1932

Abstract

Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120213-092525
2014-11-23
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/genet/48/1/annurev-genet-120213-092525.html?itemId=/content/journals/10.1146/annurev-genet-120213-092525&mimeType=html&fmt=ahah

Literature Cited

  1. Aguadé M, Meyers W, Long AD, Langley CH. 1.  1994. Reduced DNA sequence polymorphism in the su(s) and su(wa) regions of Drosophila melanogaster as revealed by SSCP and stratified DNA sequencing. Proc. Natl. Acad. Sci. USA 91:4658–62 [Google Scholar]
  2. Aguadé M, Miyashita N, Langley CH. 2.  1989. Reduced variation in the yellow-achaete-scute region in natural populations of Drosophila melanogaster. Genetics 122:607–15 [Google Scholar]
  3. Aguadé M, Miyashita N, Langley CH. 3.  1989. Restriction-map variation at the zeste-tko region in natural populations of Drosophila melanogaster. Mol. Biol. Evol. 6:123–30 [Google Scholar]
  4. Akashi H. 4.  1994. Synonymous codon usage in Drosophila melanogaster: natural selection and translational accuracy. Genetics 136:927–35 [Google Scholar]
  5. Anderson JA, Song Y-S, Langley CH. 5.  2008. Molecular population genetics of Drosophila subtelomeric DNA.. Genetics 178:477–87 [Google Scholar]
  6. Anderson LK, Doyle GG, Brigham B, Carter J, Hooker KD. 6.  et al. 2003. High resolution crossover maps for each bivalent of Zea mays using recombination nodules. Genetics 165:849–65 [Google Scholar]
  7. Andolfatto P. 7.  2007. Hitchhiking effects of recurrent beneficial amino acid substitutions in the Drosophila melanogaster genome. Genome Res. 17:1755–62 [Google Scholar]
  8. Andolfatto P, Przeworski M. 8.  2001. Regions of lower crossing over harbor more rare variants in African populations of Drosophila melanogaster. Genetics 158:657–65 [Google Scholar]
  9. Arguello JR, Zhang Y, Kado T, Fan CZ, Zhao RP. 9.  et al. 2010. Recombination yet inefficient selection along the Drosophila melanogaster subgroup's fourth chromosome. Mol. Biol. Evol. 27:848–61 [Google Scholar]
  10. Ashburner M, Golic KG, Hawley RS. 10.  2005. Drosophila. A Laboratory Handbook. Cold Spring Harbor, NY: Cold Spring Harbor Press
  11. Bachtrog D. 11.  2003. Accumulation of Spock and Worf, two novel non-LTR retrotransposons, on the neo-Y chromosome of Drosophila miranda. Mol. Biol. Evol. 20:173–81 [Google Scholar]
  12. Bachtrog D. 12.  2013. Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration. Nat. Rev. Genet. 14:113–24 [Google Scholar]
  13. Bachtrog D, Hom E, Wong KM, Maside X, De Jong P. 13.  2008. Genomic degradation of a young Y chromosome in Drosophila miranda. Genome Biol. 9:R30 [Google Scholar]
  14. Bachtrog D, Thornton K, Clark A, Andolfatto P. 14.  2006. Extensive introgression of mitochondrial DNA relative to nuclear genes in the Drosophila yakuba species group. Evolution 60:292–302 [Google Scholar]
  15. Bartolomé C, Charlesworth B. 15.  2006. Evolution of amino-acid sequences and codon usage on the Drosophila miranda neo-sex chromosomes. Genetics 174:2033–44 [Google Scholar]
  16. Bartolomé C, Maside X. 16.  2004. The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster. Genet. Res. 83:91–100 [Google Scholar]
  17. Bartolomé C, Maside X, Charlesworth B. 17.  2002. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. Mol. Biol. Evol. 19:926–37 [Google Scholar]
  18. Barton NH. 18.  2010. Genetic linkage and natural selection. Philos. Trans. R. Soc. B 365:2559–69 [Google Scholar]
  19. Beadle GW. 19.  1932. A possible influence of the spindle fibre on crossing-over in Drosophila. Proc. Natl. Acad. Sci. USA 18:160–65 [Google Scholar]
