1932

Abstract

Bacterial flagellar motility is among the most extensively studied physiological systems in biology, but most research has been restricted to using the highly similar Gram-negative species and . Here, we review the recent advances in the study of flagellar structure and regulation of the distantly related and genetically tractable Gram-positive bacterium . has a thicker layer of peptidoglycan and lacks the outer membrane of the Gram-negative bacteria; thus, not only phylogenetic separation but also differences in fundamental cell architecture contribute to deviations in flagellar structure and regulation. We speculate that a large number of flagella and the absence of a periplasm make a premier organism for the study of the earliest events in flagellar morphogenesis and the type III secretion system. Furthermore, has been instrumental in the study of heterogeneous gene transcription in subpopulations and of flagellar regulation at the translational and functional level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092406
2014-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092406.html?itemId=/content/journals/10.1146/annurev-genet-120213-092406&mimeType=html&fmt=ahah

Literature Cited

  1. Albertini AM, Caramori T, Crabb WD, Scoffone F, Galizzi A. 1.  1991. The flaA locus of Bacillus subtilis is part of a large operon coding for flagellar structures, motility functions, and an ATPase-like polypeptide. J. Bacteriol. 173:113573–79 [Google Scholar]
  2. Allmansberger R. 2.  1997. Temporal regulation of sigD from Bacillus subtilis depends on a minor promoter in front of the gene. J. Bacteriol. 179:206531–35 [Google Scholar]
  3. Amati G, Bisicchia P, Galizzi A. 3.  2004. DegU-P represses expression of the motility fla-che operon in Bacillus subtilis. J. Bacteriol. 186:186003–14 [Google Scholar]
  4. Auvray F, Thomas J, Fraser GM, Hughes C. 4.  2001. Flagellin polymerization control by a cytosolic export chaperone. J. Mol. Biol. 308:221–29 [Google Scholar]
  5. Babitzke P, Romeo T. 5.  2007. CsrB sRNA family: sequestration of RNA-binding regulatory proteins. Curr. Opin. Microbiol. 10:156–63 [Google Scholar]
  6. Bange G, Kummerer N, Engel C, Bozkurt G, Wild K. 6.  et al. 2010. FlhA provides the adaptor for coordinated delivery of late flagella building blocks to the type III secretion system. Proc. Natl. Acad. Sci. USA 107:11295–300 [Google Scholar]
  7. Bange G, Kummerer N, Grudnik P, Lindner R, Petzold G. 7.  et al. 2011. Structural basis for the molecular evolution of SRP-GTPase activation by protein. Nat. Struct. Mol. Biol. 18:121376–80 [Google Scholar]
  8. Bange G, Petzold G, Wild K, Parlitz RO, Sinning I. 8.  2007. The crystal structure of the third signal-recognition GTPase FlhF reveals a homodimer with bound GTP. Proc. Natl. Acad. Sci. USA 104:3413621–25 [Google Scholar]
  9. Barilla D, Caramori T, Galizzi A. 9.  1994. Coupling of flagellin gene transcription to flagellar assembly in Bacillus subtilis. J. Bacteriol. 176:154558–64 [Google Scholar]
  10. Barker CS, Meshcheryakova IV, Kostyukova AS, Samatey FA. 10.  2010. FliO regulation of FliP in the formation of the Salmonella enterica flagellum. PLOS Genet. 6:9e1001143 [Google Scholar]
  11. Berg HC, Anderson RA. 11.  1973. Bacteria swim by rotating their flagellar filaments. Nature 245:380–82 [Google Scholar]
  12. Bertero MG, Gonzales B, Tarricone C, Ceciliani F, Galizzi A. 12.  1999. Overproduction and characterization of the Bacillus subtilis anti-sigma factor FlgM. J. Biol. Chem. 274:12103–7 [Google Scholar]
  13. Blackman SA, Smith TJ, Foster SJ. 13.  1998. The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology 144:73–82 [Google Scholar]
  14. Blair DF. 14.  2003. Flagellar movement driven by proton translocation. FEBS Lett. 545:86–95 [Google Scholar]
