1932

Abstract

Hematopoietic stem cells (HSCs) and downstream progenitors have long been studied based on phenotype, cell purification, proliferation, and transplantation into myeloablated recipients. These experiments, complemented by data on expression profiles, mouse mutants, and humans with hematopoietic defects, are the foundation for the current hematopoietic differentiation tree. However, there are fundamental gaps in our knowledge of the quantitative and qualitative operation of the HSC/progenitor system under physiological and pathological conditions in vivo. The hallmarks of HSCs, self-renewal and multipotency, are observed in in vitro assays and cell transplantation experiments; however, the extent to which these features occur naturally in HSCs and progenitors remains uncertain. We focus here on work that strives to address these unresolved questions, with emphasis on fate mapping and modeling of the hematopoietic flow from stem cells toward myeloid and lymphoid lineages during development and adult life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112019
2016-05-20
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-032414-112019.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112019&mimeType=html&fmt=ahah

Literature Cited

  1. Mackey MC. 1.  2001. Cell kinetic status of haematopoietic stem cells. Cell Prolif. 34:271–83 [Google Scholar]
  2. Dancey JT, Deubelbeiss KA, Harker LA, Finch CA. 2.  1976. Neutrophil kinetics in man. J. Clin. Investig. 58:3705–15 [Google Scholar]
  3. Novak JP, Necas E. 3.  1994. Proliferation-differentiation pathways of murine haemopoiesis: correlation of lineage fluxes. Cell Prolif. 27:10597–633 [Google Scholar]
  4. Boggs DR. 4.  1984. The total marrow mass of the mouse: a simplified method of measurement. Am. J. Hematol. 16:3277–86 [Google Scholar]
  5. de Boer RJ, Perelson AS. 5.  2013. Quantifying T lymphocyte turnover. J. Theor. Biol. 327:45–87 [Google Scholar]
  6. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M. 6.  et al. 2007. Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449:7159238–42 [Google Scholar]
  7. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W. 7.  et al. 2008. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135:61118–29 [Google Scholar]
  8. Oguro H, Ding L, Morrison SJ. 8.  2013. SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13:1102–16 [Google Scholar]
  9. Cairns J. 9.  1975. Mutation selection and the natural history of cancer. Nature 255:5505197–200 [Google Scholar]
  10. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE. 10.  et al. 2004. Defining the epithelial stem cell niche in skin. Science 303:5656359–63 [Google Scholar]
  11. Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R. 11.  et al. 2009. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27:184–90 [Google Scholar]
  12. Qiu J, Papatsenko D, Niu X, Schaniel C, Moore K. 12.  2014. Divisional history and hematopoietic stem cell function during homeostasis. Stem Cell Rep. 2:4473–90 [Google Scholar]
  13. Smith LG, Weissman IL, Heimfeld S. 13.  1991. Clonal analysis of hematopoietic stem-cell differentiation in vivo. PNAS 88:72788–92 [Google Scholar]
  14. Osawa M, Hanada K, Hamada H, Nakauchi H. 14.  1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:5272242–45 [Google Scholar]
  15. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. 15.  2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:71109–21 [Google Scholar]
  16. Sieburg HB, Cho RH, Dykstra B, Uchida N, Eaves CJ, Muller-Sieburg CE. 16.  2006. The hematopoietic stem compartment consists of a limited number of discrete stem cell subsets. Blood 107:62311–16 [Google Scholar]
  17. Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M. 17.  et al. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:2218–29 [Google Scholar]