  20. Begun DJ, Aquadro CF. 20.  1992. Levels of naturally occurring DNA polymorphism correlate with recombination rate in Drosophila melanogaster. Nature 356:519–20 [Google Scholar]
  21. Berry AJ, Ajioka JW, Kreitman M. 21.  1991. Lack of polymorphism on the Drosophila fourth chromosome resulting from selection. Genetics 129:1111–17 [Google Scholar]
  22. Betancourt AJ, Welch JJ, Charlesworth B. 22.  2009. Reduced effectiveness of selection caused by lack of recombination. Curr. Biol. 19:655–60 [Google Scholar]
  23. Braverman J, Lazzaro BP, Aguadé M, Langley CH. 23.  2005. DNA sequence polymorphism and divergence at the erect wing and suppressor of sable loci of Drosophila melanogaster and D. simulans. Genetics 170:1153–65 [Google Scholar]
  24. Braverman JM, Hudson RR, Kaplan NL, Langley CH, Stephan W. 24.  1995. The hitchhiking effect on the site frequency spectrum of DNA polymorphism. Genetics 140:783–96 [Google Scholar]
  25. Bridges CB. 25.  1918. Non-disjunction as proof of the chromosome theory of heredity. Genetics 1:1–52,107–63 [Google Scholar]
  26. Bridges CB. 26.  1935. The mutants and linkage data of chromosome four of Drosophila melanogaster. Biol. Zh. 4:401–20 [Google Scholar]
  27. Bull JJ. 27.  1983. Evolution of Sex Determining Mechanisms Menlo Park, CA: Benjamin Cummings
  28. Bulmer MG. 28.  1974. Linkage disequilibrium and genetic variability. Genet. Res. 23:281–89 [Google Scholar]
  29. Bulmer MG. 29.  1991. The selection-mutation-drift theory of synonymous codon usage. Genetics 129:897–907 [Google Scholar]
  30. Campos JL, Charlesworth B, Haddrill PR. 30.  2012. Molecular evolution in nonrecombining regions of the Drosophila genome. Genome Biol. Evol. 4:278–88 [Google Scholar]
  31. Campos JL, Halligan DL, Haddrill PR, Charlesworth B. 31.  2014. The relationship between recombination rate and patterns of molecular evolution and variation in Drosophila melanogaster. Mol. Biol. Evol. 31:1010–28 [Google Scholar]
  32. Campos JL, Zeng K, Parker DJ, Charlesworth B, Haddrill PR. 32.  2013. Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster. Mol. Biol. Evol. 30:811–23 [Google Scholar]
  33. Carvalho AB, Clark AG. 33.  1999. Intron size and natural selection. Nature 401:344 [Google Scholar]
  34. Chan AH, Jenkins PA, Song YS. 34.  2012. Genome-wide fine-scale recombination rate variation in Drosophila melanogaster. PLOS Genet. 8:e1003090 [Google Scholar]
  35. Charlesworth B. 35.  1996. Background selection and patterns of genetic diversity in Drosophila melanogaster. Genet. Res. 68:131–50 [Google Scholar]
  36. Charlesworth B. 36.  2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Genet. 10:195–205 [Google Scholar]
  37. Charlesworth B. 37.  2012. The effects of deleterious mutations on evolution at linked sites. Genetics 190:1–18 [Google Scholar]
  38. Charlesworth B. 38.  2012. The role of background selection in shaping patterns of molecular evolution and variation: evidence from the Drosophila X chromosome. Genetics 191:233–46 [Google Scholar]
  39. Charlesworth B. 39.  2013. Stabilizing selection, purifying selection and mutational bias in finite populations. Genetics 194:955–71 [Google Scholar]
  40. Charlesworth B, Betancourt AJ, Kaiser VB, Gordo I. 40.  2010. Genetic recombination and molecular evolution. Cold Spring Harb. Symp. Quant. Biol. 74:177–86 [Google Scholar]
  41. Charlesworth B, Jarne P, Assimacopoulos S. 41.  1994. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. III. Element abundances in heterochromatin. Genet. Res. 64:183–97 [Google Scholar]
  42. Charlesworth B, Langley CH, Stephan W. 42.  1986. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112:947–62 [Google Scholar]