  15. Blair KM, Turner L, Winkelman JT, Berg HC, Kearns DB. 15.  2008. A molecular clutch disables flagella in the Bacillus subtilis biofilm. Science 320:1636–38 [Google Scholar]
  16. Boehm A, Kaiser M, Li H, Spangler C, Kasper CA. 16.  et al. 2010. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141:107–16 [Google Scholar]
  17. Boll JM, Hendrixson DR. 17.  2013. A regulatory checkpoint during flagellar biogenesis in Campylobacter jejuni initiates signal transduction to activate transcription of flagellar genes. Mbio 4:5e00432–13 [Google Scholar]
  18. Buescher JM, Margaritis A. 18.  2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Crit. Rev. Biotechnol. 27:1–19 [Google Scholar]
  19. Cairns LS, Marlow VL, Bissett E, Ostrowski A, Stanley-Wall NR. 19.  2013. A mechanical signal transmitted by the flagellum controls signaling in Bacillus subtilis. Mol. Microbiol. 90:16–21 [Google Scholar]
  20. Calvio C, Celandroni F, Ghelardi E, Amati G, Salvetti S. 20.  et al. 2005. Swarming differentiation and swimming motility in Bacillus subtilis are controlled by swrA, a newly identified dicistronic operon. J. Bacteriol. 187:155356–66 [Google Scholar]
  21. Calvio C, Osera C, Amati G, Galizzi A. 21.  2008. Autoregulation of swrAA and motility in Bacillus subtilis. J. Bacteriol. 190:165720–28 [Google Scholar]
  22. Caramori T, Barilla D, Nessi C, Sacchi L, Galizzi A. 22.  1996. Role of FlgM in σD-dependent gene expression in Bacillus subtilis. J. Bacteriol. 178:113113–18 [Google Scholar]
  23. Chai Y, Norman T, Kolter R, Losick R. 23.  2010. An epigenetic switch governing daughter cell separation in Bacillus subtilis. Genes Dev. 24:754–65 [Google Scholar]
  24. Chan J, Guttenplan SB, Kearns DB. 24.  2014. Defects in the flagellar motor increase synthesis of poly-γ-glutamate in Bacillus subtilis. J. Bacteriol. 196:4740–53 [Google Scholar]
  25. Chen R, Guttenplan SB, Blair KM, Kearns DB. 25.  2008. Role of the σD-dependent autolysins in Bacillus subtilis population heterogeneity. J. Bacteriol. 191:5775–84 [Google Scholar]
  26. Chen Y, Chai Y, Guo J, Losick R. 26.  2012. Evidence for cyclic-di-GMP-mediated signaling in Bacillus subtilis. J. Bacteriol. 194:185080–90 [Google Scholar]
  27. Chen Y, Helmann JD. 27.  1995. The Bacillus subtilis flagellar regulatory protein σD: overproduction, domain analysis and DNA-binding properties. J. Mol. Biol. 249:743–53 [Google Scholar]
  28. Chevance FFV, Hughes KT. 28.  2008. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6:6455–65 [Google Scholar]
  29. Chevance FFV, Takahashi N, Karlinsey JE, Gnerer J, Hirano T. 29.  et al. 2007. The mechanism of outer membrane penetration by the eubacterial flagellum and implications for spirochete evolution. Genes Dev. 21:182326–35 [Google Scholar]
  30. Courtney CR, Cozy LM, Kearns DB. 30.  2012. Molecular characterization of the flagellar hook in Bacillus subtilis. J. Bacteriol. 194:4619–29 [Google Scholar]
  31. Cozy LM, Kearns DB. 31.  2010. Gene position in a long operon governs motility development in Bacillus subtilis. Mol. Microbiol. 76:2273–85 [Google Scholar]
  32. Cozy LM, Phillips AM, Calvo RA, Bate AR, Hsueh Y. 32.  et al. 2012. SlrA/SinR/SlrR inhibits motility gene expression upstream of a hypersensitive and hysteretic switch at the level of σD in Bacillus subtilis. Mol. Microbiol. 83:61210–28 [Google Scholar]
  33. Darnton NC, Berg HC. 33.  2007. Force-extension measurements on bacterial flagella: triggering polymorphic transformations. Biophys. J. 92:2230–36 [Google Scholar]
  34. Daughdrill GW, Chadsey MS, Karlinsey JE, Hughes KT, Dahlquist FW. 34.  1997. The C-terminal half of the anti-sigma factor, FlgM, becomes structured when bound to its target, σ28. Nat. Struct. Biol. 4:285–91 [Google Scholar]
  35. Demchick P, Koch AL. 35.  1996. The permeability of the wall fabric of Escherichia coli and Bacillus subtilis. J. Bacteriol. 178:3768–73 [Google Scholar]