  18. Schlenner SM, Rodewald H-R. 18.  2010. Early T cell development and the pitfalls of potential. Trends Immunol. 31:8303–10 [Google Scholar]
  19. Abramson S, Miller RG, Phillips RA. 19.  1977. The identification in adult bone marrow of pluripotent and restricted stem cells of the myeloid and lymphoid systems. J. Exp. Med. 145:61567–79 [Google Scholar]
  20. Keller G, Paige C, Gilboa E, Wagner EF. 20.  1985. Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318:6042149–54 [Google Scholar]
  21. Dick JE, Magli MC, Huszar D, Phillips RA, Bernstein A. 21.  1985. Introduction of a selectable gene into primitive stem cells capable of long-term reconstitution of the hemopoietic system of W/Wv mice. Cell 42:171–79 [Google Scholar]
  22. Lemischka IR, Raulet DH, Mulligan RC. 22.  1986. Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:6917–27 [Google Scholar]
  23. Gerrits A, Dykstra B, Kalmykowa OJ, Klauke K, Verovskaya E. 23.  et al. 2010. Cellular barcoding tool for clonal analysis in the hematopoietic system. Blood 115:132610–18 [Google Scholar]
  24. Lu R, Neff NF, Quake SR, Weissman IL. 24.  2011. Tracking single hematopoietic stem cells in vivo using high-throughput sequencing in conjunction with viral genetic barcoding. Nat. Biotechnol. 29:10928–33 [Google Scholar]
  25. Schmidt M, Zickler P, Hoffmann G, Haas S, Wissler M. 25.  et al. 2002. Polyclonal long-term repopulating stem cell clones in a primate model. Blood 100:82737–43 [Google Scholar]
  26. Stewart MH, Bendall SC, Levadoux-Martin M, Bhatia M. 26.  2010. Clonal tracking of hESCs reveals differential contribution to functional assays. Nat. Methods 7:11917–22 [Google Scholar]
  27. Naik SH, Perié L, Swart E, Gerlach C, van Rooij N. 27.  et al. 2013. Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature 496:7444229–32 [Google Scholar]
  28. Hope K, Bhatia M. 28.  2011. Clonal interrogation of stem cells. Nat. Methods 8:4 Suppl.S36–40 [Google Scholar]
  29. Perié L, Hodgkin PD, Naik SH, Schumacher TN, de Boer RJ, Duffy KR. 29.  2014. Determining lineage pathways from cellular barcoding experiments. Cell Rep. 6:4617–24 [Google Scholar]
  30. Kustikova O, Fehse B, Modlich U, Yang M, Düllmann J. 30.  et al. 2005. Clonal dominance of hematopoietic stem cells triggered by retroviral gene marking. Science 308:57251171–74 [Google Scholar]
  31. Capel B, Hawley RG, Mintz B. 31.  1990. Long- and short-lived murine hematopoietic stem cell clones individually identified with retroviral integration markers. Blood 75:122267–70 [Google Scholar]
  32. Drize NJ, Keller JR, Chertkov JL. 32.  1996. Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice. Blood 88:82927–38 [Google Scholar]
  33. Rajewsky K. 33.  2007. From a dream to reality. Eur. J. Immunol. 37:S1S134–37 [Google Scholar]
  34. Schmidt-Supprian M, Rajewsky K. 34.  2007. Vagaries of conditional gene targeting. Nat. Immunol. 8:7665–68 [Google Scholar]
  35. Zambrowicz BP, Imamoto A, Fiering S, Herzenberg LA, Kerr WG, Soriano P. 35.  1997. Disruption of overlapping transcripts in the ROSA βgeo 26 gene trap strain leads to widespread expression of β-galactosidase in mouse embryos and hematopoietic cells. PNAS 94:83789–94 [Google Scholar]
  36. Brockschnieder D, Lappe-Siefke C, Goebbels S, Boesl MR, Nave K-A, Riethmacher D. 36.  2004. Cell depletion due to diphtheria toxin fragment A after Cre-mediated recombination. Mol. Cell. Biol. 24:177636–42 [Google Scholar]
  37. Saito M, Iwawaki T, Taya C, Yonekawa H, Noda M. 37.  et al. 2001. Diphtheria toxin receptor-mediated conditional and targeted cell ablation in transgenic mice. Nat. Biotechnol. 19:8746–50 [Google Scholar]