  43. Charlesworth B, Lapid A, Canada D. 43.  1992. The distribution of transposable elements within and between chromosomes in a population of Drosophila melanogaster. II. Inferences on the nature of selection against elements. Genet. Res. 60:115–30 [Google Scholar]
  44. Charlesworth B, Morgan MT, Charlesworth D. 44.  1993. The effect of deleterious mutations on neutral molecular variation. Genetics 134:1289–303 [Google Scholar]
  45. Charlesworth B, Sniegowski P, Stephan W. 45.  1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371:215–20 [Google Scholar]
  46. Charlesworth D, Charlesworth B, Morgan MT. 46.  1995. The pattern of neutral molecular variation under the background selection model. Genetics 141:1619–32 [Google Scholar]
  47. Comeron J. 47.  2014. Background selection as baseline for nucleotide variation across the Drosophila genome. PLOS Genet. 10:e1004434 [Google Scholar]
  48. Comeron JM, Kreitman M. 48.  2000. The correlation between intron length and recombination in Drosophila: equilibrium between mutational and selective forces. Genetics 156:1175–90 [Google Scholar]
  49. Comeron JM, Ratnappan R, Bailin S. 49.  2012. The many landscapes of recombination in Drosophila melanogaster. PLOS Genet. 8:e1002905 [Google Scholar]
  50. Comeron JM, Williford A, Kliman RM. 50.  2008. The Hill-Robertson effect: evolutionary consequences of weak selection in finite populations. Heredity 100:19–31 [Google Scholar]
  51. de Procé SM, Zeng K, Betancourt AJ, Charlesworth B. 51.  2012. Selection on codon usage and base composition in Drosophila americana. Biol. Lett. 8:82–85 [Google Scholar]
  52. Dimitri P. 52.  1997. Constitutive heterochromatin and transposable elements in Drosophila melanogaster. Genetica 100:85–93 [Google Scholar]
  53. Dimitri P, Corradini N, Rossi F, Mei E, Zhimulev IF, Verni F. 53.  2005. Transposable elements as architects of the heterochromatic genome in Drosophila melanogaster. Cytogenet. Genome Res. 110:165–72 [Google Scholar]
  54. Dimitri P, Junakovic N, Arca B. 54.  2003. Colonization of heterochromatic genes by transposable elements in Drosophila. Mol. Biol. Evol. 20:503–12 [Google Scholar]
  55. 55. Drosophila 12 Genomes Proj. Consort 2007. Evolution of genes and genomes on the Drosophila phylogeny. Nature 450:203–18 [Google Scholar]
  56. Drummond DA, Wilke CO. 56.  2008. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. Cell 13:341–52 [Google Scholar]
  57. Dyer KA, Charlesworth B, Jaenike J. 57.  2007. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. Proc. Natl. Acad. Sci. USA 104:1587–92 [Google Scholar]
  58. Dyer KA, White BE, Bray MJ, Piqué DG, Betancourt AJ. 58.  2011. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila. Mol. Biol. Evol. 28:1293–306 [Google Scholar]
  59. Eyre-Walker A, Keightley PD. 59.  2009. Estimating the rate of adaptive mutations in the presence of slightly deleterious mutations and population size change. Mol. Biol. Evol. 26:2097–108 [Google Scholar]
  60. Fay J, Wykhoff GJ, Wu C-I. 60.  2002. Testing the neutral theory of molecular evolution with genomic data from Drosophila. Nature 415:1024–26 [Google Scholar]
  61. Felsenstein J. 61.  1974. The evolutionary advantage of recombination. Genetics 78:737–56 [Google Scholar]
  62. Fisher RA. 62.  1930. The Genetical Theory of Natural Selection Oxford: Oxford Univ. Press
  63. Gordo I, Charlesworth B. 63.  2001. The speed of Muller's ratchet with background selection, and the degeneration of Y chromosomes. Genet. Res. 78:149–62 [Google Scholar]
  64. Gordo I, Navarro A, Charlesworth B. 64.  2002. Muller's ratchet and the pattern of variation at a neutral locus. Genetics 161:835–48 [Google Scholar]
  65. Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ. 65.  et al. 2010. Genome wide analyses reveal little evidence for adaptive evolution in many plant species. Mol. Biol. Evol. 27:1822–32 [Google Scholar]