  36. Depamphilis ML, Adler J. 36.  1971. Purification of intact flagella from Escherichia coli and Bacillus subtilis. J. Bacteriol. 105:1376–83 [Google Scholar]
  37. Diethmaier C, Pietack N, Gunka K, Wrede C, Lehnik-Habrink M. 37.  et al. 2011. A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. J. Bacteriol. 193:215997–6007 [Google Scholar]
  38. Dimmit K, Simon M. 38.  1971. Purification and thermal stability of intact Bacillus subtilis flagella. J. Bacteriol. 105:1369–75 [Google Scholar]
  39. Emerson SU, Tokuyasu K, Simon MI. 39.  1970. Bacterial flagella: polarity of elongation. Science 169:190–92 [Google Scholar]
  40. Erhardt M, Singer HM, Wee DH, Keener JP, Hughes KT. 40.  2011. An infrequent molecular ruler controls flagellar hook length in Salmonella enterica. EMBO J. 30:142948–61 [Google Scholar]
  41. Estacio W, Anna-Arriola S, Adedipe M, Marquez-Magaña LM. 41.  1998. Dual promoters are responsible for transcription initiation of the fla/che operon in Bacillus subtilis. J. Bacteriol. 180:143548–55 [Google Scholar]
  42. Evans LDB, Poulter S, Terentjev EM, Hughes C, Fraser GM. 42.  2013. A chain mechanism for flagellum growth. Nature 504:287–90 [Google Scholar]
  43. Fang X, Gomelsky M. 43.  2010. A post-translational c-di-GMP-dependent mechanism regulating flagellar motility. Mol. Microbiol. 76:51295–305 [Google Scholar]
  44. Fein JE. 44.  1979. Possible involvement of bacterial autolytic enzymes in flagellar morphogenesis. J. Bacteriol. 137:2933–46 [Google Scholar]
  45. Fein JE, Rogers HJ. 45.  1976. Autolytic enzyme-deficient mutants of Bacillus subtilis 168. J. Bacteriol. 127:131427–42 [Google Scholar]
  46. Ferris HU, Furukawa Y, Minamino T, Kroetz MB, Kihara M. 46.  et al. 2005. FlhB regulates ordered export of flagellar components via autocleavage mechanism. J. Biol. Chem. 280:5041236–42 [Google Scholar]
  47. Flemming H, Wingender J. 47.  2010. The biofilm matrix. Nat. Rev. Microbiol. 8:623–33 [Google Scholar]
  48. Francis NR, Irikura VM, Yamaguchi S, DeRosier DJ, Macnab RM. 48.  1992. Localization of the Salmonella typhimurium flagellar switch protein FliG to the cytoplasmic M-ring face of the basal body. Proc. Natl. Acad. Sci. USA 89:6304–8 [Google Scholar]
  49. Gao X, Mukherjee S, Matthews PM, Hammad LA, Kearns DB. 49.  et al. 2013. Functional characterization of core components of the Bacillus subtilis cyclic-di-GMP signaling pathway. J. Bacteriol. 195:214782–92 [Google Scholar]
  50. Grant GF, Simon MI. 50.  1969. Synthesis of bacterial flagella II. PBSI transduction of flagella-specific markers in Bacillus subtilis. J. Bacteriol. 99:1116–24 [Google Scholar]
  51. Green JCD, Kahramanoglou C, Rahman A, Pender AMC, Charbonnel N. 51.  et al. 2009. Recruitment of the earliest component of the bacterial flagellum to the old cell division pole by a membrane-associated signal recognition particle family GTP-binding protein. J. Mol. Biol. 391:679–90 [Google Scholar]
  52. Guttenplan SB, Blair KM, Kearns DB. 52.  2010. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLOS Genet. 6:12e1001243 [Google Scholar]
  53. Guttenplan SB, Kearns DB. 53.  2013. Regulation of flagellar motility during biofilm formation. FEMS Microbiol. Rev. 37:849–71 [Google Scholar]
  54. Guttenplan SB, Shaw S, Kearns DB. 54.  2013. The cell biology of peritrichous flagella in Bacillus subtilis. Mol. Microbiol. 87:1211–29 [Google Scholar]
  55. Helmann JD, Marquez LM, Chamberlin MJ. 55.  1988. Cloning, sequencing and disruption of the Bacillus subtilis σ28 gene. J. Bacteriol. 170:41568–74 [Google Scholar]
  56. Hirano T, Minamino T, Macnab RM. 56.  2001. The role in flagellar rod assembly of the N-terminal domain of Salmonella FlgJ, a flagellum-specific muramidase. J. Mol. Biol. 312:359–69 [Google Scholar]
