1932

Abstract

Homologous recombination (HR) is a central process to ensure genomic stability in somatic cells and during meiosis. HR-associated DNA synthesis determines in large part the fidelity of the process. A number of recent studies have demonstrated that DNA synthesis during HR is conservative, less processive, and more mutagenic than replicative DNA synthesis. In this review, we describe mechanistic features of DNA synthesis during different types of HR-mediated DNA repair, including synthesis-dependent strand annealing, break-induced replication, and meiotic recombination. We highlight recent findings from diverse eukaryotic organisms, including humans, that suggest both replicative and translesion DNA polymerases are involved in HR-associated DNA synthesis. Our focus is to integrate the emerging literature about DNA polymerase involvement during HR with the unique aspects of these repair mechanisms, including mutagenesis and template switching.

[Erratum, Closure]

An erratum has been published for this article:
Eukaryotic DNA Polymerases in Homologous Recombination
Loading

Article metrics loading...

/content/journals/10.1146/annurev-genet-120215-035243
2016-11-23
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/genet/50/1/annurev-genet-120215-035243.html?itemId=/content/journals/10.1146/annurev-genet-120215-035243&mimeType=html&fmt=ahah

Literature Cited

  1. Acharya N, Haracska L, Johnson RE, Unk I, Prakash S, Prakash L. 1.  2005. Complex formation of yeast Rev1 and Rev7 proteins: a novel role for the polymerase-associated domain. Mol. Cell. Biol. 25:9734–40 [Google Scholar]
  2. Acharya N, Klassen R, Johnson RE, Prakash L, Prakash S. 2.  2011. PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. PNAS 108:17927–32 [Google Scholar]
  3. Anand RP, Lovett ST, Haber JE. 3.  2013. Break-induced DNA replication. Cold Spring Harb. Perspect. Biol. 5:a010397 [Google Scholar]
  4. Anand RP, Tsaponina O, Greenwell PW, Lee CS, Du W. 4.  et al. 2014. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28:2394–406 [Google Scholar]
  5. Arana ME, Seki M, Wood RD, Rogozin IB, Kunkel TA. 5.  2008. Low-fidelity DNA synthesis by human DNA polymerase theta. Nucleic Acids Res. 36:3847–56 [Google Scholar]
  6. Beagan K, McVey M. 6.  2016. Linking DNA polymerase theta structure and function in health and disease. Cell. Mol. Life Sci. 73:603–15 [Google Scholar]
  7. Bebenek K, Pedersen LC, Kunkel TA. 7.  2014. Structure-function studies of DNA polymerase λ. Biochemistry 53:2781–92 [Google Scholar]
  8. Boersma V, Moatti N, Segura-Bayona S, Peuscher MH, van der Torre J. 8.  et al. 2015. MAD2L2 controls DNA repair at telomeres and DNA breaks by inhibiting 5′ end resection. Nature 521:537–40 [Google Scholar]
  9. Boyd JB, Sakaguchi K, Harris PV. 9.  1990. mus308 mutants of Drosophila exhibit hypersensitivity to DNA cross-linking agents and are defective in a deoxyribonuclease. Genetics 125:813–19 [Google Scholar]
  10. Brocas C, Charbonnier JB, Dherin C, Gangloff S, Maloisel L. 10.  2010. Stable interactions between DNA polymerase δ catalytic and structural subunits are essential for efficient DNA repair. DNA Repair 9:1098–111 [Google Scholar]
  11. Bugreev DV, Hanaoka F, Mazin AV. 11.  2007. Rad54 dissociates homologous recombination intermediates by branch migration. Nat. Struct. Mol. Biol. 14:746–53 [Google Scholar]
  12. Burch LH, Yang Y, Sterling JF, Roberts SA, Chao FG. 12.  et al. 2011. Damage-induced localized hypermutability. Cell Cycle 10:1073–85 [Google Scholar]
  13. Canitrot Y, Capp JP, Puget N, Bieth A, Lopez B. 13.  et al. 2004. DNA polymerase β overexpression stimulates the Rad51-dependent homologous recombination in mammalian cells. Nucleic Acids Res. 32:5104–12 [Google Scholar]
  14. Capp JP, Boudsocq F, Bergoglio V, Trouche D, Cazaux C. 14.  et al. 2010. The R438W polymorphism of human DNA polymerase lambda triggers cellular sensitivity to camptothecin by compromising the homologous recombination repair pathway. Carcinogenesis 31:1742–47 [Google Scholar]