  38. Visnjic D, Kalajzic I, Gronowicz G, Aguila HL, Clark SH. 38.  et al. 2001. Conditional ablation of the osteoblast lineage in Col2.3Δtk transgenic mice. J. Bone Miner. Res. 16:122222–31 [Google Scholar]
  39. Gerbaulet A, Schoedel K, Zerjatke T, Roeder I, Voehringer. 39.  et al. 2015. Long-term-repopulating hematopoietic stem cells are dispensable in steady state but essential for stress hematopoiesis [abstract]. Exp. Hematol. 43:9 Suppl.S94 [Google Scholar]
  40. Livet J, Weissman TA, Kang H, Draft RW, Lu J. 40.  et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:716656–62 [Google Scholar]
  41. Snippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M. 41.  et al. 2010. Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143:1134–44 [Google Scholar]
  42. Schlenner SM, Madan V, Busch K, Tietz A, Laufle C. 42.  et al. 2010. Fate mapping reveals separate origins of T cells and myeloid lineages in the thymus. Immunity 32:3426–36 [Google Scholar]
  43. Metzger D, Clifford J, Chiba H, Chambon P. 43.  1995. Conditional site-specific recombination in mammalian cells using a ligand-dependent chimeric Cre recombinase. PNAS 92:156991–95 [Google Scholar]
  44. Metzger D, Feil R. 44.  1999. Engineering the mouse genome by site-specific recombination. Curr. Opin. Biotechnol. 10:5470–76 [Google Scholar]
  45. Sauer B. 45.  1998. Inducible gene targeting in mice using the Cre/lox system. Methods 14:4381–92 [Google Scholar]
  46. Schwenk F, Kuhn R, Angrand PO, Rajewsky K, Stewart AF. 46.  1998. Temporally and spatially regulated somatic mutagenesis in mice. Nucleic Acids Res 26:61427–32 [Google Scholar]
  47. Brocard J, Feil R, Chambon P, Metzger D. 47.  1998. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26:174086–90 [Google Scholar]
  48. Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP. 48.  1998. Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr. Biol. 8:241323–26 [Google Scholar]
  49. Indra AK, Warot X, Brocard J, Bornert JM, Xiao JH. 49.  et al. 1999. Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ERT and Cre-ERT2 recombinases. Nucleic Acids Res. 27:224324–27 [Google Scholar]
  50. Vasioukhin V, Degenstein L, Wise B, Fuchs E. 50.  1999. The magical touch: genome targeting in epidermal stem cells induced by tamoxifen application to mouse skin. PNAS 96:158551–56 [Google Scholar]
  51. Verrou C, Zhang Y, Zürn C, Schamel WW, Reth M. 51.  1999. Comparison of the tamoxifen regulated chimeric Cre recombinases MerCreMer and CreMer. Biol. Chem. 380:121435–38 [Google Scholar]
  52. Zhang Y, Riesterer C, Ayrall AM, Sablitzky F, Littlewood TD, Reth M. 52.  1996. Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24:4543–48 [Google Scholar]
  53. Casanova E, Fehsenfeld S, Lemberger T, Shimshek DR, Sprengel R, Mantamadiotis T. 53.  2002. ER-based double iCre fusion protein allows partial recombination in forebrain. Genesis 34:3208–14 [Google Scholar]
  54. Busch K, Klapproth K, Barile M, Flossdorf M, Holland-Letz T. 54.  et al. 2015. Fundamental properties of unperturbed haematopoiesis from stem cells in vivo. Nature 518:7540542–46 [Google Scholar]
  55. Hameyer D, Loonstra A, Eshkind L, Schmitt S, Antunes C. 55.  et al. 2007. Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol. Genomics 31:132–41 [Google Scholar]
  56. Gossen M, Bujard H. 56.  1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. PNAS 89:125547–51 [Google Scholar]
  57. Bockamp E, Antunes C, Maringer M, Heck R, Presser K. 57.  et al. 2006. Tetracycline-controlled transgenic targeting from the SCL locus directs conditional expression to erythrocytes, megakaryocytes, granulocytes, and c-kit-expressing lineage-negative hematopoietic cells. Blood 108:51533–41 [Google Scholar]
  58. Sun J, Ramos A, Chapman B, Johnnidis JB, Le L. 58.  et al. 2014. Clonal dynamics of native haematopoiesis. Nature 514:7522322–27 [Google Scholar]