  66. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. 66.  2007. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over. Genome Biol. 8:R18.1–7 [Google Scholar]
  67. Haddrill PR, Zeng K, Charlesworth B. 67.  2011. Determinants of synonymous and nonsynonymous variability in three species of Drosophila. Mol. Biol. Evol. 28:1731–43 [Google Scholar]
  68. Heitz E. 68.  1933. Über α- and β-heterochromatin sowie Konstanz und Bau der Chromomeren bei Drosophila. Biol. Zentralblatt 54:588–609 [Google Scholar]
  69. Hermisson J, Pennings PS. 69.  2005. Soft sweeps: molecular population genetics of adaptation from standing genetic variation. Genetics 169:2335–52 [Google Scholar]
  70. Hill WG, Robertson A. 70.  1966. The effect of linkage on limits to artificial selection. Genet. Res. 8:269–94 [Google Scholar]
  71. Hilliker AJ, Harauz G, Reaume AG, Gray M, Clark SH, Chovnick A. 71.  1994. Meiotic gene conversion tract length distribution within the rosy locus of Drosophila melanogaster. Genetics 137:1019–26 [Google Scholar]
  72. Jensen MA, Charlesworth B, Kreitman M. 72.  2002. Patterns of genetic variation at a chromosome 4 locus of Drosophila melanogaster and D. simulans. Genetics 160:493–507 [Google Scholar]
  73. Johnson T, Barton NH. 73.  2002. The effect of deleterious alleles on adaptation in asexual populations. Genetics 162:395–411 [Google Scholar]
  74. Kaiser VB, Charlesworth B. 74.  2009. The effects of deleterious mutations on evolution in non-recombining genomes. Trends Genet. 25:9–12 [Google Scholar]
  75. Kaiser VB, Charlesworth B. 75.  2010. Muller's ratchet and the degeneration of the Drosophila miranda neo-Y chromosome. Genetics 185:339–48 [Google Scholar]
  76. Keightley PD, Trivedi M, Thomson M, Oliver F, Kumar S, Blaxter ML. 76.  2009. Analysis of the genome sequences of three Drosophila melanogaster spontaneous mutation accumulation lines. Genome Res. 19:1195–201 [Google Scholar]
  77. Kim Y. 77.  2004. Effect of strong directional selection on weakly selected mutations at linked sites: implication for synonymous codon usage. Mol. Biol. Evol. 21:286–94 [Google Scholar]
  78. Kimura M. 78.  1962. On the probability of fixation of a mutant gene in a population. Genetics 47:713–19 [Google Scholar]
  79. Kimura M. 79.  1968. Evolutionary rate at the molecular level. Nature 217:624–26 [Google Scholar]
  80. Kimura M. 80.  1971. Theoretical foundations of population genetics at the molecular level. Theor. Popul. Biol. 2:174–208 [Google Scholar]
  81. Kimura M. 81.  1981. Possibility of extensive neutral evolution under stabilizing selection with special reference to non-random usage of synonymous codons. Proc. Natl. Acad. Sci. USA 78:454–58 [Google Scholar]
  82. Kliman RM, Hey J. 82.  1993. Reduced natural selection associated with low recombination in Drosophila melanogaster. Mol. Biol. Evol. 10:1239–58 [Google Scholar]
  83. Koerich L, Wang X, Clark AG, Carvalho AB. 83.  2008. Low conservation of gene content in the Drosophila Y chromosome. Nature 456:949–51 [Google Scholar]
  84. Kofler R, Betancourt AJ, Schlötterer C. 84.  2012. Sequencing of pooled DNA samples (Pool-Seq) uncovers complex dynamics of transposable element insertions in Drosophila melanogaster. PLOS Genet. 8:e1002487 [Google Scholar]
  85. Kousathanas A, Keightley PD. 85.  2013. A comparison of models to infer the distribution of fitness effects of new mutations. Genetics 193:1197–208 [Google Scholar]
  86. Krimbas CB, Powell JR. 86.  1992. Drosophila Inversion Polymorphism Boca Raton, FL: CRC Press