  15. Carreras Puigvert J, Sanjiv K, Helleday T. 15.  2015. Targeting DNA repair, DNA metabolism and replication stress as anti-cancer strategies. FEBS J. 283:232–45 [Google Scholar]
  16. Ceccaldi R, Liu JC, Amunugama R, Hajdu I, Primack B. 16.  et al. 2015. Homologous-recombination-deficient tumours are dependent on Polθ-mediated repair. Nature 518:258–62 [Google Scholar]
  17. Chan JE, Kolodner RD. 17.  2011. A genetic and structural study of genome rearrangements mediated by high copy repeat Ty1 elements. PLOS Genet. 7:e1002089 [Google Scholar]
  18. Chen XJ. 18.  2013. Mechanism of homologous recombination and implications for aging-related deletions in mitochondrial DNA. Microbiol. Mol. Biol. Rev. 77:476–96 [Google Scholar]
  19. Chilkova O, Stenlund P, Isoz I, Stith CM, Grabowski P. 19.  et al. 2007. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res. 35:6588–97 [Google Scholar]
  20. Costantino L, Sotiriou SK, Rantala JK, Magin S, Mladenov E. 20.  et al. 2014. Break-induced replication repair of damaged forks induces genomic duplications in human cells. Science 343:88–91 [Google Scholar]
  21. Covo S, Blanco L, Livneh Z. 21.  2004. Lesion bypass by human DNA polymerase μ reveals a template-dependent, sequence-independent nucleotidyl transferase activity. J. Biol. Chem. 279:859–65 [Google Scholar]
  22. Deem A, Keszthelyi A, Blackgrove T, Vayl A, Coffey B. 22.  et al. 2011. Break-induced replication is highly inaccurate. PLOS Biol. 9:e1000594 [Google Scholar]
  23. Dua R, Levy DL, Campbell JL. 23.  1999. Analysis of the essential functions of the C-terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain. J. Biol. Chem. 274:22283–88 [Google Scholar]
  24. Dubarry M, Lawless C, Banks AP, Cockell S, Lydall D. 24.  2015. Genetic networks required to coordinate chromosome replication by DNA polymerases α, δ, and ε in Saccharomyces cerevisiae. G3 5:2187–97 [Google Scholar]
  25. Fabre F. 25.  1978. Induced intragenic recombination in yeast can occur during the G1 mitotic phase. Nature 272:795–97 [Google Scholar]
  26. Fabre F, Boulet A, Faye G. 26.  1991. Possible involvement of the yeast POLIII DNA polymerase in induced gene conversion. Mol. Gen. Genet. 229:353–56 [Google Scholar]
  27. Gan GN, Wittschieben JP, Wittschieben BO, Wood RD. 27.  2008. DNA polymerase zeta (pol ζ) in higher eukaryotes. Cell Res. 18:174–83 [Google Scholar]
  28. Ganai RA, Zhang XP, Heyer WD, Johansson E. 28.  2016. Strand displacement synthesis by yeast DNA polymerase ε. Nucleic Acids Res. pii: gkw556 [Google Scholar]
  29. Garcia-Diaz M, Dominguez O, Lopez-Fernandez LA, de Lera LT, Saniger ML. 29.  et al. 2000. DNA polymerase lambda (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 301:851–67 [Google Scholar]
  30. Garcia-Gomez S, Reyes A, Martinez-Jimenez MI, Chocron ES, Mouron S. 30.  et al. 2013. PrimPol, an archaic primase/polymerase operating in human cells. Mol. Cell 52:541–53 [Google Scholar]
  31. Garg P, Stith CM, Sabouri N, Johansson E, Burgers PM. 31.  2004. Idling by DNA polymerase δ maintains a ligatable nick during lagging-strand DNA replication. Genes Dev. 18:2764–73 [Google Scholar]
  32. Goodman MF, Woodgate R. 32.  2013. Translesion DNA polymerases. Cold Spring Harb. Perspect. Biol. 5:a010363 [Google Scholar]
  33. Gouge J, Rosario S, Romain F, Poitevin F, Beguin P, Delarue M. 33.  2015. Structural basis for a novel mechanism of DNA bridging and alignment in eukaryotic DSB DNA repair. EMBO J. 34:1126–42 [Google Scholar]
  34. Guo C, Fischhaber PL, Luk-Paszyc MJ, Masuda Y, Zhou J. 34.  et al. 2003. Mouse Rev1 protein interacts with multiple DNA polymerases involved in translesion DNA synthesis. EMBO J. 22:6621–30 [Google Scholar]
  35. Guo C, Tang TS, Bienko M, Parker JL, Bielen AB. 35.  et al. 2006. Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol. Cell. Biol. 26:8892–900 [Google Scholar]
  36. Guo X, Jinks-Robertson S. 36.  2013. Roles of exonucleases and translesion synthesis DNA polymerases during mitotic gap repair in yeast. DNA Repair 12:1024–30 [Google Scholar]