  59. Golub R, Cumano A. 59.  2013. Embryonic hematopoiesis. Blood Cells Mol. Dis. 51:4226–31 [Google Scholar]
  60. Orkin SH, Zon LI. 60.  2008. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132:4631–44 [Google Scholar]
  61. Bertrand JY, Jalil A, Klaine M, Jung S, Cumano A, Godin I. 61.  2005. Three pathways to mature macrophages in the early mouse yolk sac. Blood 106:93004–11 [Google Scholar]
  62. Palis J, Robertson S, Kennedy M, Wall C, Keller G. 62.  1999. Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:225073–84 [Google Scholar]
  63. Frame JM, McGrath KE, Palis J. 63.  2013. Erythro-myeloid progenitors: “definitive” hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol. Dis. 51:4220–25 [Google Scholar]
  64. McGrath KE, Frame JM, Fegan KH, Bowen JR, Conway SJ. 64.  et al. 2015. Distinct sources of hematopoietic progenitors emerge before HSCs and provide functional blood cells in the mammalian embryo. Cell Rep. 11:121892–904 [Google Scholar]
  65. Moore MA, Metcalf D. 65.  1970. Ontogeny of the haemopoietic system: yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18:3279–96 [Google Scholar]
  66. Weissman IL, Baird S, Gardner RL, Papaioannou VE, Raschke W. 66.  1977. Normal and neoplastic maturation of T-lineage lymphocytes. Cold Spring Harb. Symp. Quant. Biol. 41:Part 19–21 [Google Scholar]
  67. Huber TL, Kouskoff V, Fehling HJ, Palis J, Keller G. 67.  2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432:7017625–30 [Google Scholar]
  68. Ema M, Yokomizo T, Wakamatsu A, Terunuma T, Yamamoto M, Takahashi S. 68.  2006. Primitive erythropoiesis from mesodermal precursors expressing VE-cadherin, PECAM-1, Tie2, endoglin, and CD34 in the mouse embryo. Blood 108:134018–24 [Google Scholar]
  69. Lancrin C, Sroczynska P, Stephenson C, Allen T, Kouskoff V, Lacaud G. 69.  2009. The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage. Nature 457:7231892–95 [Google Scholar]
  70. Eilken HM, Nishikawa S-I, Schroeder T. 70.  2009. Continuous single-cell imaging of blood generation from haemogenic endothelium. Nature 457:7231896–900 [Google Scholar]
  71. Dieterlen-Lièvre F. 71.  1975. On the origin of haemopoietic stem cells in the avian embryo: an experimental approach. J. Embryol. Exp. Morphol. 33:3607–19 [Google Scholar]
  72. Godin IE, Garcia-Porrero JA, Coutinho A, Dieterlen-Lièvre F, Marcos MA. 72.  1993. Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors. Nature 364:643267–70 [Google Scholar]
  73. Medvinsky AL, Samoylina NL, Müller AM, Dzierzak EA. 73.  1993. An early pre-liver intraembryonic source of CFU-S in the developing mouse. Nature 364:643264–67 [Google Scholar]
  74. Müller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E. 74.  1994. Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1:4291–301 [Google Scholar]
  75. Ueno H, Weissman IL. 75.  2010. The origin and fate of yolk sac hematopoiesis: application of chimera analyses to developmental studies. Int. J. Dev. Biol. 54:6–71019–31 [Google Scholar]
  76. Göthert JR, Gustin SE, Hall MA, Green AR, Göttgens B. 76.  et al. 2005. In vivo fate-tracing studies using the Scl stem cell enhancer: Embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105:72724–32 [Google Scholar]
  77. Sánchez M, Göttgens B, Sinclair AM, Stanley M, Begley CG. 77.  et al. 1999. An SCL 3′ enhancer targets developing endothelium together with embryonic and adult haematopoietic progenitors. Development 126:173891–904 [Google Scholar]
  78. Sánchez MJ, Bockamp EO, Miller J, Gambardella L, Green AR. 78.  2001. Selective rescue of early haematopoietic progenitors in Scl/− mice by expressing Scl under the control of a stem cell enhancer. Development 128:234815–27 [Google Scholar]
  79. Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML. 79.  2006. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev. Dyn. 235:123413–22 [Google Scholar]
