life: the RNA world. Nature 319:618 [Google Scholar]
  47. Gummalla M, Maeda RK, Castro Alvarez JJ, Gyurkovics H, Singari S. 47.  et al. 2012. abd-A regulation by the iab-8 noncoding RNA. PLOS Genet. 8:e1002720 [Google Scholar]
  48. Guttman M, Amit I, Garber M, French C, Lin MF. 48.  et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–27 [Google Scholar]
  49. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK. 49.  et al. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 477:295–300 [Google Scholar]
  50. Guttman M, Rinn JL. 50.  2012. Modular regulatory principles of large non-coding RNAs. Nature 482:339–46 [Google Scholar]
  51. Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. 51.  2013. Ribosome profiling provides evidence that large noncoding RNAs do not encode proteins. Cell 154:240–51 [Google Scholar]
  52. Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J. 52.  et al. 2014. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat. Struct. Mol. Biol. 21:198–206 [Google Scholar]
  53. Haerty W, Ponting CP. 53.  2013. Mutations within lncRNAs are effectively selected against in fruitfly but not in human. Genome Biol. 14:R49 [Google Scholar]
  54. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. 54.  2013. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 23:1210–23 [Google Scholar]
  55. Hannon GJ. 55.  2002. RNA interference. Nature 418:244–51 [Google Scholar]
  56. Hanyu-Nakamura K, Sonobe-Nojima H, Tanigawa A, Lasko P, Nakamura A. 56.  2008. Drosophila Pgc protein inhibits P-TEFb recruitment to chromatin in primordial germ cells. Nature 451:730–33 [Google Scholar]
  57. Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S. 57.  2010. The matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev. Cell 19:469–76 [Google Scholar]
  58. Heo JB, Sung S. 58.  2011. Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79 [Google Scholar]
  59. Hirota K, Miyoshi T, Kugou K, Hoffman CS, Shibata T, Ohta K. 59.  2008. Stepwise chromatin remodelling by a cascade of transcription initiation of non-coding RNAs. Nature 456:130–34 [Google Scholar]
  60. Hongay CF, Grisafi PL, Galitski T, Fink GR. 60.  2006. Antisense transcription controls cell fate in Saccharomyces cerevisiae. Cell 127:735–45 [Google Scholar]
  61. Houseley J, Rubbi L, Grunstein M, Tollervey D, Vogelauer M. 61.  2008. A ncRNA modulates histone modification and mRNA induction in the yeast GAL gene cluster. Mol. Cell 32:685–95 [Google Scholar]
  62. Huang B, Bates M, Zhuang X. 62.  2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016 [Google Scholar]
  63. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ. 63.  et al. 2010. A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142:409–19 [Google Scholar]
  64. Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. 64.  2007. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39 [Google Scholar]
  65. Ilik IA, Quinn JJ, Georgiev P, Tavares-Cadete F, Maticzka D. 65.  et al. 2013. Tandem stem-loops in roX RNAs act together to mediate X chromosome dosage compensation in Drosophila. Mol. Cell 51:156–73 [Google Scholar]
  66. Ingolia NT, Lareau LF, Weissman JS. 66.  2011. Ribosome profiling of mouse embryonic stem cells reveals the complexity and dynamics of mammalian proteomes. Cell 147:789–802 [Google Scholar]
  67. Jacquier A. 67.  2009. The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 10:833–44 [Google Scholar]
  68. Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA. 68.  et al. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–35 [Google Scholar]