  37. Halas A, Ciesielski A, Zuk J. 37.  1999. Involvement of the essential yeast DNA polymerases in induced gene conversion. Acta Biochim. Pol. 46:862–72 [Google Scholar]
  38. Haracska L, Unk I, Johnson RE, Johansson E, Burgers PM. 38.  et al. 2001. Roles of yeast DNA polymerases δ and ζ and of Rev1 in the bypass of abasic sites. Genes Dev. 15:945–54 [Google Scholar]
  39. Hashimoto K, Cho Y, Yang IY, Akagi J, Ohashi E. 39.  et al. 2012. The vital role of polymerase ζ and REV1 in mutagenic, but not correct, DNA synthesis across benzo[α]pyrene-dG and recruitment of polymerase ζ by REV1 to replication-stalled site. J. Biol. Chem 287:9613–22 [Google Scholar]
  40. Hastings PJ, Ira G, Lupski JR. 40.  2009. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLOS Genet. 5:e1000327 [Google Scholar]
  41. Hicks WM, Kim M, Haber JE. 41.  2010. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 329:82–85 [Google Scholar]
  42. Hirano Y, Sugimoto K. 42.  2006. ATR homolog Mec1 controls association of DNA polymerase ζ-Rev1 complex with regions near a double-strand break. Curr. Biol. 16:586–90 [Google Scholar]
  43. Hirota K, Sonoda E, Kawamoto T, Motegi A, Masutani C. 43.  et al. 2010. Simultaneous disruption of two DNA polymerases, Polη and Polζ, in avian DT40 cells unmasks the role of Polη in cellular response to various DNA lesions. PLOS Genet. 6:e1001151 [Google Scholar]
  44. Hirota K, Yoshikiyo K, Guilbaud G, Tsurimoto T, Murai J. 44.  et al. 2015. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ. Nucleic Acids Res. 43:1671–83 [Google Scholar]
  45. Hogg M, Seki M, Wood RD, Doublie S, Wallace SS. 45.  2011. Lesion bypass activity of DNA polymerase θ (POLQ) is an intrinsic property of the pol domain and depends on unique sequence inserts. J. Mol. Biol. 405:642–52 [Google Scholar]
  46. Holbeck SL, Strathern JN. 46.  1997. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 147:1017–24 [Google Scholar]
  47. Holmes AM, Haber JE. 47.  1999. Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96:415–24 [Google Scholar]
  48. Jain S, Sugawara N, Lydeard J, Vaze M, Tanguy Le Gac N, Haber JE. 48.  2009. A recombination execution checkpoint regulates the choice of homologous recombination pathway during DNA double-strand break repair. Genes Dev. 23:291–303 [Google Scholar]
  49. Jansen JG, Temviriyanukul P, Wit N, Delbos F, Reynaud CA. 49.  et al. 2014. Redundancy of mammalian Y family DNA polymerases in cellular responses to genomic DNA lesions induced by ultraviolet light. Nucleic Acids Res. 42:11071–82 [Google Scholar]
  50. Jentsch S, Psakhye I. 50.  2013. Control of nuclear activities by substrate-selective and protein-group SUMOylation. Annu. Rev. Genetics 47:167–86 [Google Scholar]
  51. Jin YH, Ayyagari R, Resnick MA, Gordenin DA, Burgers PM. 51.  2003. Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3′-5′-exonuclease activities of Pol δ in the creation of a ligatable nick. J. Biol. Chem. 278:1626–33 [Google Scholar]
  52. Jinks-Robertson S, Petes TD. 52.  1986. Chromosomal translocations generated by high-frequency meiotic recombination between repeated yeast genes. Genetics 114:731–52 [Google Scholar]
  53. Johnson RD, Jasin M. 53.  2000. Sister chromatid gene conversion is a prominent double-strand break repair pathway in mammalian cells. EMBO J. 19:3398–407 [Google Scholar]
  54. Johnson RE, Klassen R, Prakash L, Prakash S. 54.  2015. A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands. Mol. Cell 59:163–75 [Google Scholar]
  55. Johnson RE, Prakash L, Prakash S. 55.  2012. Pol31 and Pol32 subunits of yeast DNA polymerase δ are also essential subunits of DNA polymerase ζ. PNAS 109:12455–60 [Google Scholar]
  56. Johnson RE, Prakash S, Prakash L. 56.  1999. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, Polη. Science 283:1001–4 [Google Scholar]
  57. Kadyk LC, Hartwell LH. 57.  1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevisiae. Genetics 132:387–402 [Google Scholar]
  58. Kaguni LS. 58.  2004. DNA polymerase γ, the mitochondrial replicase. Annu. Rev. Biochem. 73:293–320 [Google Scholar]