  87. Kurek R, Reugels A, Lammermann U, Bünemann H. 87.  2000. Molecular aspects of intron evolution in dynein encoding mega-genes on the heterochromatic Y chromosome of Drosophila spp. Genetica 109:113–23 [Google Scholar]
  88. Langley CH, Lazzaro BP, Phillips W, Heikkinen E, Braverman JM. 88.  2000. Linkage disequilibria and the site frequency spectra in the su(s) and su(wa) regions of the Drosophila melanogaster X chromosome. Genetics 156:1837–52 [Google Scholar]
  89. Langley CH, Montgomery EA, Hudson RR, Kaplan NL, Charlesworth B. 89.  1988. On the role of unequal exchange in the containment of transposable element copy number. Genet. Res. 52:223–35 [Google Scholar]
  90. Langley CH, Stevens K, Cardeno C, Lee YCG, Schrider DR. 90.  et al. 2012. Genomic variation in natural populations of Drosophila melanogaster. Genetics 192:533–98 [Google Scholar]
  91. Larracuente AM, Clark AG. 91.  2013. Surprising differences in the variability of Y chromosomes in African and cosmopolitan populations of Drosophila melanogaster. Genetics 193:201–14 [Google Scholar]
  92. Larracuente AM, Sackton TB, Greenberg AJ, Wong A, Singh ND. 92.  et al. 2008. Evolution of protein-coding genes in Drosophila. Trends Genet. 24:114–23 [Google Scholar]
  93. Li W-H. 93.  1987. Models of nearly neutral mutations with particular implications for non-random usage of synonymous codons. J. Mol. Evol. 24:337–45 [Google Scholar]
  94. Lindsley DL, Sandler L. 94.  1977. The genetic analysis of meiosis in female Drosophila. Philos. Trans. R. Soc. B 277:295–312 [Google Scholar]
  95. Loewe L, Charlesworth B. 95.  2007. Background selection in single genes may explain patterns of codon bias. Genetics 175:1381–93 [Google Scholar]
  96. Loewe L, Charlesworth B, Bartolomé C, Nöel V. 96.  2006. Estimating selection on nonsynonymous mutations. Genetics 172:1079–92 [Google Scholar]
  97. Mackay TFC, Richards S, Stone EA, Barbadilla A, Ayroles JF. 97.  et al. 2012. The Drosophila melanogaster Genetic Reference Panel. Nature 482:173–78 [Google Scholar]
  98. Maside X, Assimacopoulos S, Charlesworth B. 98.  2005. Fixations of transposable elements in the D. melanogaster genome. Genet. Res. 85:195–203 [Google Scholar]
  99. McGaugh SE, Heil CSS, Manzano-Winkler B, Loewe L, Goldstein S. 99.  et al. 2012. Recombination modulates how selection affects linked sites in Drosophila. PLOS Biol. 10:e1001422 [Google Scholar]
  100. Messer PW, Petrov DA. 100.  2013. Frequent adaptation and the McDonald-Kreitman test. Proc. Natl. Acad. Sci. USA 110:8615–20 [Google Scholar]
  101. Miklos GLG, Cotsell JN. 101.  1990. Chromosome structure at interfaces between major chromatin types: alpha- and beta-heterochromatin. BioEssays 12:1–6 [Google Scholar]
  102. Miller EL, Takeo S, Nandana K, Paulson A, Gogol MA. 102.  et al. 2012. A whole-chromosome analysis of meiotic recombination in Drosophila melanogaster. G3 2:249–60 [Google Scholar]
  103. Montgomery EA, Huang S-M, Langley CH, Judd BH. 103.  1991. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution. Genetics 129:1085–98 [Google Scholar]
  104. Morgan TH. 104.  1911. Random segregation versus coupling in Mendelian inheritance. Science 33:384 [Google Scholar]
  105. Morgan TH. 105.  1912. Complete linkage in the second chromosome of the male of Drosophila. Science 36:719–20 [Google Scholar]
  106. Muller HJ. 106.  1914. A gene for the fourth chromosome of Drosophila. J. Exp. Zool. 17:325–26 [Google Scholar]
  107. Muller HJ. 107.  1932. Some genetic aspects of sex. Am. Nat. 66:118–38 [Google Scholar]
  108. Muller HJ. 108.  1940. Bearing of the Drosophila work on systematics. The New Systematics JS Huxley 185–268 Oxford: Oxford Univ. Press [Google Scholar]
