1932

Abstract

Inflammatory bowel disease (IBD), including Crohn disease and ulcerative colitis, is characterized by chronic intestinal inflammation due to a complex interaction of genetic determinants, disruption of mucosal barriers, aberrant inflammatory signals, loss of tolerance, and environmental triggers. Importantly, the incidence of pediatric IBD is rising, particularly in children younger than 10 years. In this review, we discuss the clinical presentation of these patients and highlight environmental exposures that may affect disease risk, particularly among people with a background genetic risk. With regard to both children and adults, we review advancements in understanding the intestinal epithelium, the mucosal immune system, and the resident microbiota, describing how dysfunction at any level can lead to diseases like IBD. We conclude with future directions for applying advances in IBD genetics to better understand pathogenesis and develop therapeutics targeting key pathogenic nodes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032414-112151
2016-05-20
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/immunol/34/1/annurev-immunol-032414-112151.html?itemId=/content/journals/10.1146/annurev-immunol-032414-112151&mimeType=html&fmt=ahah

Literature Cited

  1. Loftus EV Jr. 1.  2003. Mortality in inflammatory bowel disease: peril and promise. Gastroenterology 125:1881–83 [Google Scholar]
  2. Benchimol EI, Fortinsky KJ, Gozdyra P, Van den Heuvel M, Van Limbergen J, Griffiths AM. 2.  2011. Epidemiology of pediatric inflammatory bowel disease: a systematic review of international trends. Inflamm. Bowel Dis. 17:423–39 [Google Scholar]
  3. Benchimol EI, Mack DR, Nguyen GC, Snapper SB, Li W. 3.  et al. 2014. Incidence, outcomes, and health services burden of very early onset inflammatory bowel disease. Gastroenterology 147:803–13.e7 [Google Scholar]
  4. El Mouzan MI, Saadah O, Al-Saleem K, Al Edreesi M, Hasosah M. 4.  et al. 2014. Incidence of pediatric inflammatory bowel disease in Saudi Arabia: A multicenter national study. Inflamm. Bowel Dis. 20:1085–90 [Google Scholar]
  5. Weinstein TA, Levine M, Pettei MJ, Gold DM, Kessler BH, Levine JJ. 5.  2003. Age and family history at presentation of pediatric inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 37:609–13 [Google Scholar]
  6. Ha CY, Newberry RD, Stone CD, Ciorba MA. 6.  2010. Patients with late-adult-onset ulcerative colitis have better outcomes than those with early onset disease. Clin. Gastroenterol. Hepatol. 8:682–7.e1 [Google Scholar]
  7. Moller FT, Andersen V, Wohlfahrt J, Jess T. 7.  2015. Familial risk of inflammatory bowel disease: a population-based cohort study 1977–2011. Am. J. Gastroenterol. 110:564–71 [Google Scholar]
  8. Aloi M, Lionetti P, Barabino A, Guariso G, Costa S. 8.  et al. 2014. Phenotype and disease course of early-onset pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 20:597–605 [Google Scholar]
  9. Muller KE, Lakatos PL, Arato A, Kovacs JB, Varkonyi A. 9.  et al. 2013. Incidence, Paris classification, and follow-up in a nationwide incident cohort of pediatric patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 57:576–82 [Google Scholar]
  10. Ochsenkuhn T, D’Haens G. 10.  2011. Current misunderstandings in the management of ulcerative colitis. Gut 60:1294–99 [Google Scholar]
  11. Van Limbergen J, Russell RK, Drummond HE, Aldhous MC, Round NK. 11.  et al. 2008. Definition of phenotypic characteristics of childhood-onset inflammatory bowel disease. Gastroenterology 135:1114–22 [Google Scholar]
  12. De Greef E, Mahachie John JM, Hoffman I, Smets F, Van Biervliet S. 12.  IBD Work. Group Belg. Soc. Pediatr. Gastroenterol. Hepatol. Nutr.; Belg. IBD Res. Dev. 2013. Profile of pediatric Crohn's disease in Belgium. J. Crohns Colitis 7:e588–98 [Google Scholar]
  13. Israeli E, Ryan JD, Shafer LA, Bernstein CN. 13.  2014. Younger age at diagnosis is associated with panenteric, but not more aggressive, Crohn's disease. Clin. Gastroenterol. Hepatol. 12:72–9.e1 [Google Scholar]