  59. Kane DP, Shusterman M, Rong YK, McVey M. 59.  2012. Competition between replicative and translesion polymerases during homologous recombination repair in Drosophila. PLOS Genet. 8:e1002659 [Google Scholar]
  60. Kawamoto T, Araki K, Sonoda E, Yamashita YM, Harada K. 60.  et al. 2005. Dual roles for DNA polymerase η in homologous DNA recombination and translesion DNA synthesis. Mol. Cell 20:793–99 [Google Scholar]
  61. Kent T, Chandramouly G, McDevitt SM, Ozdemir AY, Pomerantz RT. 61.  2015. Mechanism of microhomology-mediated end-joining promoted by human DNA polymerase θ. Nat. Struct. Mol. Biol. 22:230–37 [Google Scholar]
  62. Kesti T, Flick K, Keranen S, Syvaoja JE, Wittenberg C. 62.  1999. DNA polymerase ε catalytic domains are dispensable for DNA replication, DNA repair, and cell viability. Mol. Cell 3:679–85 [Google Scholar]
  63. Kowalczykowski SC, Hunter N, Heyer W-D. 63.  2016. DNA Recombination Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press
  64. Lange SS, Tomida J, Boulware KS, Bhetawal S, Wood RD. 64.  2016. The polymerase activity of mammalian DNA pol ζ is specifically required for cell and embryonic viability. PLOS Genet. 12:e1005759 [Google Scholar]
  65. Lao JP, Oh SD, Shinohara M, Shinohara A, Hunter N. 65.  2008. Rad52 promotes postinvasion steps of meiotic double-strand-break repair. Mol. Cell 29:517–24 [Google Scholar]
  66. Lawrence CW. 66.  2002. Cellular roles of DNA polymerase ζ and Rev1 protein. DNA Repair 1:425–35 [Google Scholar]
  67. Lee K, Lee SE. 67.  2007. Saccharomyces cerevisiae Sae2- and Tell-dependent single-strand DNA formation at DNA break promotes microhomology-mediated end joining. Genetics 176:2003–14 [Google Scholar]
  68. Leem SH, Ropp PA, Sugino A. 68.  1994. The yeast Saccharomyces cerevisiae DNA polymerase IV: possible involvement in double-strand break DNA repair. Nucleic Acids Res. 22:3011–17 [Google Scholar]
  69. Li J, Holzschu DL, Sugiyama T. 69.  2013. PCNA is efficiently loaded on the DNA recombination intermediate to modulate polymerase δ, η, and ζ activities. PNAS 110:7672–77 [Google Scholar]
  70. Li X, Heyer WD. 70.  2009. RAD54 controls access to the invading 3′-OH end after RAD51-mediated DNA strand invasion in homologous recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 37:638–46 [Google Scholar]
  71. Li X, Stith CM, Burgers PM, Heyer W-D. 71.  2009. PCNA is required for initiating recombination-associated DNA synthesis by DNA polymerase δ. Mol. Cell 36:704–13 [Google Scholar]
  72. Lieber MR. 72.  2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 79:181–211 [Google Scholar]
  73. Limoli CL, Giedzinski E, Cleaver JE. 73.  2005. Alternative recombination pathways in UV-irradiated XP variant cells. Oncogene 24:3708–14 [Google Scholar]
  74. Lindahl T. 74.  1993. Instability and decay of the primary structure of DNA. Nature 362:709–15 [Google Scholar]
  75. Lydeard JR, Jain S, Yamaguchi M, Haber JE. 75.  2007. Break-induced replication and telomerase-independent telomere maintenance require Pol32. Nature 448:820–23 [Google Scholar]
  76. Lydeard JR, Lipkin-Moore Z, Sheu YJ, Stillman B, Burgers PM, Haber JE. 76.  2010. Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev. 24:1133–44 [Google Scholar]
  77. Maga G, Villani G, Ramadan K, Shevelev I, Tanguy Le Gac N. 77.  et al. 2002. Human DNA polymerase λ functionally and physically interacts with proliferating cell nuclear antigen in normal and translesion DNA synthesis. J. Biol. Chem. 277:48434–40 [Google Scholar]
  78. Magni GE. 78.  1963. The origin of spontaneous mutations during meiosis. PNAS 50:975–80 [Google Scholar]
  79. Majka J, Burgers PM. 79.  2004. The PCNA-RFC families of DNA clamps and clamp loaders. Prog. Nucleic Acid Res. Mol. Biol. 78:227–60 [Google Scholar]
  80. Malkova A, Haber JE. 80.  2012. Mutations arising during repair of chromosome breaks. Annu. Rev. Genet. 46:455–73 [Google Scholar]
