1932

Abstract

Cancers originate from somatic cells in the human body that have accumulated genetic alterations. These mutations modify the phenotype of the cells, allowing them to escape the homeostatic regulation that maintains normal cell number. Viewed through the lens of evolutionary biology, the transformation of normal cells into malignant cells is evolution in action. Evolution continues throughout cancer growth, progression, treatment resistance, and disease relapse, driven by adaptation to changes in the cancer's environment, and intratumor heterogeneity is an inevitable consequence of this evolutionary process. Genomics provides a powerful means to characterize tumor evolution, enabling quantitative measurement of evolving clones across space and time. In this review, we discuss concepts and approaches to quantify and measure this evolutionary process in cancer using genomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-genom-083117-021712
2019-08-31
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/genom/20/1/annurev-genom-083117-021712.html?itemId=/content/journals/10.1146/annurev-genom-083117-021712&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Ahmed Z, Gravel S. 2018. Intratumor heterogeneity and circulating tumor cell clusters. Mol. Biol. Evol. 35:2135–44
    [Google Scholar]
  2. 2.
    Alexandrov LB, Ju YS, Haase K, Van Loo P, Martincorena I et al. 2016. Mutational signatures associated with tobacco smoking in human cancer. Science 354:618–22
    [Google Scholar]
  3. 3.
    Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S et al. 2013. Signatures of mutational processes in human cancer. Nature 500:415–21
    [Google Scholar]
  4. 4.
    Alexandrov LB, Stratton MR. 2014. Mutational signatures: the patterns of somatic mutations hidden in cancer genomes. Curr. Opin. Genet. Dev. 24:52–60
    [Google Scholar]
  5. 5.
    Altrock PM, Liu LL, Michor F 2015. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15:730–45
    [Google Scholar]
  6. 6.
    Alves JM, Prieto T, Posada D 2017. Multiregional tumor trees are not phylogenies. Trends Cancer 3:546–50
    [Google Scholar]
  7. 7.
    Andor N, Graham TA, Jansen M, Li CX, Aktipis CA et al. 2016. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22:105–13
    [Google Scholar]
  8. 8.
    Araf S, Korfi K, Nagano A, Cummin TEC, Bentley M et al. 2017. Longitudinal analyses of the genomic, transcriptomic, and T cell repertoire in diffuse large B cell lymphoma demonstrates changes in signaling and immune recognition at relapse. Blood 130:Suppl. 12734
    [Google Scholar]
  9. 9.
    Baca SC, Prandi D, Lawrence MS, Mosquera JM, Romanel A et al. 2013. Punctuated evolution of prostate cancer genomes. Cell 153:666–77
    [Google Scholar]
  10. 10.
    Bakhoum SF, Cantley LC. 2018. The multifaceted role of chromosomal instability in cancer and its microenvironment. Cell 174:1347–60
    [Google Scholar]
  11. 11.
    Barry P, Vatsiou A, Spiteri I, Nichol D, Cresswell G et al. 2018. The spatiotemporal evolution of lymph node spread in early breast cancer. Clin. Cancer Res. 24:4763–70
    [Google Scholar]
  12. 12.
    Beerenwinkel N, Antal T, Dingli D, Traulsen A, Kinzler KW et al. 2007. Genetic progression and the waiting time to cancer. PLOS Comput. Biol. 3:e225
    [Google Scholar]
  13. 13.
    Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S et al. 2010. The landscape of somatic copy-number alteration across human cancers. Nature 463:899–905
    [Google Scholar]
  14. 14.
    Bhang H-EC, Ruddy DA, Krishnamurthy Radhakrishna V, Caushi JX, Zhao R et al. 2015. Studying clonal dynamics in response to cancer therapy using high-complexity barcoding. Nat. Med. 21:440–48
    [Google Scholar]
  15. 15.
    Bielski CM, Donoghue MTA, Gadiya M, Hanrahan AJ, Won HH et al. 2018. Widespread selection for oncogenic mutant allele imbalance in cancer. Cancer Cell 34:852–62.e4
    [Google Scholar]
  16. 16.