  69. Kaneko S, Bonasio R, Saldana-Meyer R, Yoshida T, Son J. 69.  et al. 2014. Interactions between JARID2 and noncoding RNAs regulate PRC2 recruitment to chromatin. Mol. Cell 53:290–300 [Google Scholar]
  70. Kaneko S, Li G, Son J, Xu CF, Margueron R. 70.  et al. 2010. Phosphorylation of the PRC2 component Ezh2 is cell cycle–regulated and up-regulates its binding to ncRNA. Genes Dev. 24:2615–20 [Google Scholar]
  71. Kaneko S, Son J, Shen SS, Reinberg D, Bonasio R. 71.  2013. PRC2 binds active promoters and contacts nascent RNAs in embryonic stem cells. Nat. Struct. Mol. Biol. 20:1258–64 [Google Scholar]
  72. Kanhere A, Viiri K, Araujo CC, Rasaiyaah J, Bouwman RD. 72.  et al. 2010. Short RNAs are transcribed from repressed polycomb target genes and interact with polycomb repressive complex-2. Mol. Cell 38:675–88 [Google Scholar]
  73. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R. 73.  et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–88 [Google Scholar]
  74. Khalil AM, Guttman M, Huarte M, Garber M, Raj A. 74.  et al. 2009. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc. Natl. Acad. Sci. USA 106:11667–72 [Google Scholar]
  75. Kim T, Xu Z, Clauder-Munster S, Steinmetz LM, Buratowski S. 75.  2012. Set3 HDAC mediates effects of overlapping noncoding transcription on gene induction kinetics. Cell 150:1158–69 [Google Scholar]
  76. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM. 76.  et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:182–87 [Google Scholar]
  77. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA. 77.  et al. 2013. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:570–83 [Google Scholar]
  78. Kohler C, Wolff P, Spillane C. 78.  2012. Epigenetic mechanisms underlying genomic imprinting in plants. Annu. Rev. Plant Biol. 63:331–52 [Google Scholar]
  79. Konig J, Zarnack K, Rot G, Curk T, Kayikci M. 79.  et al. 2010. iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution. Nat. Struct. Mol. Biol. 17:909–15 [Google Scholar]
  80. Kowalczyk MS, Higgs DR, Gingeras TR. 80.  2012. Molecular biology: RNA discrimination. Nature 482:310–11 [Google Scholar]
  81. Krajewski WA, Nakamura T, Mazo A, Canaani E. 81.  2005. A motif within SET-domain proteins binds single-stranded nucleic acids and transcribed and supercoiled DNAs and can interfere with assembly of nucleosomes. Mol. Cell. Biol. 25:1891–99 [Google Scholar]
  82. Kruger K, Grabowski PJ, Zaug AJ, Sands J, Gottschling DE, Cech TR. 82.  1982. Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–57 [Google Scholar]
  83. Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A. 83.  et al. 2012. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLOS Genet. 8:e1002841 [Google Scholar]
  84. Kwon S. 84.  2013. Single-molecule fluorescence in situ hybridization: quantitative imaging of single RNA molecules. BMB Rep. 46:65–72 [Google Scholar]
  85. Lahmy S, Bies-Etheve N, Lagrange T. 85.  2010. Plant-specific multisubunit RNA polymerase in gene silencing. Epigenetics 5:4–8 [Google Scholar]
  86. Lai F, Orom UA, Cesaroni M, Beringer M, Taatjes DJ. 86.  et al. 2013. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494:497–501 [Google Scholar]
  87. Lam MT, Cho H, Lesch HP, Gosselin D, Heinz S. 87.  et al. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498:511–15 [Google Scholar]
  88. Latos PA, Pauler FM, Koerner MV, Senergin HB, Hudson QJ. 88.  et al. 2012. Airn transcriptional overlap, but not its lncRNA products, induces imprinted Igf2r silencing. Science 338:1469–72 [Google Scholar]
  89. Lee JT. 89.  2012. Epigenetic regulation by long noncoding RNAs. Science 338:1435–39 [Google Scholar]