  14. Dotson JL, Hyams JS, Markowitz J, LeLeiko NS, Mack DR. 14.  et al. 2010. Extraintestinal manifestations of pediatric inflammatory bowel disease and their relation to disease type and severity. J. Pediatr. Gastroenterol. Nutr. 51:140–45 [Google Scholar]
  15. Walters TD, Griffiths AM. 15.  2009. Mechanisms of growth impairment in pediatric Crohn's disease. Nat. Rev. Gastroenterol. Hepatol. 6:513–23 [Google Scholar]
  16. Ng SC, Bernstein CN, Vatn MH, Lakatos PL, Loftus EV Jr. 16.  et al. ; Epidemiol. Nat. Hist. Task Force Int. Org. Inflamm. Bowel Dis. 2013. Geographical variability and environmental risk factors in inflammatory bowel disease. Gut 62:630–49 [Google Scholar]
  17. Rook GA. 17.  2012. Hygiene hypothesis and autoimmune diseases. Clin. Rev. Allergy Immunol. 42:5–15 [Google Scholar]
  18. Rook GA. 18.  2013. Regulation of the immune system by biodiversity from the natural environment: an ecosystem service essential to health. PNAS 110:18360–67 [Google Scholar]
  19. Shaw SY, Blanchard JF, Bernstein CN. 19.  2010. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am. J. Gastroenterol. 105:2687–92 [Google Scholar]
  20. Kronman MP, Zaoutis TE, Haynes K, Feng R, Coffin SE. 20.  2012. Antibiotic exposure and IBD development among children: a population-based cohort study. Pediatrics 130:e794–803 [Google Scholar]
  21. Rappaport SM, Smith MT. 21.  2010. Epidemiology: environment and disease risks. Science 330:460–61 [Google Scholar]
  22. Rappaport SM. 22.  2011. Implications of the exposome for exposure science. J. Expo. Sci. Environ. Epidemiol. 21:5–9 [Google Scholar]
  23. Progatzky F, Sangha NJ, Yoshida N, McBrien M, Cheung J. 23.  et al. 2014. Dietary cholesterol directly induces acute inflammasome-dependent intestinal inflammation. Nat. Commun. 5:5864 [Google Scholar]
  24. Aujnarain A, Mack DR, Benchimol EI. 24.  2013. The role of the environment in the development of pediatric inflammatory bowel disease. Curr. Gastroenterol. Rep. 15:326 [Google Scholar]
  25. Lahiri DK. 25.  2011. An integrated approach to genome studies. Science 331:147 [Google Scholar]
  26. Mokry M, Middendorp S, Wiegerinck CL, Witte M, Teunissen H. 26.  et al. 2014. Many inflammatory bowel disease risk loci include regions that regulate gene expression in immune cells and the intestinal epithelium. Gastroenterology 146:1040–47 [Google Scholar]
  27. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ. 27.  et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43 [Google Scholar]
  28. Michels KB, Binder AM, Dedeurwaerder S, Epstein CB, Greally JM. 28.  et al. 2013. Recommendations for the design and analysis of epigenome-wide association studies. Nat. Methods 10:949–55 [Google Scholar]
  29. Murphy TM, Mill J. 29.  2014. Epigenetics in health and disease: heralding the EWAS era. Lancet 383:1952–54 [Google Scholar]
  30. Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP. 30.  et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24 [Google Scholar]
  31. Imielinski M, Baldassano RN, Griffiths A, Russell RK, Annese V. 31.  et al. 2009. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 41:1335–40 [Google Scholar]
  32. Essers JB, Lee JJ, Kugathasan S, Stevens CR, Grand RJ. 32.  et al. 2009. Established genetic risk factors do not distinguish early and later onset Crohn's disease. Inflamm. Bowel Dis. 15:1508–14 [Google Scholar]
  33. Khor B, Gardet A, Xavier RJ. 33.  2011. Genetics and pathogenesis of inflammatory bowel disease. Nature 474:307–17 [Google Scholar]
  34. Uhlig HH. 34.  2013. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 62:1795–805 [Google Scholar]
  35. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J. 35.  COLORS IBD Study Group; NEOPICS 2014. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147:990–1007.e3 [Google Scholar]
  36. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I. 36.  et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–58 [Google Scholar]
  37. Miyoshi H, Stappenbeck TS. 37.  2013. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8:2471–82 [Google Scholar]