  57. Hizukuri Y, Kojima S, Homma M. 57.  2010. Disulphide cross-linking between the stator and the bearing components in the bacterial flagellar motor. J. Biochem. 148:3309–18 [Google Scholar]
  58. Hizukuri Y, Yakushi T, Kawagishi I, Homma M. 58.  2006. Role of the intramolecular disulfide bond in FlgI, the flagellar P-ring component of Escherichia coli. J. Bacteriol. 188:124190–97 [Google Scholar]
  59. Homma M, Kutsukake K, Hasebe M, Iino T, Macnab RM. 59.  1990. FlgB, FlgC, FlgF and FlgG: a family of structurally related proteins in the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 211:465–77 [Google Scholar]
  60. Hsueh Y, Cozy LM, Sham L, Calvo RA, Gutu AD. 60.  et al. 2011. DegU-phosphate activates expression of the anti-sigma factor FlgM in Bacillus subtilis. Mol. Microbiol. 81:41092–108 [Google Scholar]
  61. Hughes KT, Gillen KL, Semon MJ, Karlinsey JE. 61.  1993. Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262:1277–80 [Google Scholar]
  62. Iino T. 62.  1969. Polarity of flagellar growth in Salmonella. J. Gen. Microbiol. 56:227–39 [Google Scholar]
  63. Ikeda T, Oosawa K, Hotani H. 63.  1996. Self-assembly of the filament capping protein, FliD, of bacterial flagella into an annular structure. J. Mol. Biol. 259:679–86 [Google Scholar]
  64. Ikeda T, Yamaguchi S, Hotani H. 64.  1993. Flagellar growth in a filament-less Salmonella fliD mutant supplemented with hook-associated protein 2. J. Biochem. 114:39–44 [Google Scholar]
  65. Irikura VM, Kihara M, Yamaguchi S, Sockett H, Macnab RM. 65.  1993. Salmonella typhimurium fliG and fliN mutations causing defects in assembly, rotation and switching of the flagellar motor. J. Bacteriol. 175:3802–10 [Google Scholar]
  66. Irnov I, Winkler WC. 66.  2010. A regulatory RNA required for antitermination of biofilm and capsular polysaccharide operons in Bacillales. Mol. Microbiol. 76:3559–75 [Google Scholar]
  67. Ito M, Hicks DB, Henkin TM, Guffanti AA, Powers BD. 67.  et al. 2004. MotPS is the stator-force generator for motility of alkaliphilic Bacillus, and its homologue is a second functional Mot in Bacillus subtilis. Mol. Microbiol. 53:41035–49 [Google Scholar]
  68. Jones CJ, Macnab RM, Okino H, Aizawa S. 68.  1990. Stoichiometric analysis of the flagellar hook-(basal body) complex of Salmonella typhimurium. J. Mol. Biol. 212:377–87 [Google Scholar]
  69. Journet L, Agrain C, Broz P, Cornelis GR. 69.  2003. The needle length of bacterial injectisomes is determined by a molecular ruler. Science 302:1757–60 [Google Scholar]
  70. Kazmierczak BI, Hendrixson DR. 70.  2013. Spatial and numerical regulation of flagellar biosynthesis in polarly flagellated bacteria. Mol. Microbiol. 88:4655–63 [Google Scholar]
  71. Kearns DB, Chu F, Branda SS, Kolter R, Losick R. 71.  2005. A master regulator for biofilm formation by Bacillus subtilis. Mol. Microbiol. 55:3739–49 [Google Scholar]
  72. Kearns DB, Chu F, Rudner R, Losick R. 72.  2004. Genes governing swarming in Bacillus subtilis and evidence for a phase variation mechanism controlling surface motility. Mol. Microbiol. 52:357–69 [Google Scholar]
  73. Kearns DB, Losick R. 73.  2003. Swarming motility in undomesticated Bacillus subtilis. Mol. Microbiol. 49:581–90 [Google Scholar]
  74. Kearns DB, Losick R. 74.  2005. Cell population heterogeneity during growth of Bacillus subtilis. Genes Dev. 19:3083–94 [Google Scholar]
  75. Kearns DB. 75.  2010. A field guide to bacterial swarming motility. Nat. Rev. Microbiol. 8:634–44 [Google Scholar]
  76. Kinoshita M, Hara N, Imada K, Namba K, Minamino T. 76.  2013. Interactions of bacterial flagellar chaperone-substrate complexes with FlhA contribute to co-ordinating assembly of the flagellar filament. Mol. Microbiol. 90:1249–61 [Google Scholar]