  90. Lee JT, Bartolomei MS. 90.  2013. X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–23 [Google Scholar]
  91. Lee MP, DeBaun MR, Mitsuya K, Galonek HL, Brandenburg S. 90a.  et al. 1999. Loss of imprinting of a paternally expressed transcript, with antisense orientation to KVLQT1, occurs frequently in Beckwith-Wiedemann syndrome and is independent of insulin-like growth factor II imprinting.. Proc. Natl. Acad. Sci. USA 96:5203–8 [Google Scholar]
  92. Lee NN, Chalamcharla VR, Reyes-Turcu F, Mehta S, Zofall M. 91.  et al. 2013. Mtr4-like protein coordinates nuclear RNA processing for heterochromatin assembly and for telomere maintenance. Cell 155:1061–74 [Google Scholar]
  93. Lei EP, Corces VG. 92.  2006. RNA interference machinery influences the nuclear organization of a chromatin insulator. Nat. Genet. 38:936–41 [Google Scholar]
  94. Lesterlin C, Ball G, Schermelleh L, Sherratt DJ. 93.  2014. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 506:249–53 [Google Scholar]
  95. Levine SS, Weiss A, Erdjument-Bromage H, Shao Z, Tempst P, Kingston RE. 94.  2002. The core of the polycomb repressive complex is compositionally and functionally conserved in flies and humans. Mol. Cell. Biol. 22:6070–78 [Google Scholar]
  96. Lewis EB. 95.  2003. C.B. Bridges' repeat hypothesis and the nature of the gene. Genetics 164:427–31 [Google Scholar]
  97. Li W, Notani D, Ma Q, Tanasa B, Nunez E. 96.  et al. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498:516–20 [Google Scholar]
  98. Lipshitz HD, Peattie DA, Hogness DS. 97.  1987. Novel transcripts from the Ultrabithorax domain of the bithorax complex. Genes Dev. 1:307–22 [Google Scholar]
  99. Liu J, Jung C, Xu J, Wang H, Deng S. 98.  et al. 2012. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–45 [Google Scholar]
  100. Luteijn MJ, Ketting RF. 99.  2013. PIWI-interacting RNAs: from generation to transgenerational epigenetics. Nat. Rev. Genet. 14:523–34 [Google Scholar]
  101. Maenner S, Muller M, Frohlich J, Langer D, Becker PB. 100.  2013. ATP-dependent roX RNA remodeling by the helicase maleless enables specific association of MSL proteins. Mol. Cell 51:174–84 [Google Scholar]
  102. Maison C, Bailly D, Peters AHFM, Quivy J-P, Roche D. 101.  et al. 2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30:329–34 [Google Scholar]
  103. Mao YS, Sunwoo H, Zhang B, Spector DL. 102.  2011. Direct visualization of the co-transcriptional assembly of a nuclear body by noncoding RNAs. Nat. Cell Biol. 13:95–101 [Google Scholar]
  104. Mardis ER. 103.  2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6:287–303 [Google Scholar]
  105. Margueron R, Reinberg D. 104.  2011. The Polycomb complex PRC2 and its mark in life. Nature 469:343–49 [Google Scholar]
  106. Martens JA, Laprade L, Winston F. 105.  2004. Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–77 [Google Scholar]
  107. Martens JA, Wu P-YJ, Winston F. 106.  2005. Regulation of an intergenic transcript controls adjacent gene transcription in Saccharomyces cerevisiae. Genes Dev. 19:2695–704 [Google Scholar]
  108. Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A. 107.  2007. Repression of the human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445:666–70 [Google Scholar]
  109. Martinho RG, Kunwar PS, Casanova J, Lehmann R. 108.  2004. A noncoding RNA is required for the repression of RNApolII-dependent transcription in primordial germ cells. Curr. Biol. 14:159–65 [Google Scholar]
  110. Mattick JS. 109.  2009. The genetic signatures of noncoding RNAs. PLOS Genet. 5:e1000459 [Google Scholar]