    Bielski CM, Zehir A, Penson AV, Donoghue MTA, Chatila W et al. 2018. Genome doubling shapes the evolution and prognosis of advanced cancers. Nat. Genet. 50:1189–95
    [Google Scholar]
  17. 17.
    Blanpain C, Simons BD. 2013. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14:489–502
    [Google Scholar]
  18. 18.
    Bozic I, Antal T, Ohtsuki H, Carter H, Kim D et al. 2010. Accumulation of driver and passenger mutations during tumor progression. PNAS 107:18545–50
    [Google Scholar]
  19. 19.
    Bozic I, Gerold JM, Nowak MA 2016. Quantifying clonal and subclonal passenger mutations in cancer evolution. PLOS Comput. Biol. 12:e1004731
    [Google Scholar]
  20. 20.
    Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F et al. 2017. Comprehensive analysis of hypermutation in human cancer. Cell 171:1042–56.e10
    [Google Scholar]
  21. 21.
    Cannataro VL, Gaffney SG, Townsend JP 2018. Effect sizes of somatic mutations in cancer. J. Natl. Cancer Inst. 110:1171–77
    [Google Scholar]
  22. 22.
    Cannataro VL, McKinley SA, St Mary CM 2016. The implications of small stem cell niche sizes and the distribution of fitness effects of new mutations in aging and tumorigenesis. Evol. Appl. 9:565–82
    [Google Scholar]
  23. 23.
    Caravagna G, Giarratano Y, Ramazzoti D, Tomlinson I, Graham TA et al. 2018. Detecting repeated cancer evolution from multi-region tumor sequencing data. Nat. Methods 15:707–14
    [Google Scholar]
  24. 24.
    Castro-Giner F, Ratcliffe P, Tomlinson I 2015. The mini-driver model of polygenic cancer evolution. Nat. Rev. Cancer 15:680–85
    [Google Scholar]
  25. 25.
    Chen B, Shi Z, Chen Q, Shibata D, Wen H, Wu C-I 2018. Quasi-neutral molecular evolution—when positive and negative selection cancel out. bioRxiv 330811. https://doi.org/10.1101/330811
    [Crossref]
  26. 26.
    Chen Y, Tong D, Wu C-I 2017. A new formulation of random genetic drift and its application to the evolution of cell populations. Mol. Biol. Evol. 34:2057–64
    [Google Scholar]
  27. 27.
    Cross W, Graham TA, Wright NA 2016. New paradigms in clonal evolution: punctuated equilibrium in cancer. J. Pathol. 240:126–36
    [Google Scholar]
  28. 28.
    Cross W, Kovac M, Mustonen V, Temko D, Davis H et al. 2018. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2:1661–72
    [Google Scholar]
  29. 29.
    Davis A, Gao R, Navin NE 2017. Tumor evolution: linear, branching, neutral or punctuated. ? Biochim. Biophys. Acta Rev. Cancer 1867:151–61
    [Google Scholar]
  30. 30.
    Davis A, Navin NE. 2016. Computing tumor trees from single cells. Genome Biol 17:113
    [Google Scholar]
  31. 31.
    de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC et al. 2014. Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 346:251–56
    [Google Scholar]
  32. 32.
    Diaz LA, Williams RT, Wu J, Kinde I, Hecht JR et al. 2012. The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers. Nature 486:537–40
    [Google Scholar]
  33. 33.
    Driessens G, Beck B, Caauwe A, Simons BD, Blanpain C 2012. Defining the mode of tumour growth by clonal analysis. Nature 488:527–30
    [Google Scholar]
  34. 34.
    Durrett R. 2013. Population genetics of neutral mutations in exponentially growing cancer cell populations. Ann. Appl. Probab. 23:230–50
    [Google Scholar]
  35. 35.
    Eirew P, Steif A, Khattra J, Ha G, Yap D et al. 2015. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature 518:422–26
    [Google Scholar]
  36. 36.