  80. Zovein AC, Hofmann JJ, Lynch M, French WJ, Turlo KA. 80.  et al. 2008. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3:6625–36 [Google Scholar]
  81. Samokhvalov IM. 81.  2013. Deconvoluting the ontogeny of hematopoietic stem cells. Cell. Mol. Life Sci. 71:6957–78 [Google Scholar]
  82. Koushik SV, Wang J, Rogers R, Moskophidis D, Lambert NA. 82.  et al. 2001. Targeted inactivation of the sodium-calcium exchanger (Ncx1) results in the lack of a heartbeat and abnormal myofibrillar organization. FASEB J. 15:71209–11 [Google Scholar]
  83. Lux CT, Yoshimoto M, McGrath K, Conway SJ, Palis J, Yoder MC. 83.  2008. All primitive and definitive hematopoietic progenitor cells emerging before E10 in the mouse embryo are products of the yolk sac. Blood 111:73435–38 [Google Scholar]
  84. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P. 84.  et al. 2010. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:6005841–45 [Google Scholar]
  85. North TE, de Bruijn MFTR, Stacy T, Talebian L, Lind E. 85.  et al. 2002. Runx1 expression marks long-term repopulating hematopoietic stem cells in the midgestation mouse embryo. Immunity 16:5661–72 [Google Scholar]
  86. Li Z, Chen MJ, Stacy T, Speck NA. 86.  2006. Runx1 function in hematopoiesis is required in cells that express Tek. Blood 107:1106–10 [Google Scholar]
  87. Samokhvalov IM, Samokhvalova NI, Nishikawa S-I. 87.  2007. Cell tracing shows the contribution of the yolk sac to adult haematopoiesis. Nature 446:71391056–61 [Google Scholar]
  88. Pina C, Enver T. 88.  2007. Differential contributions of haematopoietic stem cells to foetal and adult haematopoiesis: insights from functional analysis of transcriptional regulators. Oncogene 26:476750–65 [Google Scholar]
  89. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M. 89.  2001. Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev. Biol. 230:2230–42 [Google Scholar]
  90. Alva JA, Zovein AC, Monvoisin A, Murphy T, Salazar A. 90.  et al. 2006. VE-Cadherin-Cre-recombinase transgenic mouse: a tool for lineage analysis and gene deletion in endothelial cells. Dev. Dyn. 235:3759–67 [Google Scholar]
  91. Benz C, Martins VC, Radtke F, Bleul CC. 91.  2008. The stream of precursors that colonizes the thymus proceeds selectively through the early T lineage precursor stage of T cell development. J. Exp. Med. 205:51187–99 [Google Scholar]
  92. Boyer SW, Schroeder AV, Smith-Berdan S, Forsberg EC. 92.  2011. All hematopoietic cells develop from hematopoietic stem cells through Flk2/Flt3-positive progenitor cells. Cell Stem Cell 9:164–73 [Google Scholar]
  93. Rickert RC, Roes J, Rajewsky K. 93.  1997. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25:61317–18 [Google Scholar]
  94. Pelanda R, Hobeika E, Kurokawa T, Zhang Y, Kuppig S, Reth M. 94.  2002. Cre recombinase-controlled expression of the mb-1 allele. Genesis 32:2154–57 [Google Scholar]
  95. Wolfer A, Bakker T, Wilson A, Nicolas M, Ioannidis V. 95.  et al. 2001. Inactivation of Notch 1 in immature thymocytes does not perturb CD4 or CD8 T cell development. Nat. Immunol. 2:3235–41 [Google Scholar]
  96. Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ. 96.  et al. 2006. Testing gene function early in the B cell lineage in mb1-cre mice. PNAS 103:3713789–94 [Google Scholar]
  97. Luche H, Nageswara Rao T, Kumar S, Tasdogan A, Beckel F. 97.  et al. 2013. In vivo fate mapping identifies pre-TCRα expression as an intra- and extrathymic, but not prethymic, marker of T lymphopoiesis. J. Exp. Med. 210:4699–714 [Google Scholar]
  98. Clausen BE, Burkhardt C, Reith W, Renkawitz R, Förster I. 98.  1999. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8:4265–77 [Google Scholar]