  109. Muller HJ, Painter TS. 109.  1932. The differentiation of the sex chromosomes of Drosophila into genetically active and inert regions. Z. Indukt. Abstamm. Vererb. 62:316–65 [Google Scholar]
  110. Neher RA. 110.  2013. Genetic draft, selective interference and population genetics of rapid adaptation. Annu. Rev. Ecol. Evol. Syst. 44:195–215 [Google Scholar]
  111. Nicolaisen LE, Desai M. 111.  2012. Distortions in genealogies due to purifying selection. Mol. Biol. Evol. 29:3589–600 [Google Scholar]
  112. Offerman CA, Muller HJ. 112.  1932. Regional differences in crossing over as a function of the chromosome structure. Proc. 6th Int. Cong. Genet. Vol. 2, ed. DF Jones, pp. 143–45. New York: Brooklyn Bot. Garden
  113. Otto SP, Lenormand T. 113.  2002. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3:256–61 [Google Scholar]
  114. Pennings PS, Hermisson J. 114.  2006. Soft sweeps III: the signature of positive selection from recurrent mutation. PLOS Genet. 2:1998–2012 [Google Scholar]
  115. Petrov DA, Fiston-Lavier A, Lipatov M, Lenkov K, González J. 115.  2011. Population genomics of transposable elements in Drosophila melanogaster. Mol. Biol. Evol. 28:1633–44 [Google Scholar]
  116. Powell JR, Dion K, Papaceit M, Vicario S, Garrick RC. 116.  2011. Nonrecombining genes in a recombination environment: the Drosophila “dot” chromosome. Mol. Biol. Evol. 28:825–33 [Google Scholar]
  117. Presgraves D. 117.  2005. Recombination enhances protein adaptation in Drosophila melanogaster. Curr. Biol. 15:1651–56 [Google Scholar]
  118. Rizzon C, Marais G, Gouy M, Biémont C. 118.  2002. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome. Genome Res. 12:400–7 [Google Scholar]
  119. Robertson A. 119.  1961. Inbreeding in artificial selection programmes. Genet. Res. 2:189–94 [Google Scholar]
  120. Santiago E, Caballero A. 120.  1998. Effective size and polymorphism of linked neutral loci in populations under selection. Genetics 149:2105–17 [Google Scholar]
  121. Schaeffer SW. 121.  2008. Selection in heterogeneous environments maintains the gene arrangement polymorphism of Drosophila pseudoobscura. Evolution 62:3082–99 [Google Scholar]
  122. Schneider A, Charlesworth B, Eyre-Walker A, Keightley PD. 122.  2011. A method for inferring the rate of occurrence and fitness effects of advantageous mutations. Genetics 189:1427–37 [Google Scholar]
  123. Schrider DR, Houle D, Lynch M, Hahn MW. 123.  2013. Rates and genomic consequences of spontaneous mutational events in Drosophila melanogaster. Genetics 194:937–54 [Google Scholar]
  124. Seger J, Smith WA, Perry JJ, Hunn K, Kaliszewska ZA. 124.  et al. 2010. Gene genealogies distorted by weakly interfering mutations in constant environments. Genetics 184:529–45 [Google Scholar]
  125. Sheldahl LE, Weinreich DM, Rand DM. 125.  2003. Recombination, dominance and selection on amino-acid polymorphisms in the Drosophila genome: contrasting patterns on the X and fourth chromosomes. Genetics 165:1195–208 [Google Scholar]
  126. Simonsen KL, Churchill GA, Aquadro CF. 126.  1995. Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–29 [Google Scholar]
  127. Singh ND, Davis JC, Petrov DA. 127.  2005. Codon bias and noncoding GC content correlate negatively with recombination rate on the Drosophila X chromosome. J. Mol. Evol. 61:315–24 [Google Scholar]
  128. Smith CD, Shu S, Mungall CJ, Karpen GH. 128.  2007. The Release 5.1 annotation of Drosophila melanogaster heterochromatin. Science 316:1587–91 [Google Scholar]
  129. Smith NGC, Eyre-Walker A. 129.  2002. Adaptive protein evolution in Drosophila. Nature 415:1022–24 [Google Scholar]
  130. Steinemann M, Steinemann S. 130.  1998. Enigma of Y chromosome degeneration: neo-Y and neo-X chromosomes of Drosophila miranda a model for sex chromosome evolution. Genetica 102/103:409–20 [Google Scholar]