  111. Meller VH, Rattner BP. 110.  2002. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21:1084–91 [Google Scholar]
  112. Meller VH, Wu KH, Roman G, Kuroda MI, Davis RL. 111.  1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–57 [Google Scholar]
  113. Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. 112.  2005. RNA structure analysis at single nucleotide resolution by selective 2′-hydroxyl acylation and primer extension (SHAPE). J. Am. Chem. Soc. 127:4223–31 [Google Scholar]
  114. Modarresi F, Faghihi MA, Lopez-Toledano MA, Fatemi RP, Magistri M. 112.  et al. 2012. Inhibition of natural antisense transcripts in vivo results in gene-specific transcriptional upregulation. Nat. Biotechnol. 30:453–59 [Google Scholar]
  115. Mohammad F, Mondal T, Guseva N, Pandey GK, Kanduri C. 113.  2010. Kcnq1ot1 noncoding RNA mediates transcriptional gene silencing by interacting with Dnmt1. Development 137:2493–99 [Google Scholar]
  116. Morey C, Da Silva NR, Perry P, Bickmore WA. 114.  2007. Nuclear reorganisation and chromatin decondensation are conserved, but distinct, mechanisms linked to Hox gene activation. Development 134:909–19 [Google Scholar]
  117. Morey L, Pascual G, Cozzuto L, Roma G, Wutz A. 115.  et al. 2012. Nonoverlapping functions of the Polycomb group Cbx family of proteins in embryonic stem cells. Cell Stem Cell 10:47–62 [Google Scholar]
  118. Moshkovich N, Nisha P, Boyle PJ, Thompson BA, Dale RK, Lei EP. 116.  2011. RNAi-independent role for Argonaute2 in CTCF/CP190 chromatin insulator function. Genes Dev. 25:1686–701 [Google Scholar]
  119. Muchardt C, Guilleme M, Seeler J-S, Trouche D, Dejean A, Yaniv M. 117.  2002. Coordinated methyl and RNA binding is required for heterochromatin localization of mammalian HP1α. EMBO Rep. 3:975–81 [Google Scholar]
  120. Nagano T, Mitchell JA, Sanz LA, Pauler FM, Ferguson-Smith AC. 118.  et al. 2008. The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science 322:1717–20 [Google Scholar]
  121. Natoli G, Andrau JC. 119.  2012. Noncoding transcription at enhancers: general principles and functional models. Annu. Rev. Genet. 46:1–19 [Google Scholar]
  122. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T. 120.  et al. 2014. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:635–40 [Google Scholar]
  123. Novikova IV, Hennelly SP, Sanbonmatsu KY. 121.  2012. Structural architecture of the human long non-coding RNA, steroid receptor RNA activator. Nucleic Acids Res. 40:5034–51 [Google Scholar]
  124. Ntini E, Jarvelin AI, Bornholdt J, Chen Y, Boyd M. 122.  et al. 2013. Polyadenylation site-induced decay of upstream transcripts enforces promoter directionality. Nat. Struct. Mol. Biol. 20:923–28 [Google Scholar]
  125. Orom UA, Derrien T, Beringer M, Gumireddy K, Gardini A. 123.  et al. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58 [Google Scholar]
  126. Pandey RR, Mondal T, Mohammad F, Enroth S, Redrup L. 124.  et al. 2008. Kcnq1ot1 antisense noncoding RNA mediates lineage-specific transcriptional silencing through chromatin-level regulation. Mol. Cell 32:232–46 [Google Scholar]
  127. Park SW, Kang Y, Sypula JG, Choi J, Oh H, Park Y. 125.  2007. An evolutionarily conserved domain of roX2 RNA is sufficient for induction of H4-Lys16 acetylation on the Drosophila X chromosome. Genetics 177:1429–37 [Google Scholar]
  128. Pauli A, Rinn JL, Schier AF. 126.  2011. Non-coding RNAs as regulators of embryogenesis. Nat. Rev. Genet. 12:136–49 [Google Scholar]
  129. Pease B, Borges AC, Bender W. 127.  2013. Noncoding RNAs of the Ultrabithorax domain of the Drosophila bithorax complex. Genetics 195:1253–64 [Google Scholar]