  81. Maloisel L, Bhargava J, Roeder GS. 81.  2004. A role for DNA polymerase δ in gene conversion and crossing over during meiosis in Saccharomyces cerevisiae. Genetics 167:1133–42 [Google Scholar]
  82. Maloisel L, Fabre F, Gangloff S. 82.  2008. DNA polymerase δ is preferentially recruited during homologous recombination to promote heteroduplex DNA extension. Mol. Cell. Biol. 28:1373–82 [Google Scholar]
  83. Masutani C, Kusumoto R, Yamada A, Dohmae N, Yokoi M. 83.  et al. 1999. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399:700–4 [Google Scholar]
  84. Mateos-Gomez PA, Gong F, Nair N, Miller KM, Lazzerini-Denchi E, Sfeir A. 84.  2015. Mammalian polymerase θ promotes alternative NHEJ and suppresses recombination. Nature 518:254–57 [Google Scholar]
  85. McElhinny SAN, Gordenin DA, Stith CM, Burgers PMJ, Kunkel TA. 85.  2008. Division of labor at the eukaryotic replication fork. Mol. Cell 30:137–44 [Google Scholar]
  86. McIlwraith MJ, Vaisman A, Liu Y, Fanning E, Woodgate R, West SC. 86.  2005. Human DNA polymerase η promotes DNA synthesis from strand invasion intermediates of homologous recombination. Mol. Cell 20:783–92 [Google Scholar]
  87. McIntyre J, Woodgate R. 87.  2015. Regulation of translesion DNA synthesis: posttranslational modification of lysine residues in key proteins. DNA Repair 29:166–79 [Google Scholar]
  88. McKee RH, Lawrence CW. 88.  1979. Genetic analysis of gamma-ray mutagenesis in yeast. I. Reversion in radiation-sensitive strains. Genetics 93:361–73 [Google Scholar]
  89. Meeusen S, Nunnari J. 89.  2003. Evidence for a two membrane-spanning autonomous mitochondrial DNA replisome. J. Cell Biol. 163:503–10 [Google Scholar]
  90. Meyer D, Fu BXH, Heyer WD. 90.  2015. DNA polymerases δ and λ cooperate in repairing double-strand breaks by microhomology-mediated end-joining in Saccharomyces cerevisiae. PNAS 112:E6907–16 [Google Scholar]
  91. Mito E, Mokhnatkin JV, Steele MC, Buettner VL, Sommer SS. 91.  et al. 2008. Mutagenic and recombinagenic responses to defective DNA polymerase δ are facilitated by the Rev1 protein in pol3-t mutants of Saccharomyces cerevisiae. Genetics 179:1795–806 [Google Scholar]
  92. Moldovan GL, Madhavan MV, Mirchandani KD, McCaffrey RM, Vinciguerra P, D'Andrea AD. 92.  2010. DNA polymerase POLN participates in cross-link repair and homologous recombination. Mol. Cell. Biol. 30:1088–96 [Google Scholar]
  93. Mouron S, Rodriguez-Acebes S, Martinez-Jimenez MI, Garcia-Gomez S, Chocron S. 93.  et al. 2013. Repriming of DNA synthesis at stalled replication forks by human PrimPol. Nat. Struct. Mol. Biol. 20:1383–89 [Google Scholar]
  94. Moynahan ME, Jasin M. 94.  1997. Loss of heterozygosity induced by a chromosomal double-strand break. PNAS 94:8988–93 [Google Scholar]
  95. Nelson JR, Lawrence CW, Hinkle DC. 95.  1996. Deoxycytidyl transferase activity of yeast REV1 protein. Nature 382:729–31 [Google Scholar]
  96. Nelson JR, Lawrence CW, Hinkle DC. 96.  1996. Thymine-thymine dimer bypass by yeast DNA polymerase ζ. Science 272:1646–49 [Google Scholar]
  97. Netz DJ, Stith CM, Stumpfig M, Kopf G, Vogel D. 97.  et al. 2012. Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat. Chem. Biol. 8:125–32 [Google Scholar]
  98. Newman JA, Cooper CD, Aitkenhead H, Gileadi O. 98.  2015. Structure of the helicase domain of DNA polymerase theta reveals a possible role in the microhomology-mediated end-joining pathway. Structure 23:2319–30 [Google Scholar]
  99. Nicolay NH, Carter R, Hatch SB, Schultz N, Prevo R. 99.  et al. 2012. Homologous recombination mediates S-phase-dependent radioresistance in cells deficient in DNA polymerase η. Carcinogenesis 33:2026–34 [Google Scholar]
  100. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD. 100.  et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93 [Google Scholar]
  101. Nishant KT, Wei W, Mancera E, Argueso JL, Schlattl A. 101.  et al. 2010. The baker's yeast diploid genome is remarkably stable in vegetative growth and meiosis. PLOS Genet. 6:e1001109 [Google Scholar]
  102. Northam MR, Moore EA, Mertz TM, Binz SK, Stith CM. 102.  et al. 2014. DNA polymerases ζ and Rev1 mediate error-prone bypass of non-B DNA structures. Nucleic Acids Res. 42:290–306 [Google Scholar]