  131. Stephan W. 131.  1986. Recombination and the evolution of satellite DNA. Genet. Res. 47:167–74 [Google Scholar]
  132. Stephan W. 132.  1987. Quantitative variation and chromosomal location of satellite DNAs. Genet. Res. 50:41–52 [Google Scholar]
  133. Stephan W. 133.  1995. An improved method for estimating the rate of fixation of favorable mutations based on DNA polymorphism data. Mol. Biol. Evol. 12:959–62 [Google Scholar]
  134. Stephan W. 134.  2010. Genetic hitchhiking versus background selection: the controversy and its implications. Philos. Trans. R. Soc. B 365:1245–53 [Google Scholar]
  135. Stephan W, Charlesworth B, McVean GAT. 135.  1999. The effect of background selection at a single locus on weakly selected, partially linked variants. Genet. Res. 73:133–46 [Google Scholar]
  136. Stephan W, Langley CH. 136.  1989. Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics 121:89–99 [Google Scholar]
  137. Sturtevant AH. 137.  1929. The genetics of Drosophila simulans. Carnegie Inst. Wash. Publ. 399:1–62 [Google Scholar]
  138. Sturtevant AH, Tan CC. 138.  1937. The comparative genetics of Drosophila pseudoobscura and Drosophila melanogaster. J. Genet. 34:415–31 [Google Scholar]
  139. True JR, Mercer JM, Laurie CC. 139.  1996. Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142:507–23 [Google Scholar]
  140. Wang W, Thornton K, Berry A, Long M. 140.  2002. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science 295:134–37 [Google Scholar]
  141. Weissman DB, Barton NH. 141.  2012. Limits to the rate of adaptive substitution in sexual populations. PLOS Genet. 8:e1002740 [Google Scholar]
  142. Welch JJ. 142.  2006. Estimating the genomewide rate of adaptive protein evolution in Drosophila. Genetics 173:821–27 [Google Scholar]
  143. Wiehe THE, Stephan W. 143.  1993. Analysis of a genetic hitchhiking model and its application to DNA polymorphism data. Mol. Biol. Evol. 10:842–54 [Google Scholar]
  144. Wright S. 144.  1931. Evolution in Mendelian populations. Genetics 16:97–159 [Google Scholar]
  145. Yamamoto M-T, Miklos GLG. 145.  1978. Genetic studies on heterochromatin and their implications for the functions of satellite DNA. Chromosoma 66:71–98 [Google Scholar]
  146. Yi S, Charlesworth B. 146.  2000. Contrasting patterns of molecular evolution of the genes on the new and old sex chromosomes of Drosophila miranda. Mol. Biol. Evol. 17:703–17 [Google Scholar]
  147. Zann V, Emery A, Coiffet M, Zytnicki M, Luyten I. 147.  et al. 2013. Distribution, evolution and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters. Proc. Natl. Acad. Sci. USA 110:19842–47 [Google Scholar]
  148. Zeng K. 148.  2010. A simple multiallele model and its application to identifying preferred-unpreferred codons using polymorphism data. Mol. Biol. Evol. 27:1327–37 [Google Scholar]
  149. Zeng K, Charlesworth B. 149.  2010. The effects of demography and linkage on the estimation of selection and mutation parameters. Genetics 186:1411–24 [Google Scholar]
  150. Zhou Q, Bachtrog D. 150.  2012. Sex-specific adaptation drives early sex chromosome evolution in Drosophila. Science 337:341–45 [Google Scholar]
  151. Zwick ME, Salstrom JL, Langley CH. 151.  1999. Genetic variation in rates of nondisjunction: association of two naturally occurring polymorphisms in the chromokinesin nod with increased rates of nondisjunction in Drosophila melanogaster. Genetics 152:1605–14 [Google Scholar]
/content/journals/10.1146/annurev-genet-120213-092525
Loading
/content/journals/10.1146/annurev-genet-120213-092525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error