  38. Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N. 38.  et al. 2014. An in vivo model of human small intestine using pluripotent stem cells. Nat. Med. 20:1310–14 [Google Scholar]
  39. VanDussen KL, Marinshaw JM, Shaikh N, Miyoshi H, Moon C. 39.  et al. 2015. Development of an enhanced human gastrointestinal epithelial culture system to facilitate patient-based assays. Gut 64:911–20 [Google Scholar]
  40. Bigorgne AE, Farin HF, Lemoine R, Mahlaoui N, Lambert N. 40.  et al. 2014. TTC7A mutations disrupt intestinal epithelial apicobasal polarity. J. Clin. Investig. 124:328–37 [Google Scholar]
  41. Johansson ME, Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia L. 41.  et al. 2014. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63:281–91 [Google Scholar]
  42. Juste C, Kreil DP, Beauvallet C, Guillot A, Vaca S. 42.  et al. 2014. Bacterial protein signals are associated with Crohn's disease. Gut 63:1566–77 [Google Scholar]
  43. Crost EH, Tailford LE, Le Gall G, Fons M, Henrissat B, Juge N. 43.  2013. Utilisation of mucin glycans by the human gut symbiont Ruminococcus gnavus is strain-dependent. PLOS ONE 8:e76341 [Google Scholar]
  44. Dupont A, Heinbockel L, Brandenburg K, Hornef MW. 44.  2014. Antimicrobial peptides and the enteric mucus layer act in concert to protect the intestinal mucosa. Gut Microbes 5:761–65 [Google Scholar]
  45. Culp DJ, Robinson B, Cash MN, Bhattacharyya I, Stewart C, Cuadra-Saenz G. 45.  2015. Salivary mucin 19 glycoproteins: innate immune functions in Streptococcus mutans-induced caries in mice and evidence for expression in human saliva. J. Biol. Chem. 290:2993–3008 [Google Scholar]
  46. Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. 46.  2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:15064–69 [Google Scholar]
  47. Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP. 47.  et al. 2006. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 131:117–29 [Google Scholar]
  48. Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU. 48.  et al. 2013. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 342:447–53 [Google Scholar]
  49. Tong M, McHardy I, Ruegger P, Goudarzi M, Kashyap PC. 49.  et al. 2014. Reprograming of gut microbiome energy metabolism by the FUT2 Crohn's disease risk polymorphism. ISME J. 8:2193–206 [Google Scholar]
  50. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D. 50.  et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514:638–41 [Google Scholar]
  51. Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II. 51.  et al. 2014. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 345:1254009 [Google Scholar]
  52. Murchie R, Guo CH, Persaud A, Muise A, Rotin D. 52.  2014. Protein tyrosine phosphatase sigma targets apical junction complex proteins in the intestine and regulates epithelial permeability. PNAS 111:693–98 [Google Scholar]
  53. Glover LE, Bowers BE, Saeedi B, Ehrentraut SF, Campbell EL. 53.  et al. 2013. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis. PNAS 110:19820–25 [Google Scholar]
  54. Venkatesh M, Mukherjee S, Wang H, Li H, Sun K. 54.  et al. 2014. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41:296–310 [Google Scholar]
  55. Kelly CJ, Zheng L, Campbell EL, Saeedi B, Scholz CC. 55.  et al. 2015. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–71 [Google Scholar]
  56. Dannappel M, Vlantis K, Kumari S, Polykratis A, Kim C. 56.  et al. 2014. RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature 513:90–94 [Google Scholar]
  57. Vereecke L, Vieira-Silva S, Billiet T, van Es JH, Mc Guire C. 57.  et al. 2014. A20 controls intestinal homeostasis through cell-specific activities. Nat. Commun. 5:5103 [Google Scholar]
  58. Oehlers SH, Flores MV, Hall CJ, Crosier KE, Crosier PS. 58.  2012. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis. Dis. Models Mech. 5:457–67 [Google Scholar]
  59. Sanders TJ, McCarthy NE, Giles EM, Davidson KL, Haltalli ML. 59.  et al. 2014. Increased production of retinoic acid by intestinal macrophages contributes to their inflammatory phenotype in patients with Crohn's disease. Gastroenterology 146:1278–88.e2 [Google Scholar]