  77. Kinsinger RF, Shirk MC, Fall R. 77.  2003. Rapid surface motility in Bacillus subtilis is dependent on extracellular surfactin and potassium ion. J. Bacteriol. 185:185627–31 [Google Scholar]
  78. Kobayashi K. 78.  2008. SlrR/SlrA controls the initiation of biofilm formation in Bacillus subtilis. Mol. Microbiol. 69:61399–410 [Google Scholar]
  79. Kojima S, Blair DF. 79.  2001. Conformational change in the stator of the bacterial flagellar motor. Biochemistry 40:13041–50 [Google Scholar]
  80. Kojima S, Imada K, Sakuma M, Sudo Y, Kojima C. 80.  et al. 2009. Stator assembly and activation mechanism of the flagellar motor by the periplasmic region of MotB. Mol. Microbiol. 73:4710–18 [Google Scholar]
  81. Kubori T, Okumura M, Kobayashi N, Nakamura D, Iwakura M, Aizawa SI. 81.  1997. Purification and characterization of the flagellar hook–basal body complex of Bacillus subtilis. Mol. Microbiol. 24:399–410 [Google Scholar]
  82. Kubori T, Shinamoto N, Yamaguchi S, Namba K, Aizawa S. 82.  1992. Morphological pathway of flagellar assembly in Salmonella typhimurium. J. Mol. Biol. 226:433–46 [Google Scholar]
  83. Kulasekara BR, Kamischke C, Kulasekara HD, Christen M, Wiggins PA. 83.  et al. 2013. C-di-GMP heterogeneity is generated by the chemotaxis machinery to regulate flagellar motility. Elife 2e01402
  84. Kuroda A, Sekiguchi J. 84.  1991. Molecular cloning and sequencing of a major Bacillus subtilis autolysin gene. J. Bacteriol. 173:7304–12 [Google Scholar]
  85. Kutsukake K. 85.  1994. Excretion of the anti-sigma factor through a flagellar substructure couples flagellar gene expression with flagellar assembly in Salmonella typhimurium. Mol. Gen. Genet. 243:605–12 [Google Scholar]
  86. LaVallie ER, Stahl ML. 86.  1989. Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro–derived deletion mutation. J. Bacteriol. 171:63085–94 [Google Scholar]
  87. Lazarevic V, Margot P, Soldo B, Karamata D. 87.  1992. Sequencing and analysis of the Bacillus subtilis lytRABC divergon: a regulatory unit encompassing the structural genes of the N-acetylmuramoyl-L-alanine amidase and its modifier. J. Gen. Microbiol. 138:1949–61 [Google Scholar]
  88. Lee LK, Ginsburg MA, Crovace C, Donohoe M, Stock D. 88.  2010. Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466:996–1000 [Google Scholar]
  89. Li H, Sourjik V. 89.  2011. Assembly and stability of flagellar motor in Escherichia coli. Mol. Microbiol. 80:4886–99 [Google Scholar]
  90. Lloyd SA, Blair DF. 90.  1997. Charged residues of the rotor protein FliG essential for torque generation in the flagellar motor of Escherichia coli. J. Mol. Biol. 266:733–44 [Google Scholar]
  91. Lloyd SA, Tang H, Wang X, Billings S, Blair DF. 91.  1996. Torque generation in the flagellar motor of Escherichia coli: evidence of a direct role for FliG but not for FliM or FliN. J. Bacteriol. 178:1223–31 [Google Scholar]
  92. Macnab RM. 92.  1992. Genetics and biogenesis of bacterial flagella. Annu. Rev. Genet. 26:131–58 [Google Scholar]
  93. Margot P, Mauel C, Karamata D. 93.  1994. The gene of the N-acteylglucosaminidase, a Bacillus subtilis 168 cell wall hydrolase not involved in vegetative cell autolysis. Mol. Microbiol. 12:535–45 [Google Scholar]
  94. Margot P, Pagni M, Karamata D. 94.  1999. Bacillus subtilis 168 gene lytF encodes a γ–D-glutamate-meso-diaminopimelate muropeptidase expressed by the alternative vegetative sigma factor σD. Microbiology 145:57–65 [Google Scholar]
  95. Marquez LM, Helmann JD, Ferrari E, Parker HM, Ordal GW. 95.  et al. 1990. Studies of σD-dependent functions in Bacillus subtilis. J. Bacteriol. 172:63435–43 [Google Scholar]
  96. Marquez-Magaña LM, Chamberlin MJ. 96.  1994. Characterization of the sigD transcription unit of Bacillus subtilis. J. Bacteriol. 176:82427–34 [Google Scholar]
  97. Minamino T, Macnab RM. 97.  1999. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181:51388–94 [Google Scholar]