  130. Petruk S, Sedkov Y, Riley KM, Hodgson J, Schweisguth F. 128.  et al. 2006. Transcription of bxd noncoding RNAs promoted by trithorax represses Ubx in cis by transcriptional interference. Cell 127:1209–21 [Google Scholar]
  131. Phan AT, Kuryavyi V, Darnell JC, Serganov A, Majumdar A. 129.  et al. 2011. Structure-function studies of FMRP RGG peptide recognition of an RNA duplex-quadruplex junction. Nat. Struct. Mol. Biol. 18:796–804 [Google Scholar]
  132. Phillips JE, Corces VG. 130.  2009. CTCF: master weaver of the genome. Cell 137:1194–211 [Google Scholar]
  133. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR. 131.  et al. 2013. Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153:1281–95 [Google Scholar]
  134. Ponjavic J, Ponting CP, Lunter G. 132.  2007. Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res. 17:556–65 [Google Scholar]
  135. Razin SV, Iarovaia OV, Vassetzky YS. 133.  2014. A requiem to the nuclear matrix: from a controversial concept to 3D organization of the nucleus. Chromosoma 123217–24
  136. Regulski EE, Breaker RR. 134.  2008. In-line probing analysis of riboswitches. Methods Mol. Biol. 419:53–67 [Google Scholar]
  137. Reik W, Lewis A. 135.  2005. Co-evolution of X-chromosome inactivation and imprinting in mammals. Nat. Rev. Genet. 6:403–10 [Google Scholar]
  138. Rinn JL, Chang HY. 136.  2012. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81:145–66 [Google Scholar]
  139. Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X. 137.  et al. 2007. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129:1311–23 [Google Scholar]
  140. Rouskin S, Zubradt M, Washietl S, Kellis M, Weissman JS. 138.  2014. Genome-wide probing of RNA structure reveals active unfolding of mRNA structures in vivo. Nature 505:701–5 [Google Scholar]
  141. Roux KJ, Kim DI, Raida M, Burke B. 139.  2012. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196:801–10 [Google Scholar]
  142. Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N. 140.  et al. 2010. Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–97 [Google Scholar]
  143. Saldana-Meyer R, Gonzalez-Buendia E, Guerrero G, Narendra V, Bonasio R. 141.  et al. 2014. CTCF regulates the human p53 gene through direct interaction with its natural antisense transcript, Wrap53. Genes Dev. 28:723–34 [Google Scholar]
  144. Sanchez-Elsner T, Gou D, Kremmer E, Sauer F. 142.  2006. Noncoding RNAs of trithorax response elements recruit Drosophila Ash1 to Ultrabithorax. Science 311:1118–23 [Google Scholar]
  145. Sánchez-Herrero E, Akam M. 143.  1989. Spatially ordered transcription of regulatory DNA in the bithorax complex of Drosophila. Development 107:321–29 [Google Scholar]
  146. Sauvageau M, Goff LA, Lodato S, Bonev B, Groff AF. 144.  et al. 2013. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2:e01749 [Google Scholar]
  147. Schmitz KM, Mayer C, Postepska A, Grummt I. 145.  2010. Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev. 24:2264–69 [Google Scholar]
  148. Schulz D, Schwalb B, Kiesel A, Baejen C, Torkler P. 146.  et al. 2013. Transcriptome surveillance by selective termination of noncoding RNA synthesis. Cell 155:1075–87 [Google Scholar]
  149. Seila AC, Calabrese JM, Levine SS, Yeo GW, Rahl PB. 147.  et al. 2008. Divergent transcription from active promoters. Science 322:1849–51 [Google Scholar]
  150. Shah S, Wittmann S, Kilchert C, Vasiljeva L. 148.  2014. lncRNA recruits RNAi and the exosome to dynamically regulate pho1 expression in response to phosphate levels in fission yeast. Genes Dev. 28:231–44 [Google Scholar]