  60. Mielke LA, Jones SA, Raverdeau M, Higgs R, Stefanska A. 60.  et al. 2013. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210:1117–24 [Google Scholar]
  61. Villablanca EJ. 61.  2013. Retinoic acid-producing DCs and gut-tropic FOXP3 regulatory T cells in the induction of oral tolerance. Oncoimmunology 2:e22987 [Google Scholar]
  62. Alkhouri RH, Hashmi H, Baker RD, Gelfond D, Baker SS. 62.  2013. Vitamin and mineral status in patients with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 56:89–92 [Google Scholar]
  63. Geiser J, Venken KJ, De Lisle RC, Andrews GK. 63.  2012. A mouse model of acrodermatitis enteropathica: loss of intestine zinc transporter ZIP4 (Slc39a4) disrupts the stem cell niche and intestine integrity. PLOS Genet. 8e1002766
  64. Li C, Guo S, Gao J, Guo Y, Du E. 64.  et al. 2015. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J. Nutr. Biochem. 26:173–83 [Google Scholar]
  65. Nigro G, Rossi R, Commere PH, Jay P, Sansonetti PJ. 65.  2014. The cytosolic bacterial peptidoglycan sensor Nod2 affords stem cell protection and links microbes to gut epithelial regeneration. Cell Host Microbe 15:792–98 [Google Scholar]
  66. Farin HF, Karthaus WR, Kujala P, Rakhshandehroo M, Schwank G. 66.  et al. 2014. Paneth cell extrusion and release of antimicrobial products is directly controlled by immune cell–derived IFN-γ. J. Exp. Med. 211:1393–405 [Google Scholar]
  67. Lassen KG, Kuballa P, Conway KL, Patel KK, Becker CE. 67.  et al. 2014. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. PNAS 111:7741–46 [Google Scholar]
  68. VanDussen KL, Liu TC, Li D, Towfic F, Modiano N. 68.  et al. 2014. Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohn's disease. Gastroenterology 146:200–9 [Google Scholar]
  69. Sadaghian Sadabad M, Regeling A, de Goffau MC, Blokzijl T, Weersma RK. 69.  et al. 2014. The ATG16L1-T300A allele impairs clearance of pathosymbionts in the inflamed ileal mucosa of Crohn's disease patients. Gut 641546–52
  70. Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J. 70.  et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–76 [Google Scholar]
  71. Marchiando AM, Ramanan D, Ding Y, Gomez LE, Hubbard-Lucey VM. 71.  et al. 2013. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14:216–24 [Google Scholar]
  72. Rigaud S, Fondaneche MC, Lambert N, Pasquier B, Mateo V. 72.  et al. 2006. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature 444:110–14 [Google Scholar]
  73. Damgaard RB, Nachbur U, Yabal M, Wong WW, Fiil BK. 73.  et al. 2012. The ubiquitin ligase XIAP recruits LUBAC for NOD2 signaling in inflammation and innate immunity. Mol. Cell 46:746–58 [Google Scholar]
  74. Damgaard RB, Fiil BK, Speckmann C, Yabal M, zur Stadt U. 74.  et al. 2013. Disease-causing mutations in the XIAP BIR2 domain impair NOD2-dependent immune signalling. EMBO Mol. Med. 5:1278–95 [Google Scholar]
  75. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G. 75.  et al. 2015. XIAP variants in male Crohn's disease. Gut 64:66–76 [Google Scholar]
  76. Caruso R, Warner N, Inohara N, Nunez G. 76.  2014. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 41:898–908 [Google Scholar]
  77. Hedl M, Abraham C. 77.  2013. NLRP1 and NLRP3 inflammasomes are essential for distinct outcomes of decreased cytokines but enhanced bacterial killing upon chronic Nod2 stimulation. Am. J. Physiol. Gastrointest. Liver Physiol. 304:G583–96 [Google Scholar]
  78. Song-Zhao GX, Srinivasan N, Pott J, Baban D, Frankel G, Maloy KJ. 78.  2014. Nlrp3 activation in the intestinal epithelium protects against a mucosal pathogen. Mucosal. Immunol. 7:763–74 [Google Scholar]
  79. Hu B, Elinav E, Huber S, Strowig T, Hao L. 79.  et al. 2013. Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. PNAS 110:9862–67 [Google Scholar]
  80. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L. 80.  et al. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259–63 [Google Scholar]
  81. Neurath MF. 81.  2014. Cytokines in inflammatory bowel disease. Nat. Rev. Immunol. 14:329–42 [Google Scholar]
  82. Szabady RL, McCormick BA. 82.  2013. Control of neutrophil inflammation at mucosal surfaces by secreted epithelial products. Front. Immunol. 4:220 [Google Scholar]