    El-Kebir M, Satas G, Raphael BJ 2018. Inferring parsimonious migration histories for metastatic cancers. Nat. Genet. 50:718–26
    [Google Scholar]
  37. 37.
    Ewens WJ. 2012. Mathematical Population Genetics, Vol. 1: Theoretical Introduction New York: Springer. , 2nd ed..
  38. 38.
    Fialkow PJ. 1979. Clonal origin of human tumors. Annu. Rev. Med. 30:135–43
    [Google Scholar]
  39. 39.
    Findlay GM, Daza RM, Martin B, Zhang MD, Leith AP et al. 2018. Accurate classification of BRCA1 variants with saturation genome editing. Nature 562:217–22
    [Google Scholar]
  40. 40.
    Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J et al. 2017. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 541:359–64
    [Google Scholar]
  41. 41.
    Fusco D, Gralka M, Kayser J, Anderson A, Hallatschek O 2016. Excess of mutational jackpot events in expanding populations revealed by spatial Luria-Delbrück experiments. Nat. Commun. 7:12760
    [Google Scholar]
  42. 42.
    Gao R, Davis A, McDonald TO, Sei E, Shi X et al. 2016. Punctuated copy number evolution and clonal stasis in triple-negative breast cancer. Nat. Genet. 48:1119–30
    [Google Scholar]
  43. 43.
    Gejman RS, Chang AY, Jones HF, DiKun K, Hakimi AA et al. 2018. Rejection of immunogenic tumor clones is limited by clonal fraction. eLife 7:635
    [Google Scholar]
  44. 44.
    Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP et al. 2014. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 46:225–33
    [Google Scholar]
  45. 45.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92
    [Google Scholar]
  46. 46.
    Gerstung M, Jolly C, Leshchiner I, Dentro SC, Gonzalez Rosado S et al. 2018. The evolutionary history of 2,658 cancers. bioRxiv 161562. https://doi.org/10.1101/161562
    [Crossref]
  47. 47.
    Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M et al. 2018. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat. Genet. 50:1381–87
    [Google Scholar]
  48. 48.
    Gillespie JH. 2000. Genetic drift in an infinite population: the pseudohitchhiking model. Genetics 155:909–19
    [Google Scholar]
  49. 49.
    Gordon DJ, Resio B, Pellman D 2012. Causes and consequences of aneuploidy in cancer. Nat. Rev. Genet. 13:189–203
    [Google Scholar]
  50. 50.
    Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  51. 51.
    Heide T, Zapata L, Williams MJ, Werner B, Barnes CP et al. 2018. Reply to ‘Neutral tumor evolution?. Nat. Genet. 50:1633–37
    [Google Scholar]
  52. 52.
    Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A et al. 2018. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 9:3917
    [Google Scholar]
  53. 53.
    Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ et al. 2018. Cell-of-origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer. Cell 173:291–304.e6
    [Google Scholar]
  54. 54.
    Hu Z, Sun R, Curtis C 2017. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim. Biophys. Acta Rev. Cancer 1867:109–26
    [Google Scholar]
  55. 55.
    Iwasa Y, Nowak MA, Michor F 2006. Evolution of resistance during clonal expansion. Genetics 172:2557–66
    [Google Scholar]
  56. 56.
    Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK et al. 2017. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376:2109–21
    [Google Scholar]
  57. 57.
    Jolly C, Van Loo P 2018. Timing somatic events in the evolution of cancer. Genome Biol 19:95
    [Google Scholar]
  58. 58.
    Kandoth C, McLellan MD, Vandin F, Ye K, Niu B et al. 2013. Mutational landscape and significance across 12 major cancer types. Nature 502:333–39
    [Google Scholar]
  59. 59.
    Keinan A, Clark AG. 2012. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336:740–43
    [Google Scholar]
  60. 60.