  99. Wölfler A, Danen-van Oorschot AA, Haanstra JR, Valkhof M, Bodner C. 99.  et al. 2010. Lineage-instructive function of C/EBP in multipotent hematopoietic cells and early thymic progenitors. Blood 116:204116–25 [Google Scholar]
  100. Deng L, Zhou J-F, Sellers RS, Li J-F, Nguyen AV. 100.  et al. 2010. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol. 176:2952–67 [Google Scholar]
  101. Yona S, Kim K-W, Wolf Y, Mildner A, Varol D. 101.  et al. 2012. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:179–91 [Google Scholar]
  102. Kovacic B, Hoelbl-Kovacic A, Fischhuber KM, Leitner NR, Gotthardt D. 102.  et al. 2014. Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells. Haematologica 99:61006–15 [Google Scholar]
  103. Richie Ehrlich LI, Serwold T, Weissman IL. 103.  2011. In vitro assays misrepresent in vivo lineage potentials of murine lymphoid progenitors. Blood 117:92618–24 [Google Scholar]
  104. Tesio M, Oser GM, Baccelli I, Blanco-Bose W, Wu H. 104.  et al. 2013. Pten loss in the bone marrow leads to G-CSF–mediated HSC mobilization. J. Exp. Med. 210:112337–49 [Google Scholar]
  105. Gazit R, Mandal PK, Ebina W, Ben-Zvi A, Nombela-Arrieta C. 105.  et al. 2014. Fgd5 identifies hematopoietic stem cells in the murine bone marrow. J. Exp. Med. 211:71315–31 [Google Scholar]
  106. Savant S, La Porta S, Budnik A, Busch K, Hu J. 106.  et al. 2015. The orphan receptor Tie1 controls angiogenesis and vascular remodeling by differentially regulating Tie2 in tip and stalk cells. Cell Rep. 12:111761–73 [Google Scholar]
  107. Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N. 107.  et al. 2012. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:607786–90 [Google Scholar]
  108. Hoeffel G, Wang Y, Greter M, See P, Teo P. 108.  et al. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209:61167–81 [Google Scholar]
  109. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C. 109.  et al. 2013. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat. Neurosci. 16:3273–80 [Google Scholar]
  110. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L. 110.  et al. 2013. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J. Exp. Med. 210:101977–92 [Google Scholar]
  111. Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E. 111.  et al. 2015. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature 518:7540547–51 [Google Scholar]
  112. Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF. 112.  et al. 2015. c-Myb+ erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42:4665–78 [Google Scholar]
  113. Mosser DM, Edwards JP. 113.  2008. Exploring the full spectrum of macrophage activation. Nat. Publ. Group 8:12958–69 [Google Scholar]
  114. Merad M, Manz MG, Karsunky H, Wagers A, Peters W. 114.  et al. 2002. Langerhans cells renew in the skin throughout life under steady-state conditions. Nat. Immunol. 3:121135–41 [Google Scholar]
  115. Geissmann F, Manz MG, Jung S, Sieweke MH, Merad M, Ley K. 115.  2010. Development of monocytes, macrophages, and dendritic cells. Science 327:5966656–61 [Google Scholar]
  116. Matute-Bello G, Lee JS, Frevert CW, Liles WC, Sutlief S. 116.  et al. 2004. Optimal timing to repopulation of resident alveolar macrophages with donor cells following total body irradiation and bone marrow transplantation in mice. J. Immunol. Methods 292:1–225–34 [Google Scholar]
  117. Klein I, Cornejo JC, Polakos NK, John B, Wuensch SA. 117.  et al. 2007. Kupffer cell heterogeneity: functional properties of bone marrow–derived and sessile hepatic macrophages. Blood 110:124077–85 [Google Scholar]
  118. Murphy J, Summer R, Wilson AA, Kotton DN, Fine A. 118.  2008. The prolonged life-span of alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 38:4380–85 [Google Scholar]