  83. Sumagin R, Robin AZ, Nusrat A, Parkos CA. 83.  2014. Transmigrated neutrophils in the intestinal lumen engage ICAM-1 to regulate the epithelial barrier and neutrophil recruitment. Mucosal Immunol. 7:905–15 [Google Scholar]
  84. Campbell EL, Bruyninckx WJ, Kelly CJ, Glover LE, McNamee EN. 84.  et al. 2014. Transmigrating neutrophils shape the mucosal microenvironment through localized oxygen depletion to influence resolution of inflammation. Immunity 40:66–77 [Google Scholar]
  85. Marciano BE, Rosenzweig SD, Kleiner DE, Anderson VL, Darnell DN. 85.  et al. 2004. Gastrointestinal involvement in chronic granulomatous disease. Pediatrics 114:462–68 [Google Scholar]
  86. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. 86.  2009. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn's disease. Am. J. Gastroenterol. 104:117–24 [Google Scholar]
  87. Muise AM, Xu W, Guo CH, Walters TD, Wolters VM. 87.  et al. 2012. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut 61:1028–35 [Google Scholar]
  88. Yu JE, De Ravin SS, Uzel G, Landers C, Targan S. 88.  et al. 2011. High levels of Crohn's disease-associated anti-microbial antibodies are present and independent of colitis in chronic granulomatous disease. Clin. Immunol. 138:14–22 [Google Scholar]
  89. de Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL. 89.  et al. 2014. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. PNAS 111:3526–31 [Google Scholar]
  90. Plantinga TS, Crisan TO, Oosting M, van de Veerdonk FL, de Jong DJ. 89a.  et al. 2011. Crohn's disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60:91229–35 [Google Scholar]
  91. Levy M, Arion A, Berrebi D, Cuisset L, Jeanne-Pasquier C. 90.  et al. 2013. Severe early-onset colitis revealing mevalonate kinase deficiency. Pediatrics 132:e779–83 [Google Scholar]
  92. Bianco AM, Girardelli M, Vozzi D, Crovella S, Kleiner G, Marcuzzi A. 91.  2014. Mevalonate kinase deficiency and IBD: shared genetic background. Gut 63:1367–68 [Google Scholar]
  93. Zhu W, Yu J, Nie Y, Shi X, Liu Y. 92.  et al. 2014. Disequilibrium of M1 and M2 macrophages correlates with the development of experimental inflammatory bowel diseases. Immunol. Investig. 43:638–52 [Google Scholar]
  94. Merad M, Sathe P, Helft J, Miller J, Mortha A. 93.  2013. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu. Rev. Immunol. 31:563–604 [Google Scholar]
  95. Scott CL, Bain CC, Wright PB, Sichien D, Kotarsky K. 94.  et al. 2015. CCR2+CD103 intestinal dendritic cells develop from DC-committed precursors and induce interleukin-17 production by T cells. Mucosal Immunol. 8:327–39 [Google Scholar]
  96. Mazzini E, Massimiliano L, Penna G, Rescigno M. 95.  2014. Oral tolerance can be established via gap junction transfer of fed antigens from CX3CR1+ macrophages to CD103+ dendritic cells. Immunity 40:248–61 [Google Scholar]
  97. Chang SY, Song JH, Guleng B, Cotoner CA, Arihiro S. 96.  et al. 2013. Circulatory antigen processing by mucosal dendritic cells controls CD8+ T cell activation. Immunity 38:153–65 [Google Scholar]
  98. O’Keeffe MS, Song JH, Liao G, De Calisto J, Halibozek PJ. 97.  et al. 2015. SLAMF4 is a negative regulator of expansion of cytotoxic intraepithelial CD8(+) T cells that maintains homeostasis in the small intestine. Gastroenterology 148:991–1001.e4 [Google Scholar]
  99. Niess JH, Brand S, Gu X, Landsman L, Jung S. 98.  et al. 2005. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307:254–58 [Google Scholar]
  100. Hadis U, Wahl B, Schulz O, Hardtke-Wolenski M, Schippers A. 99.  et al. 2011. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34:237–46 [Google Scholar]
  101. Zigmond E, Bernshtein B, Friedlander G, Walker CR, Yona S. 100.  et al. 2014. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spontaneous colitis. Immunity 40:720–33 [Google Scholar]
  102. Shouval DS, Biswas A, Goettel JA, McCann K, Conaway E. 101.  et al. 2014. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 40:706–19 [Google Scholar]