    Kessler DA, Levine H. 2014. Scaling solution in the large population limit of the general asymmetric stochastic Luria-Delbrück evolution process. J. Stat. Phys. 158:783–805
    [Google Scholar]
  61. 61.
    Khan KH, Cunningham D, Werner B, Vlachogiannis G, Spiteri I et al. 2018. Longitudinal liquid biopsy and mathematical modeling of clonal evolution forecast time to treatment failure in the PROSPECT-C phase II colorectal cancer clinical trial. Cancer Discov 8:1270–85
    [Google Scholar]
  62. 62.
    Klein AM, Simons BD. 2011. Universal patterns of stem cell fate in cycling adult tissues. Development 138:3103–11
    [Google Scholar]
  63. 63.
    Koonin EV. 2016. Splendor and misery of adaptation, or the importance of neutral null for understanding evolution. BMC Biol 14:114
    [Google Scholar]
  64. 64.
    Korbel JO, Campbell PJ. 2013. Criteria for inference of chromothripsis in cancer genomes. Cell 152:1226–36
    [Google Scholar]
  65. 65.
    Korolev KS, Müller MJI, Karahan N, Murray AW, Hallatschek O, Nelson DR 2012. Selective sweeps in growing microbial colonies. Phys. Biol. 9:026008
    [Google Scholar]
  66. 66.
    Kostadinov R, Maley CC, Kuhner MK 2016. Bulk genotyping of biopsies can create spurious evidence for heterogeneity in mutation content. PLOS Comput. Biol. 12:e1004413
    [Google Scholar]
  67. 67.
    Kryazhimskiy S, Plotkin JB. 2008. The population genetics of dN/dS. PLOS Genet 4:e1000304
    [Google Scholar]
  68. 68.
    Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV et al. 2017. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature 549:227–32
    [Google Scholar]
  69. 69.
    Lässig M, Mustonen V, Walczak AM 2017. Predicting evolution. Nat. Ecol. Evol. 1:77
    [Google Scholar]
  70. 70.
    Lawrence MS, Stojanov P, Mermel CH, Robinson JT, Garraway LA et al. 2014. Discovery and saturation analysis of cancer genes across 21 tumour types. Nature 505:495–501
    [Google Scholar]
  71. 71.
    Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K et al. 2013. Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499:214–18
    [Google Scholar]
  72. 72.
    Le DT, Durham JN, Smith KN, Wang H, Bartlett BR et al. 2017. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357:409–13
    [Google Scholar]
  73. 73.
    Lenos KJ, Miedema DM, Lodestijn SC, Nijman LE, van den Bosch T et al. 2018. Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat. Cell Biol. 20:1193–202
    [Google Scholar]
  74. 74.
    Levy SF, Blundell JR, Venkataram S, Petrov DA, Fisher DS, Sherlock G 2015. Quantitative evolutionary dynamics using high-resolution lineage tracking. Nature 519:181–86
    [Google Scholar]
  75. 75.
    Lipinski KA, Barber LJ, Davies MN, Ashenden M, Sottoriva A et al. 2016. Cancer evolution and the limits of predictability in precision cancer medicine. Trends Cancer 2:49–63
    [Google Scholar]
  76. 76.
    Łuksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD et al. 2017. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 27:517–20
    [Google Scholar]
  77. 77.
    Lynch M. 2007. The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS 104:Suppl. 18597–604
    [Google Scholar]
  78. 78.
    Macaulay IC, Haerty W, Kumar P, Li YI, Hu TX et al. 2015. G&T-seq: parallel sequencing of single-cell genomes and transcriptomes. Nat. Methods 12:519–22
    [Google Scholar]
  79. 79.
    Macintyre G, Goranova TE, De Silva D, Ennis D, Piskorz AM et al. 2018. Copy number signatures and mutational processes in ovarian carcinoma. Nat. Genet. 50:1262–70
    [Google Scholar]
  80. 80.
    Maley CC, Aktipis A, Graham TA, Sottoriva A, Boddy AM et al. 2017. Classifying the evolutionary and ecological features of neoplasms. Nat. Rev. Cancer 17:605–19
    [Google Scholar]
  81. 81.