  151. Shao Z, Raible F, Mollaaghababa R, Guyon JR, Wu CT. 149.  et al. 1999. Stabilization of chromatin structure by PRC1, a Polycomb complex. Cell 98:37–46 [Google Scholar]
  152. Sigova AA, Mullen AC, Molinie B, Gupta S, Orlando DA. 150.  et al. 2013. Divergent transcription of long noncoding RNA/mRNA gene pairs in embryonic stem cells. Proc. Natl. Acad. Sci. USA 110:2876–81 [Google Scholar]
  153. Simon JA, Kingston RE. 151.  2009. Mechanisms of polycomb gene silencing: knowns and unknowns. Nat. Rev. Mol. Cell Biol. 10:697–708 [Google Scholar]
  154. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M. 152.  et al. 2013. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature 504:465–69 [Google Scholar]
  155. Sleutels F, Zwart R, Barlow DP. 153.  2002. The non-coding Air RNA is required for silencing autosomal imprinted genes. Nature 415:810–13 [Google Scholar]
  156. Song J, Angel A, Howard M, Dean C. 154.  2012. Vernalization: a cold-induced epigenetic switch. J. Cell Sci. 125:3723–31 [Google Scholar]
  157. St. Johnston D. 155.  2002. The art and design of genetic screens: Drosophila melanogaster. Nat. Rev. Genet. 3:176–88 [Google Scholar]
  158. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. 156.  2014. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507:62–67 [Google Scholar]
  159. Struhl K. 157.  2007. Transcriptional noise and the fidelity of initiation by RNA polymerase II. Nat. Struct. Mol. Biol. 14:103–5 [Google Scholar]
  160. Sun L, Goff LA, Trapnell C, Alexander R, Lo KA. 158.  et al. 2013. Long noncoding RNAs regulate adipogenesis. Proc. Natl. Acad. Sci. USA 110:3387–92 [Google Scholar]
  161. Sun S, Del Rosario BC, Szanto A, Ogawa Y, Jeon Y, Lee JT. 159.  2013. Jpx RNA activates Xist by evicting CTCF. Cell 153:1537–51 [Google Scholar]
  162. Swiezewski S, Liu F, Magusin A, Dean C. 160.  2009. Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802 [Google Scholar]
  163. Tijsterman M, Ketting RF, Plasterk RH. 161.  2002. The genetics of RNA silencing. Annu. Rev. Genet. 36:489–519 [Google Scholar]
  164. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK. 162.  et al. 2010. Long noncoding RNA as modular scaffold of histone modification complexes. Science 329:689–93 [Google Scholar]
  165. Tupy JL, Bailey AM, Dailey G, Evans-Holm M, Siebel CW. 163.  et al. 2005. Identification of putative noncoding polyadenylated transcripts in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 102:5495–500 [Google Scholar]
  166. Uhler JP, Hertel C, Svejstrup JQ. 164.  2007. A role for noncoding transcription in activation of the yeast PHO5 gene. Proc. Natl. Acad. Sci. USA 104:8011–16 [Google Scholar]
  167. Ulitsky I, Bartel DP. 165.  2013. lincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46 [Google Scholar]
  168. Ulitsky I, Shkumatava A, Jan CH, Sive H, Bartel DP. 166.  2011. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147:1537–50 [Google Scholar]
  169. van Bakel H, Nislow C, Blencowe BJ, Hughes TR. 167.  2010. Most “dark matter” transcripts are associated with known genes. PLOS Biol. 8:e1000371 [Google Scholar]
  170. van Dijk EL, Chen CL, d'Aubenton-Carafa Y, Gourvennec S, Kwapisz M. 168.  et al. 2011. XUTs are a class of Xrn1-sensitive antisense regulatory non-coding RNA in yeast. Nature 475:114–17 [Google Scholar]
  171. van Werven FJ, Neuert G, Hendrick N, Lardenois A, Buratowski S. 169.  et al. 2012. Transcription of two long noncoding RNAs mediates mating-type control of gametogenesis in budding yeast. Cell 150:1170–81 [Google Scholar]