  119. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB. 119.  et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:4792–804 [Google Scholar]
  120. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. 120.  2007. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat. Neurosci. 10:121538–43 [Google Scholar]
  121. Jenkins SJ, Ruckerl D, Cook PC, Jones LH, Finkelman FD. 121.  et al. 2011. Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation. Science 332:60351284–88 [Google Scholar]
  122. Epelman S, Lavine KJ, Beaudin AE, Sojka DK, Carrero JA. 122.  et al. 2014. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity 40:191–104 [Google Scholar]
  123. Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N. 123.  et al. 2014. Progressive replacement of embryo-derived cardiac macrophages with age. J. Exp. Med. 211:112151–58 [Google Scholar]
  124. Gentek R, Molawi K, Sieweke MH. 124.  2014. Tissue macrophage identity and self-renewal. Immunol. Rev. 262:156–73 [Google Scholar]
  125. Ensan S, Li A, Besla R, Degousee N, Cosme J. 125.  et al. 2016. Self-renewing resident arterial macrophages arise from embryonic CX3CR1+ precursors and circulating monocytes immediately after birth. Nat. Immunol. 17:2159–168 [Google Scholar]
  126. Klapproth K, Lasitschka F, Rodewald HR. 126.  2016. Multilayered ancestry of arterial macrophages.. Nat. Immunol. 17:2117–18 [Google Scholar]
  127. Passegué E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL. 127.  2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202:111599–611 [Google Scholar]
  128. Takizawa H, Regoes RR, Boddupalli CS, Bonhoeffer S, Manz MG. 128.  2011. Dynamic variation in cycling of hematopoietic stem cells in steady state and inflammation. J. Exp. Med. 208:2273–84 [Google Scholar]
  129. Mende N, Kuchen EE, Lesche M, Grinenko T, Kokkaliaris KD. 129.  et al. 2015. CCND1-CDK4-mediated cell cycle progression provides a competitive advantage for human hematopoietic stem cells in vivo. J. Exp. Med. 212:81171–83 [Google Scholar]
  130. Klein AM, Simons BD. 130.  2011. Universal patterns of stem cell fate in cycling adult tissues. Development 138:153103–11 [Google Scholar]
  131. Blanpain C, Simons BD. 131.  2013. Unravelling stem cell dynamics by lineage tracing. Nat. Rev. Mol. Cell Biol. 14:8489–502 [Google Scholar]
  132. Voehringer D, Liang H-E, Locksley RM. 132.  2008. Homeostasis and effector function of lymphopenia-induced “memory-like” T cells in constitutively T cell-depleted mice.. J. Immunol. 180:74742–53 [Google Scholar]
  133. Ritsma L, Ellenbroek SIJ, Zomer A, Snippert HJ, de Sauvage FJ. 133.  et al. 2014. Intestinal crypt homeostasis revealed at single-stem-cell level by in vivo live imaging. Nature 507:7492362–65 [Google Scholar]
  134. Riddell J, Gazit R, Garrison BS, Guo G, Saadatpour A. 134.  et al. 2014. Reprogramming committed murine blood cells to induced hematopoietic stem cells with defined factors. Cell 157:3549–64 [Google Scholar]
  135. Rolink AG, Nutt SL, Melchers F, Busslinger M. 135.  1999. Long-term in vivo reconstitution of T-cell development by Pax5-deficient B-cell progenitors. Nature 401:6753603–6 [Google Scholar]
  136. Bhattacharya D, Czechowicz A, Ooi AGL, Rossi DJ, Bryder D, Weissman IL. 136.  2009. Niche recycling through division-independent egress of hematopoietic stem cells. J. Exp. Med. 206:122837–50 [Google Scholar]
  137. Huntly BJP, Shigematsu H, Deguchi K, Lee BH, Mizuno S. 137.  et al. 2004. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 6:6587–96 [Google Scholar]
  138. Jamieson CHM, Weissman IL, Passegué E. 138.  2004. Chronic versus acute myelogenous leukemia: a question of self-renewal. Cancer Cell 6:6531–33 [Google Scholar]
  139. Martins VC, Busch K, Juraeva D, Blum C, Ludwig C. 139.  et al. 2014. Cell competition is a tumour suppressor mechanism in the thymus. Nature 509:7501465–70 [Google Scholar]