    Maley CC, Galipeau PC, Finley JC, Wongsurawat VJ, Li X et al. 2006. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat. Genet. 38:468–73
    [Google Scholar]
  82. 82.
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F et al. 2018. Somatic mutant clones colonize the human esophagus with age. Science 362:911–17
    [Google Scholar]
  83. 83.
    Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K et al. 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171:1029–41.e21
    [Google Scholar]
  84. 84.
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86
    [Google Scholar]
  85. 85.
    Martinez P, Timmer MR, Lau CT, Calpe S, Sancho-Serra MC et al. 2016. Dynamic clonal equilibrium and predetermined cancer risk in Barrett's oesophagus. Nat. Commun. 7:12158
    [Google Scholar]
  86. 86.
    McFarland CD, Korolev KS, Kryukov GV, Sunyaev SR, Mirny LA 2013. Impact of deleterious passenger mutations on cancer progression. PNAS 110:2910–15
    [Google Scholar]
  87. 87.
    McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R et al. 2016. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351:1463–69
    [Google Scholar]
  88. 88.
    McGranahan N, Swanton C. 2017. Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168:613–28
    [Google Scholar]
  89. 89.
    McPherson A, Roth A, Laks E, Masud T, Bashashati A et al. 2016. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer. Nat. Genet. 48:758–67
    [Google Scholar]
  90. 90.
    Messer PW, Petrov DA. 2013. Population genomics of rapid adaptation by soft selective sweeps. Trends Ecol. Evol. 28:659–69
    [Google Scholar]
  91. 91.
    Milholland B, Dong X, Zhang L, Hao X, Suh Y et al. 2017. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8:15183
    [Google Scholar]
  92. 92.
    Miller CA, White BS, Dees ND, Griffith M, Welch JS et al. 2014. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLOS Comput. Biol. 10:e1003665
    [Google Scholar]
  93. 93.
    Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M et al. 2012. Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–36
    [Google Scholar]
  94. 94.
    Navin N, Kendall J, Troge J, Andrews P, Rodgers L et al. 2011. Tumour evolution inferred by single-cell sequencing. Nature 472:90–94
    [Google Scholar]
  95. 95.
    Nicholson MD, Antal T. 2016. Universal asymptotic clone size distribution for general population growth. Bull. Math. Biol. 78:2243–76
    [Google Scholar]
  96. 96.
    Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD et al. 2012. Mutational processes molding the genomes of 21 breast cancers. Cell 149:979–93
    [Google Scholar]
  97. 97.
    Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD et al. 2012. The life history of 21 breast cancers. Cell 149:994–1007
    [Google Scholar]
  98. 98.
    Okosun J, Bödör C, Wang J, Araf S, Yang C-Y et al. 2014. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 46:176–81
    [Google Scholar]
  99. 99.
    Peischl S, Dupanloup I, Foucal A, Jomphe M, Bruat V et al. 2018. Relaxed selection during a recent human expansion. Genetics 208:763–77
    [Google Scholar]
  100. 100.
    Pennings PS, Hermisson J. 2006. Soft sweeps II—molecular population genetics of adaptation from recurrent mutation or migration. Mol. Biol. Evol. 23:1076–84
    [Google Scholar]
  101. 101.
    Poulos RC, Wong YT, Ryan R, Pang H, Wong JWH 2018. Analysis of 7,815 cancer exomes reveals associations between mutational processes and somatic driver mutations. PLOS Genet 14:e1007779
    [Google Scholar]
  102. 102.
    Reiter JG, Makohon-Moore AP, Gerold JM, Heyde A, Attiyeh MA et al. 2018. Minimal functional driver gene heterogeneity among untreated metastases. Science 361:1033–37
    [Google Scholar]
  103. 103.