  98. Minamino T, Moria N, Hirano T, Hughes KT, Namba K. 98.  2009. Interaction of FliK with the bacterial flagellar hook is required for efficient export specificity switching. Mol. Microbiol. 74:1239–51 [Google Scholar]
  99. Minamino T, Namba K. 99.  2008. Distinct roles of the FliI ATPase and proton motive force in bacterial flagellar protein export. Nature 451:485–88 [Google Scholar]
  100. Minamino T, Yamaguchi S, Macnab RM. 100.  2000. Interaction between FliE and FlgB, a proximal rod component of the flagellar basal body of Salmonella. J. Bacteriol. 182:113029–36 [Google Scholar]
  101. Mirel DB, Chamberlin MJ. 101.  1989. The Bacillus subtilis flagellin gene (hag) is transcribed by the σ28 form of RNA polymerase. J. Bacteriol. 171:63095–101 [Google Scholar]
  102. Mirel DB, Lauer P, Chamberlin MJ. 102.  1994. Identification of flagellar synthesis regulatory and structural genes in a σD-dependent operon of Bacillus subtilis. J. Bacteriol. 176:4492–500 [Google Scholar]
  103. Mirel DB, Lustre VM, Chamberlin MJ. 103.  1992. An operon of Bacillus subtilis motility genes transcribed by the σD form of RNA polymerase. J. Bacteriol. 174:4197–204 [Google Scholar]
  104. Mordini S, Osera C, Marini S, Scavone F, Bellazzi R. 104.  et al. 2013. The role of SwrA, DegU and PD3 in fla/che expression in B. subtilis. PLOS ONE 8:e85065 [Google Scholar]
  105. Moriya N, Minamino T, Hughes KT, Macnab RM, Namba K. 105.  2006. The type III flagellar export specificity switch is dependent on FliK ruler and a molecular clock. J. Mol. Biol. 359:466–77 [Google Scholar]
  106. Mukai K, Kawata M, Tanak T. 106.  1990. Isolation and phosphorylation of the Bacillus subtilis degS and degU gene products. J. Bio. Chem. 265:3220000–6 [Google Scholar]
  107. Mukherjee S, Babitzke P, Kearns DB. 107.  2013. FliW and FliS function independently to control cytoplasmic flagellin levels in Bacillus subtilis. J. Bacteriol. 195:297–306 [Google Scholar]
  108. Mukherjee S, Yakhnin H, Kysela D, Sokoloski J, Babitzke P. 108.  et al. 2011. CsrA-FliW interaction governs flagellin homeostasis and a checkpoint on flagellar morphogenesis in Bacillus subtilis. Mol. Microbiol. 82:447–61 [Google Scholar]
  109. Muller V, Jones CJ, Kawagishi I, Aizawa S, Macnab RM. 109.  1992. Characterization of the fliE genes of Escherichia coli and Salmonella typhimurium and identification of the FliE protein as a component of the flagellar hook-basal body complex. J. Bacteriol. 174:72298–304 [Google Scholar]
  110. Murray EJ, Kiley TB, Stanley-Wall NR. 110.  2009. A pivotal role for the response regulator DegU in controlling multicellular behavior. Microbiology 155:1–8 [Google Scholar]
  111. Nambu T, Minamino T, Macnab RM, Kutsukake K. 111.  1999. Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J. Bacteriol. 181:51555–61 [Google Scholar]
  112. Newman JA, Rodrigues C, Lewis RJ. 112.  2013. Molecular basis of the activity of SinR protein, the master regulator of biofilm formation in Bacillus subtilis. J. Bio. Chem. 288:1510766–78 [Google Scholar]
  113. Nishihara T, Freese E. 113.  1975. Motility of Bacillus subtilis during growth and sporulation. J. Bacteriol. 123:366–71 [Google Scholar]
  114. Ogura M, Tsukahara K. 114.  2012. SwrA regulates assembly of Bacillus subtilis DegU via its interaction with N-terminal domain of DegU. J. Biochem. 151:6643–55 [Google Scholar]
  115. Ogura M, Yoshikawa H, Chibazakura T. 115.  2014. Regulation of the response regulator gene degU through the binding of SinR/SlrR and exclusion of SinR/SlrR by DegU in Bacillus subtilis. J. Bacteriol. 196:4873–81 [Google Scholar]
  116. Ohnishi K, Ohto Y, Aizawa S, Macnab RM, Iino T. 116.  1994. FlgD is a scaffolding protein needed for flagellar hook assembly in Salmonella typhimurium. J. Bacteriol. 176:82272–81 [Google Scholar]