  140. Eaves CJ. 140.  2015. Hematopoietic stem cells: concepts, definitions, and the new reality. Blood 125:172605–13 [Google Scholar]
  141. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM. 141.  et al. 2011. A human memory T cell subset with stem cell-like properties. Nat. Med. 17:101290–97 [Google Scholar]
  142. Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B. 142.  et al. 2013. Disparate individual fates compose robust CD8+ T cell immunity. Science 340:6132630–35 [Google Scholar]
  143. Graef P, Buchholz VR, Stemberger C, Flossdorf M, Henkel L. 143.  et al. 2014. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8+ central memory T cells. Immunity 41:1116–26 [Google Scholar]
  144. Peaudecerf L, Lemos S, Galgano A, Krenn G, Vasseur F. 144.  et al. 2012. Thymocytes may persist and differentiate without any input from bone marrow progenitors. J. Exp. Med. 209:81401–8 [Google Scholar]
  145. Martins VC, Ruggiero E, Schlenner SM, Madan V, Schmidt M. 145.  et al. 2012. Thymus-autonomous T cell development in the absence of progenitor import. J. Exp. Med. 209:81409–17 [Google Scholar]
  146. Jordan CT, Lemischka IR. 146.  1990. Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev. 4:2220–32 [Google Scholar]
  147. Grinenko T, Arndt K, Portz M, Mende N, Günther M. 147.  et al. 2014. Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J. Exp. Med. 211:2209–15 [Google Scholar]
  148. Essers MAG, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U. 148.  et al. 2009. IFNα activates dormant haematopoietic stem cells in vivo. Nature 458:7240904–8 [Google Scholar]
  149. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA. 149.  2010. Quiescent haematopoietic stem cells are activated by IFN-γ in response to chronic infection. Nature 465:7299793–97 [Google Scholar]
  150. Heidt T, Sager HB, Courties G, Dutta P, Iwamoto Y. 150.  et al. 2014. Chronic variable stress activates hematopoietic stem cells. Nat. Med. 20:7754–58 [Google Scholar]
  151. Walter D, Lier A, Geiselhart A, Thalheimer FB, Huntscha S. 151.  et al. 2015. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells.. Nature 520:7548549–52 [Google Scholar]
  152. Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L. 152.  et al. 2015. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17:4422–34 [Google Scholar]
  153. Keren Z, Naor S, Nussbaum S, Golan K, Itkin T. et al. 2011. B-cell depletion reactivates B lymphopoiesis in the BM and rejuvenates the B lineage in aging. Blood 117:113104–12 [Google Scholar]
  154. Colijn C, Mackey MC. 154.  2005. A mathematical model of hematopoiesis—I. Periodic chronic myelogenous leukemia. J. Theor. Biol. 237:2117–32 [Google Scholar]
  155. Colijn C, Mackey MC. 155.  2005. A mathematical model of hematopoiesis: II. Cyclical neutropenia. J. Theor. Biol. 237:2133–46 [Google Scholar]
  156. Apostu R, Mackey MC. 156.  2008. Understanding cyclical thrombocytopenia: a mathematical modeling approach. J. Theor. Biol. 251:2297–316 [Google Scholar]
  157. Roeder I, Loeffler M. 157.  2002. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol. 30:8853–61 [Google Scholar]
  158. Marciniak-Czochra A, Stiehl T, Ho AD, Jäger W, Wagner W. 158.  2009. Modeling of asymmetric cell division in hematopoietic stem cells—regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev. 18:3377–85 [Google Scholar]
  159. Manesso E, Teles J, Bryder D, Peterson C. 159.  2013. Dynamical modelling of haematopoiesis: an integrated view over the system in homeostasis and under perturbation. J. R. Soc. Interface 10:8020120817 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112019
Loading
/content/journals/10.1146/annurev-immunol-032414-112019
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error