  103. O'Connor MJ. 103.  2015. Targeting the DNA damage response in cancer. Mol. Cell 60:547–60 [Google Scholar]
  104. O'Donnell M, Langston L, Stillman B. 104.  2013. Principles and concepts of DNA replication in bacteria, archaea, and eukarya. Cold Spring Harb. Perspect. Biol. 5:a010108 [Google Scholar]
  105. Okada T, Sonoda E, Yoshimura M, Kawano Y, Saya H. 105.  et al. 2005. Multiple roles of vertebrate REV genes in DNA repair and recombination. Mol. Cell. Biol. 25:6103–11 [Google Scholar]
  106. Paques F, Haber JE. 106.  1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6765–71 [Google Scholar]
  107. Pardo B, Aguilera A. 107.  2012. Complex chromosomal rearrangements mediated by break-induced replication involve structure-selective endonucleases. PLOS Genet. 8:e1002979 [Google Scholar]
  108. Pardo B, Ma E, Marcand S. 108.  2006. Mismatch tolerance by DNA polymerase Pol4 in the course of nonhomologous end joining in Saccharomyces cerevisiae. Genetics 172:2689–94 [Google Scholar]
  109. Pavlov YI, Shcherbakov VP, Rogozin IB. 109.  2006. Rols of DNA polymerases in replication, repair, and recombination in eukaryotes. Int. Rev. Cytol. 255:41–132 [Google Scholar]
  110. Picher AJ, Garcia-Diaz M, Bebenek K, Pedersen LC, Kunkel TA, Blanco L. 110.  2006. Promiscuous mismatch extension by human DNA polymerase λ. Nucleic Acids Res. 34:3259–66 [Google Scholar]
  111. Plug AW, Clairmont CA, Sapi E, Ashley T, Sweasy JB. 111.  1997. Evidence for a role for DNA polymerase β in mammalian meiosis. PNAS 94:1327–31 [Google Scholar]
  112. Podust VN, Hubscher U. 112.  1993. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins. Nucleic Acids Res. 21:841–46 [Google Scholar]
  113. Pozhidaeva A, Pustovalova Y, D'Souza S, Bezsonova I, Walker GC, Korzhnev DM. 113.  2012. NMR structure and dynamics of the C-terminal domain from human Rev1 and its complex with Rev1 interacting region of DNA polymerase η. Biochemistry 51:5506–20 [Google Scholar]
  114. Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA. 114.  2007. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science 317:127–30 [Google Scholar]
  115. Putnam CD, Hayes TK, Kolodner RD. 115.  2009. Specific pathways prevent duplication-mediated genome rearrangements. Nature 460:984–89 [Google Scholar]
  116. Rattray A, Santoyo G, Shafer B, Strathern JN. 116.  2015. Elevated mutation rate during meiosis in Saccharomyces cerevisiae. PLOS Genet. 11:e1004910 [Google Scholar]
  117. Rattray AJ, Shafer BK, McGill CB, Strathern JN. 117.  2002. The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 162:1063–77 [Google Scholar]
  118. Ray A, Machin N, Stahl FW. 118.  1989. A DNA double-chain break stimulates triparental recombination in Saccharomyces cerevisiae. PNAS 86:6225–29 [Google Scholar]
  119. Roberts SA, Gordenin DA. 119.  2014. Hypermutation in human cancer genomes: footprints and mechanisms. Nat. Rev. Cancer 14:786–800 [Google Scholar]
  120. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D. 120.  et al. 2013. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat. Genet. 45:970–76 [Google Scholar]
  121. Roberts SA, Sterling J, Thompson C, Harris S, Mav D. 121.  et al. 2012. Clustered mutations in yeast and in human cancers can arise from damaged long single-strand DNA regions. Mol. Cell 46:424–35 [Google Scholar]
  122. Ruiz JF, Gomez-Gonzalez B, Aguilera A. 122.  2009. Chromosomal translocations caused by either pol32-dependent or pol32-independent triparental break-induced replication. Mol. Cell. Biol. 29:5441–54 [Google Scholar]
  123. Saini N, Ramakrishnan S, Elango R, Ayyar S, Zhang Y. 123.  et al. 2013. Migrating bubble during break-induced replication drives conservative DNA synthesis. Nature 502:389–92 [Google Scholar]
  124. Saitoh S, Chabes A, McDonald WH, Thelander L, Yates JR, Russell P. 124.  2002. Cid13 is a cytoplasmic poly(A) polymerase that regulates ribonucleotide reductase mRNA. Cell 109:563–73 [Google Scholar]