    Rogers ZN, McFarland CD, Winters IP, Naranjo S, Chuang C-H et al. 2017. A quantitative and multiplexed approach to uncover the fitness landscape of tumor suppression in vivo. Nat. Methods 14:737–42
    [Google Scholar]
  104. 104.
    Rogers ZN, McFarland CD, Winters IP, Seoane JA, Brady JJ et al. 2018. Mapping the in vivo fitness landscape of lung adenocarcinoma tumor suppression in mice. Nat. Genet. 50:483–86
    [Google Scholar]
  105. 105.
    Roth A, Khattra J, Yap D, Wan A, Laks E et al. 2014. PyClone: statistical inference of clonal population structure in cancer. Nat. Methods 11:396–98
    [Google Scholar]
  106. 106.
    Roth A, McPherson A, Laks E, Biele J, Yap D et al. 2016. Clonal genotype and population structure inference from single-cell tumor sequencing. Nat. Methods 13:573–76
    [Google Scholar]
  107. 107.
    Salehi S, Steif A, Roth A, Aparicio S, Bouchard-Côté A, Shah SP 2017. ddClone: joint statistical inference of clonal populations from single cell and bulk tumour sequencing data. Genome Biol 18:44
    [Google Scholar]
  108. 108.
    Salk JJ, Schmitt MW, Loeb LA 2018. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations. Nat. Rev. Genet. 19:269–85
    [Google Scholar]
  109. 109.
    Sánchez-Danés A, Hannezo E, Larsimont J-C, Liagre M, Youssef KK et al. 2016. Defining the clonal dynamics leading to mouse skin tumour initiation. Nature 536:293–303
    [Google Scholar]
  110. 110.
    Sandberg A. 1980. The cytogenetics of chronic myelocytic leukemia (CML): chronic phase and blastic crisis. Cancer Genet. Cytogenet. 1:217–28
    [Google Scholar]
  111. 111.
    Schrider DR, Kern AD. 2017. Soft sweeps are the dominant mode of adaptation in the human genome. Mol. Biol. Evol. 34:1863–77
    [Google Scholar]
  112. 112.
    Schumacher TN, Schreiber RD. 2015. Neoantigens in cancer immunotherapy. Science 348:69–74
    [Google Scholar]
  113. 113.
    Schwartz R, Schäffer AA. 2017. The evolution of tumour phylogenetics: principles and practice. Nat. Rev. Genet. 18:213–29
    [Google Scholar]
  114. 114.
    Scott J, Marusyk A. 2017. Somatic clonal evolution: a selection-centric perspective. Biochem. Biophys. Acta Rev. Cancer 1867:139–50
    [Google Scholar]
  115. 115.
    Shen MM. 2013. Chromoplexy: a new category of complex rearrangements in the cancer genome. Cancer Cell 23:567–69
    [Google Scholar]
  116. 116.
    Singer J, Kuipers J, Jahn K, Beerenwinkel N 2018. Single-cell mutation identification via phylogenetic inference. Nat. Commun. 9:5144
    [Google Scholar]
  117. 117.
    Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP et al. 2015. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47:209–16
    [Google Scholar]
  118. 118.
    Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP et al. 2013. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. PNAS 110:4009–14
    [Google Scholar]
  119. 119.
    Spiteri I, Caravagna G, Cresswell GD, Vatsiou A, Nichol D et al. 2018. Evolutionary dynamics of residual disease in human glioblastoma. Ann. Oncol. 352:987–88
    [Google Scholar]
  120. 120.
    Stratton MR. 2011. Exploring the genomes of cancer cells: progress and promise. Science 331:1553–58
    [Google Scholar]
  121. 121.
    Sun R, Hu Z, Sottoriva A, Graham TA, Harpak A et al. 2017. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49:1015–24
    [Google Scholar]
  122. 122.
    Tarabichi M, Martincorena I, Gerstung M, Leroi AM, Markowetz F et al. 2018. Neutral tumor evolution. ? Nat. Genet. 50:1630–33
    [Google Scholar]
  123. 123.