  117. Okino H, Isomura M, Yamaguchi S, Magariyama Y, Kudo S. 117.  et al. 1989. Release of flagellar filament-hook-rod complex by a Salmonella typhimurium mutant defective in the M ring of the basal body. J. Bacteriol. 171:42075–82 [Google Scholar]
  118. Patrick JE, Kearns DB. 118.  2009. Laboratory strains of Bacillus subtilis do not exhibit swarming motility. J. Bacteriol. 191:227129–33 [Google Scholar]
  119. Paul K, Erhardt M, Hirano T, Blair DF, Hughes KT. 119.  2008. Energy source of flagellar type III secretion. Nature 451:489–92 [Google Scholar]
  120. Paul K, Gonzalez-Bonet G, Bilwes AM, Crane BR, Blair D. 120.  2011. Architecture of the flagellar motor. EMBO J. 30:2962–71 [Google Scholar]
  121. Paul K, Nieto V, Carlquist WC, Blair DF, Harshey RM. 121.  2010. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Cell 38:128–39 [Google Scholar]
  122. Pooley HM, Karamata D. 122.  1984. Genetic analysis of autolysin-deficient and flagellaless mutants of Bacillus subtilis. J. Bacteriol. 160:31123–29 [Google Scholar]
  123. Rao CV, Glekas GD, Ordal GW. 123.  2008. The three adaptation systems of Bacillus subtilis chemotaxis. Trends Microbiol. 16:10480–87 [Google Scholar]
  124. Rashid MH, Sekiguchi J. 124.  1996. flaD (SinR) mutations affect SigD-dependent functions at multiple points in Bacillus subtilis. J. Bacteriol. 178:226640–43 [Google Scholar]
  125. Samatey FA, Matusnami H, Imada K, Nagashima S, Shaikh TR. 125.  et al. 2004. Structure of the bacterial flagellar hook and implications for the molecular universal joint mechanism. Nature 431:1062–68 [Google Scholar]
  126. Seminara A, Angelini TE, Wilking JN, Vlamakis H, Ebrahim S. 126.  et al. 2012. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc. Natl. Acad. Sci. USA 109:41116–21 [Google Scholar]
  127. Senesi S, Ghelardi E, Celandroni F, Salvetti S, Parisio E. 127.  et al. 2004. Surface-associated flagellum formation and swarming differentiation in Bacillus subtilis are controlled by the ifm locus. J. Bacteriol. 186:41158–64 [Google Scholar]
  128. Serizawa M, Yamamoto H, Yamaguchi H, Fujita Y, Kobayashi K. 128.  et al. 2004. Systematic analysis of SigD-regulated genes in Bacillus subtilis by DNA microarray and Northern blotting analyses. Gene 329:125–36 [Google Scholar]
  129. Sevim E, Gaballa A, Belduz O, Helmann JD. 129.  2011. DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD proteins. J. Bacteriol. 193:2575–79 [Google Scholar]
  130. Shibata S, Takahashi N, Chevance FFV, Karlinsey JE, Hughes KT. 130.  et al. 2007. FliK regulates flagellar hook length as an internal ruler. Mol. Microbiol. 64:51404–15 [Google Scholar]
  131. Sircar R, Greenswag AR, Bilwes AM, Gonzalez-Bonet G, Crane BR. 131.  2013. Structure and activity of the flagellar rotor protein FliY: a member of the CheC phosphatase family. J. Biol. Chem. 288:1913493–502 [Google Scholar]
  132. Smith DR, Chapman MR. 132.  2010. Economical evolution: microbes reduce the synthetic cost of extracellular proteins. Mbio 1:3e00131–10 [Google Scholar]
  133. Smith TJ, Blackman SA, Foster SJ. 133.  2000. Autolysins of Bacillus subtilis: multiple enzymes with multiple functions. Microbiology 146:249–62 [Google Scholar]
  134. Sorenson MK, Ray SS, Darst SA. 134.  2004. Crystal structure of the flagellar σ/anti-σ complex σ28/FlgM reveals an intact σ factor in an inactive conformation. Mol. Cell 14:127–38 [Google Scholar]
  135. Stallmeyer MJB, Aizawa S, Macnab RM, DeRosier DJ. 135.  1989. Image reconstruction of the flagellar basal body of Salmonella typhimurium. J. Mol. Biol. 205:519–28 [Google Scholar]
  136. Stanley NR, Lazazzera BA. 136.  2005. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol. Microbiol. 57:41143–58 [Google Scholar]
  137. Stern AS, Berg HC. 137.  2013. Single-file diffusion of flagellin in flagellar filaments. Biophys. J. 105:182–84 [Google Scholar]