  125. Sakamoto A, Iwabata K, Koshiyama A, Sugawara H, Yanai T. 125.  et al. 2007. Two X family DNA polymerases, λ and μ, in meiotic tissues of the basidiomycete, Coprinus cinereus. Chromosoma 116:545–56 [Google Scholar]
  126. Sakofsky CJ, Ayyar S, Deem AK, Chung WH, Ira G, Malkova A. 126.  2015. Translesion polymerases drive microhomology-mediated break-induced replication leading to complex chromosomal rearrangements. Mol. Cell 60:860–72 [Google Scholar]
  127. Sakofsky CJ, Roberts SA, Malc E, Mieczkowski PA, Resnick MA. 127.  et al. 2014. Break-induced replication is a source of mutation clusters underlying kataegis. Cell Rep. 7:1640–48 [Google Scholar]
  128. Schlacher K, Christ N, Siaud N, Egashira A, Wu H, Jasin M. 128.  2011. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145:529–42 [Google Scholar]
  129. Sebesta M, Burkovics P, Haracska L, Krejci L. 129.  2011. Reconstitution of DNA repair synthesis in vitro and the role of polymerase and helicase activities. DNA Repair 10:567–76 [Google Scholar]
  130. Sebesta M, Burkovics P, Juhasz S, Zhang S, Szabo JE. 130.  et al. 2013. Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair 12:691–98 [Google Scholar]
  131. Seki M, Marini F, Wood RD. 131.  2003. POLQ (Pol θ), a DNA polymerase and DNA-dependent ATPase in human cells. Nucleic Acids Res. 31:6117–26 [Google Scholar]
  132. Seki M, Masutani C, Yang LW, Schuffert A, Iwai S. 132.  et al. 2004. High-efficiency bypass of DNA damage by human DNA polymerase Q. EMBO J. 23:4484–94 [Google Scholar]
  133. Sharma S, Hicks JK, Chute CL, Brennan JR, Ahn JY. 133.  et al. 2012. REV1 and polymerase ζ facilitate homologous recombination repair. Nucleic Acids Res. 40:682–91 [Google Scholar]
  134. Shi I, Hallwyl SC, Seong C, Mortensen U, Rothstein R, Sung P. 134.  2009. Role of the Rad52 amino-terminal DNA binding activity in DNA strand capture in homologous recombination. J. Biol. Chem. 284:33275–84 [Google Scholar]
  135. Shimizu K, Santocanale C, Ropp PA, Longhese MP, Plevani P. 135.  et al. 1993. Purification and characterization of a new DNA polymerase from budding yeast Saccharomyces cerevisiae. A probable homolog of mammalian DNA polymerase β. J. Biol. Chem. 268:27148–53 [Google Scholar]
  136. Smith CE, Lam AF, Symington LS. 136.  2009. Aberrant double-strand break repair resulting in half crossovers in mutants defective for Rad51 or the DNA polymerase δ complex. Mol. Cell. Biol. 29:1432–41 [Google Scholar]
  137. Smith CE, Llorente B, Symington LS. 137.  2007. Template switching during break-induced replication. Nature 447:102–5 [Google Scholar]
  138. Smith DJ, Whitehouse I. 138.  2012. Intrinsic coupling of lagging-strand synthesis to chromatin assembly. Nature 483:434–38 [Google Scholar]
  139. Sneeden JL, Grossi SM, Tappin I, Hurwitz J, Heyer WD. 139.  2013. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res. 41:4913–25 [Google Scholar]
  140. St Charles JA, Liberti SE, Williams JS, Lujan SA, Kunkel TA. 140.  2015. Quantifying the contributions of base selectivity, proofreading and mismatch repair to nuclear DNA replication in Saccharomyces cerevisiae. DNA Repair 31:41–51 [Google Scholar]
  141. Stafa A, Donnianni RA, Timashev LA, Lam AF, Symington LS. 141.  2014. Template switching during break-induced replication is promoted by the Mph1 helicase in Saccharomyces cerevisiae. Genetics 196:1017–28 [Google Scholar]
  142. Strathern JN, Shafer BK, McGill CB. 142.  1995. DNA synthesis errors associated with double-strand-break repair. Genetics 140:965–72 [Google Scholar]
  143. Strathern JN, Weinstock KG, Higgins DR, McGill CB. 143.  1991. A novel recombinator in yeast based on gene II protein from bacteriophage f1. Genetics 127:61–73 [Google Scholar]
  144. Sugiyama T, New JH, Kowalczykowski SC. 144.  1998. DNA annealing by Rad52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. PNAS 95:6049–54 [Google Scholar]
  145. Takata K, Shimizu T, Iwai S, Wood RD. 145.  2006. Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol. J. Biol. Chem. 281:23445–55 [Google Scholar]