    Temko D, Tomlinson IPM, Severini S, Schuster-Böckler B, Graham TA 2018. The effects of mutational processes and selection on driver mutations across cancer types. Nat. Commun. 9:1857
    [Google Scholar]
  124. 124.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:812–30.e14
    [Google Scholar]
  125. 125.
    Toni T, Welch D, Strelkowa N, Ipsen A, Stumpf MPH 2009. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. J. R. Soc. Interface 6:187–202
    [Google Scholar]
  126. 126.
    Tsao JL, Tavaré S, Salovaara R, Jass JR, Aaltonen LA, Shibata D 1999. Colorectal adenoma and cancer divergence. Evidence of multilineage progression. Am. J. Pathol. 154:1815–24
    [Google Scholar]
  127. 127.
    Tsao JL, Yatabe Y, Salovaara R, Järvinen HJ, Mecklin JP et al. 2000. Genetic reconstruction of individual colorectal tumor histories. PNAS 97:1236–41
    [Google Scholar]
  128. 128.
    Turajlic S, Hu X, Litchfield K, Rowan A, Chambers T et al. 2018. Tracking cancer evolution reveals constrained routes to metastases: TRACERx Renal. Cell 173:581–94.e12
    [Google Scholar]
  129. 129.
    Van den Eynden J, Larsson E 2017. Mutational signatures are critical for proper estimation of purifying selection pressures in cancer somatic mutation data when using the dN/dS metric. Front. Genet. 8:415–19
    [Google Scholar]
  130. 130.
    Vermeulen L, Morrissey E, van der Heijden M, Nicholson AM, Sottoriva A et al. 2013. Defining stem cell dynamics in models of intestinal tumor initiation. Science 342:995–98
    [Google Scholar]
  131. 131.
    Wang YK, Bashashati A, Anglesio MS, Cochrane DR, Grewal DS et al. 2017. Genomic consequences of aberrant DNA repair mechanisms stratify ovarian cancer histotypes. Nat. Genet. 49:856–65
    [Google Scholar]
  132. 132.
    Weghorn D, Sunyaev S. 2017. Bayesian inference of negative and positive selection in human cancers. Nat. Genet. 49:1785–88
    [Google Scholar]
  133. 133.
    Werner B, Traulsen A, Sottoriva A, Dingli D 2017. Detecting truly clonal alterations from multi-region profiling of tumours. Sci. Rep. 7:44991
    [Google Scholar]
  134. 134.
    Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A 2016. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48:238–44
    [Google Scholar]
  135. 135.
    Williams MJ, Werner B, Heide T, Curtis C, Barnes CP et al. 2018. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50:895–903
    [Google Scholar]
  136. 136.
    Wu C-I, Wang H-Y, Ling S, Lu X 2016. The ecology and evolution of cancer: the ultra-microevolutionary process. Annu. Rev. Genet. 50:347–69
    [Google Scholar]
  137. 137.
    Yates LR, Gerstung M, Knappskog S, Desmedt C, Gundem G et al. 2015. Subclonal diversification of primary breast cancer revealed by multiregion sequencing. Nat. Med. 21:751–59
    [Google Scholar]
  138. 138.
    Zahn H, Steif A, Laks E, Eirew P, VanInsberghe M et al. 2017. Scalable whole-genome single-cell library preparation without preamplification. Nat. Methods 14:167–73
    [Google Scholar]
  139. 139.
    Zapata L, Pich O, Serrano L, Kondrashov FA, Ossowski S, Schaefer MH 2018. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol 19:67
    [Google Scholar]
  140. 140.
    Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT et al. 2018. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell 173:1755–69.e22
    [Google Scholar]
  141. 141.
    Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–59
    [Google Scholar]
  142. 142.
    Zheng Q. 1999. Progress of a half century in the study of the Luria–Delbrück distribution. Math. Biosci. 162:1–32
    [Google Scholar]
/content/journals/10.1146/annurev-genom-083117-021712
Loading
/content/journals/10.1146/annurev-genom-083117-021712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error