  138. Suzuki H, Yonekura K, Murata K, Hirai T, Oosawa K. 138.  et al. 1998. A structural feature in the central channel of the bacterial flagellar FliF ring complex is implicated in type III protein export. J. Struct. Biol. 124:104–14 [Google Scholar]
  139. Terahara N, Fujisawa M, Powers B, Henkin TM, Krulwich TA. 139.  et al. 2006. An intergenic stem-loop mutation in the Bacillus subtilis ccpA-motPS operon increases motPS transcription and the MotPS contribution to motility. J. Bacteriol. 188:72701–5 [Google Scholar]
  140. Thomas DR, Francis NR, Xu C, DeRosier DJ. 140.  2006. The three-dimensional structure of the flagellar rotor from a clockwise-locked mutant of Salmonella enterica serovar typhimurium. J. Bacteriol. 188:207039–48 [Google Scholar]
  141. Thomas J, Stafford GP, Hughes C. 141.  2004. Docking of cytosolic chaperone-substrate complexes at the membrane ATPase during flagellar type III protein export. Proc. Natl. Acad. Sci. USA 101:113945–50 [Google Scholar]
  142. Titz B, Rajagopala SV, Ester C, Häuser R, Uetz P. 142.  2006. Novel conserved assembly factor of the bacterial flagellum. J. Bacteriol. 188:7700–6 [Google Scholar]
  143. Tsukahara K, Ogura M. 143.  2008. Promoter selectivity of the Bacillus subtilis response regulator DegU, a positive regulator of the fla/che operon and sacB. BMC Microbiol. 8:8 [Google Scholar]
  144. Turner L, Ryu WS, Berg HC. 144.  2000. Real-time imaging of fluorescent flagellar filaments. J. Bacteriol. 182:102793–801 [Google Scholar]
  145. Turner L, Stern AS, Berg HC. 145.  2012. Growth of flagellar filaments is independent of flagellar length. J. Bacteriol. 194:2437–42 [Google Scholar]
  146. Ueno T, Oosawa K, Aizawa S. 146.  1992. M ring, S ring and proximal rod of the flagellar basal body of Salmonella typhimurium are composed of subunits of a single protein, FliF. J. Mol. Biol. 227:672–77 [Google Scholar]
  147. Werhane H, Lopez P, Mendel M, Zimmer M, Ordal GW, Marquez-Magaña LM. 147.  2004. The last gene of the fla/che operon in Bacillus subtilis, ylxL, is required for maximal σD function. J. Bacteriol. 186:124025–29 [Google Scholar]
  148. West JT, Estacio W, Marquez-Magaña L. 148.  2000. Relative roles of the fla/che PA, PD-3, and PsigD promoters in regulating motility and sigD expression in Bacillus subtilis. J. Bacteriol. 182:174841–48 [Google Scholar]
  149. Winkelman JT, Bree AC, Bate AR, Eichenberger P, Gourse RL. 149.  et al. 2013. RemA is a DNA-binding protein that activates biofilm matrix gene expression in Bacillus subtilis. Mol. Microbiol. 88:5984–97 [Google Scholar]
  150. Yakhnin H, Pandit P, Petty TJ, Baker CS, Romeo T. 150.  et al. 2007. CsrA of Bacillus subtilis regulates translation initiation of the gene encoding the flagellin protein (hag) by blocking ribosome binding. Mol. Microbiol. 64:1605–20 [Google Scholar]
  151. Yonekura K, Maki-Yonekura S, Namba K. 151.  2003. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature 424:643–50 [Google Scholar]
  152. Zeigler DR, Pragai Z, Rodriguez S, Chevreux B, Muffler A. 152.  et al. 2008. The origins of 168, W23, and other Bacillus subtilis legacy strains. J. Bacteriol. 190:216983–95 [Google Scholar]
  153. Zhang K, Tong BA, Liu J, Li C. 153.  2012. A single-domain FlgJ contributes to flagellar hook and filament formation in the Lyme disease spirochete Borrelia burgdorferi. J. Bacteriol. 194:4866–74 [Google Scholar]
  154. Zhao X, Zhang K, Boquoi T, Hu B, Motaleb MA. 154.  et al. 2013. Cryoelectron tomography reveals the sequential assembly of bacterial flagella in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 110:3514390–95 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092406
Loading
/content/journals/10.1146/annurev-genet-120213-092406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error