  146. Takata K, Tomida J, Reh S, Swanhart LM, Takata M. 146.  et al. 2015. Conserved overlapping gene arrangement, restricted expression, and biochemical activities of DNA polymerase ν (POLN). J. Biol. Chem. 290:24278–93 [Google Scholar]
  147. Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K. 147.  et al. 2013. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. eLife 2:e00534 [Google Scholar]
  148. Tissier A, McDonald JP, Frank EG, Woodgate R. 148.  2000. Polι, a remarkably error-prone human DNA polymerase. Genes Dev. 14:1642–50 [Google Scholar]
  149. Tsaponina O, Haber JE. 149.  2014. Frequent interchromosomal template switches during gene conversion in S. cerevisiae. Mol. Cell 55:615–25 [Google Scholar]
  150. Tsubota T, Maki S, Kubota H, Sugino A, Maki H. 150.  2003. Double-stranded DNA binding properties of Saccharomyces cerevisiae DNA polymerase epsilon and of the Dpb3p-Dpb4p subassembly. Genes Cells 8:873–88 [Google Scholar]
  151. van Loon B, Woodgate R, Hubscher U. 151.  2015. DNA polymerases: biology, diseases and biomedical applications. DNA Repair 29:1–3 [Google Scholar]
  152. Wan L, Lou J, Xia Y, Su B, Liu T. 152.  et al. 2013. hPrimpol1/CCDC111 is a human DNA primase-polymerase required for the maintenance of genome integrity. EMBO Rep. 14:1104–12 [Google Scholar]
  153. Wang X, Ira G, Tercero JA, Holmes AM, Diffley JF, Haber JE. 153.  2004. Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 24:6891–99 [Google Scholar]
  154. Wickramasinghe CM, Arzouk H, Frey A, Maiter A, Sale JE. 154.  2015. Contributions of the specialised DNA polymerases to replication of structured DNA. DNA Repair 29:83–90 [Google Scholar]
  155. Wilson MA, Kwon Y, Xu Y, Chung WH, Chi P. 155.  et al. 2013. Pif1 helicase and Polδ promote recombination-coupled DNA synthesis via bubble migration. Nature 502:393–96 [Google Scholar]
  156. Wiltrout ME, Walker GC. 156.  2011. The DNA polymerase activity of Saccharomyces cerevisiae Rev1 is biologically significant. Genetics 187:21–35 [Google Scholar]
  157. Wittschieben JP, Reshmi SC, Gollin SM, Wood RD. 157.  2006. Loss of DNA polymerase ζ causes chromosomal instability in mammalian cells. Cancer Res. 66:134–42 [Google Scholar]
  158. Wojtaszek J, Lee CJ, D'Souza S, Minesinger B, Kim H. 158.  et al. 2012. Structural basis of Rev1-mediated assembly of a quaternary vertebrate translesion polymerase complex consisting of Rev1, heterodimeric polymerase (Pol) ζ, and Pol κ. J. Biol. Chem. 287:33836–46 [Google Scholar]
  159. Xu G, Chapman JR, Brandsma I, Yuan J, Mistrik M. 159.  et al. 2015. REV7 counteracts DNA double-strand break resection and affects PARP inhibition. Nature 521:541–44 [Google Scholar]
  160. Yang Y, Gordenin DA, Resnick MA. 160.  2010. A single-strand specific lesion drives MMS-induced hyper-mutability at a double-strand break in yeast. DNA Repair 9:914–21 [Google Scholar]
  161. Yang Y, Liu Z, Wang F, Temviriyanukul P, Ma X. 161.  et al. 2015. FANCD2 and REV1 cooperate in the protection of nascent DNA strands in response to replication stress. Nucleic Acids Res. 43:8325–39 [Google Scholar]
  162. Yang Y, Sterling J, Storici F, Resnick MA, Gordenin DA. 162.  2008. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLOS Genet. 4:e1000264 [Google Scholar]
  163. Yoon JH, Park J, Conde J, Wakamiya M, Prakash L, Prakash S. 163.  2015. Rev1 promotes replication through UV lesions in conjunction with DNA polymerases η, ι, and κ but not DNA polymerase ζ. Genes Dev. 29:2588–602 [Google Scholar]
  164. Zietlow L, Smith LA, Bessho M, Bessho T. 164.  2009. Evidence for the involvement of human DNA polymerase N in the repair of DNA interstrand cross-links. Biochemistry 48:11817–24 [Google Scholar]
  165. Ziv O, Geacintov N, Nakajima S, Yasui A, Livneh Z. 165.  2009. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. PNAS 106:11552–57 [Google Scholar]
/content/journals/10.1146/annurev-genet-120215-035243
Loading
/content/journals/10.1146/annurev-genet-120215-035243
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error