  172. Wang H, Chung PJ, Liu J, Jang IC, Kean MJ. 170.  et al. 2014. Genome-wide identification of long noncoding natural antisense transcripts and their responses to light in Arabidopsis. Genome Res. 24:444–53 [Google Scholar]
  173. Wang KC, Chang HY. 171.  2011. Molecular mechanisms of long noncoding RNAs. Mol. Cell 43:904–14 [Google Scholar]
  174. Wang KC, Yang YW, Liu B, Sanyal A, Corces-Zimmerman R. 172.  et al. 2011. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature 472:120–24 [Google Scholar]
  175. Wang X, Arai S, Song X, Reichart D, Du K. 173.  et al. 2008. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription. Nature 454:126–30 [Google Scholar]
  176. Wierzbicki AT, Ream TS, Haag JR, Pikaard CS. 174.  2009. RNA polymerase V transcription guides ARGONAUTE4 to chromatin. Nat. Genet. 41:630–34 [Google Scholar]
  177. Williamson JR. 175.  2000. Induced fit in RNA-protein recognition. Nat. Struct. Biol. 7:834–37 [Google Scholar]
  178. Wimberly BT, Brodersen DE, Clemons WM Jr., Morgan-Warren RJ, Carter AP. 176.  et al. 2000. Structure of the 30S ribosomal subunit. Nature 407:327–39 [Google Scholar]
  179. Wu X, Sharp PA. 177.  2013. Divergent transcription: a driving force for new gene origination?. Cell 155:990–96 [Google Scholar]
  180. Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S. 178.  et al. 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457:1033–37 [Google Scholar]
  181. Yang L, Lin C, Jin C, Yang JC, Tanasa B. 179.  et al. 2013. lncRNA-dependent mechanisms of androgen-receptor-regulated gene activation programs. Nature 500:598–602 [Google Scholar]
  182. Yang L, Lin C, Liu W, Zhang J, Ohgi KA. 180.  et al. 2011. ncRNA- and Pc2 methylation-dependent gene relocation between nuclear structures mediates gene activation programs. Cell 147:773–88 [Google Scholar]
  183. Yang YW, Flynn RA, Chen Y, Qu K, Wan B. 181.  et al. 2014. Essential role of lncRNA binding for WDR5 maintenance of active chromatin and embryonic stem cell pluripotency. eLife 3e02046
  184. Yao H, Brick K, Evrard Y, Xiao T, Camerini-Otero RD, Felsenfeld G. 182.  2010. Mediation of CTCF transcriptional insulation by DEAD-box RNA-binding protein p68 and steroid receptor RNA activator SRA. Genes Dev. 24:2543–55 [Google Scholar]
  185. Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L. 183.  et al. 2010. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol. Cell 38:662–74 [Google Scholar]
  186. Young RS, Marques AC, Tibbit C, Haerty W, Bassett AR. 184.  et al. 2012. Identification and properties of 1,119 candidate lincRNA loci in the Drosophila melanogaster genome. Genome Biol. Evol. 4:427–42 [Google Scholar]
  187. Zamudio JR, Kelly TJ, Sharp PA. 185.  2014. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156:920–34 [Google Scholar]
  188. Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ. 186.  et al. 2010. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol. Cell 40:939–53 [Google Scholar]
  189. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT. 187.  2008. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–56 [Google Scholar]
  190. Zhao R, Bodnar MS, Spector DL. 188.  2009. Nuclear neighborhoods and gene expression. Curr. Opin. Genet. Dev. 19:172–79 [Google Scholar]
  191. Zhu Y, Rowley MJ, Bohmdorfer G, Wierzbicki AT. 189.  2013. A SWI/SNF chromatin-remodeling complex acts in noncoding RNA–mediated transcriptional silencing. Mol. Cell 49:298–309 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092323
Loading
/content/journals/10.1146/annurev-genet-120213-092323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error