  103. Shouval DS, Ouahed J, Biswas A, Goettel JA, Horwitz BH. 102.  et al. 2014. Interleukin 10 receptor signaling: master regulator of intestinal mucosal homeostasis in mice and humans. Adv. Immunol. 122:177–210 [Google Scholar]
  104. Kotlarz D, Beier R, Murugan D, Diestelhorst J, Jensen O. 103.  et al. 2012. Loss of interleukin-10 signaling and infantile inflammatory bowel disease: implications for diagnosis and therapy. Gastroenterology 143:347–55 [Google Scholar]
  105. Pigneur B, Escher J, Elawad M, Lima R, Buderus S. 104.  et al. 2013. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm. Bowel Dis. 19:2820–28 [Google Scholar]
  106. Shim JO, Hwang S, Yang HR, Moon JS, Chang JY. 105.  et al. 2013. Interleukin-10 receptor mutations in children with neonatal-onset Crohn's disease and intractable ulcerating enterocolitis. Eur. J. Gastroenterol. Hepatol. 25:1235–40 [Google Scholar]
  107. Li B, Gurung P, Malireddi RK, Vogel P, Kanneganti TD, Geiger TL. 106.  2015. IL-10 engages macrophages to shift Th17 cytokine dependency and pathogenicity during T-cell-mediated colitis. Nat. Commun. 6:6131 [Google Scholar]
  108. Myles IA, Pincus NB, Fontecilla NM, Datta SK. 107.  2014. Effects of parental omega-3 fatty acid intake on offspring microbiome and immunity. PLOS ONE 9:e87181 [Google Scholar]
  109. Villablanca EJ, Wang S, de Calisto J, Gomes DC, Kane MA. 108.  et al. 2011. MyD88 and retinoic acid signaling pathways interact to modulate gastrointestinal activities of dendritic cells. Gastroenterology 141:176–85 [Google Scholar]
  110. Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO. 109.  et al. 2016. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 65256–70
  111. Seo SU, Kamada N, Munoz-Planillo R, Kim YG, Kim D. 110.  et al. 2015. Distinct commensals induce interleukin-1β via NLRP3 inflammasome in inflammatory monocytes to promote intestinal inflammation in response to injury. Immunity 42:744–55 [Google Scholar]
  112. Walker JA, Barlow JL, McKenzie AN. 111.  2013. Innate lymphoid cells—how did we miss them?. Nat. Rev. Immunol. 13:75–87 [Google Scholar]
  113. Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S. 112.  et al. 2013. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity 38:769–81 [Google Scholar]
  114. Bernink JH, Peters CP, Munneke M, te Velde AA, Meijer SL. 113.  et al. 2013. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 14:221–29 [Google Scholar]
  115. Cording S, Medvedovic J, Cherrier M, Eberl G. 114.  2014. Development and regulation of RORγt(+) innate lymphoid cells. FEBS Lett. 588:4176–81 [Google Scholar]
  116. Mackley EC, Houston S, Marriott CL, Halford EE, Lucas B. 115.  et al. 2015. CCR7-dependent trafficking of RORγ+ ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nat. Commun. 6:5862 [Google Scholar]
  117. Hepworth MR, Monticelli LA, Fung TC, Ziegler CG, Grunberg S. 116.  et al. 2013. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498:113–7 [Google Scholar]
  118. Oliphant CJ, Hwang YY, Walker JA, Salimi M, Wong SH. 117.  et al. 2014. MHCII-mediated dialog between group 2 innate lymphoid cells and CD4+ T cells potentiates type 2 immunity and promotes parasitic helminth expulsion. Immunity 41:283–95 [Google Scholar]
  119. Sonnenberg GF, Monticelli LA, Alenghat T, Fung TC, Hutnick NA. 118.  et al. 2012. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 336:1321–25 [Google Scholar]
  120. Fung TC, Artis D, Sonnenberg GF. 119.  2014. Anatomical localization of commensal bacteria in immune cell homeostasis and disease. Immunol. Rev. 260:35–49 [Google Scholar]
  121. Gasteiger G, Rudensky AY. 120.  2014. Interactions between innate and adaptive lymphocytes. Nat. Rev. Immunol. 14:631–39 [Google Scholar]
  122. Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM. 121.  et al. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14:282–89 [Google Scholar]
  123. Sugimoto K, Ogawa A, Mizoguchi E, Shimomura Y, Andoh A. 122.  et al. 2008. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J. Clin. Investig. 118:534–44 [Google Scholar]
  124. Satoh-Takayama N, Dumoutier L, Lesjean-Pottier S, Ribeiro VS, Mandelboim O. 123.  et al. 2009. The natural cytotoxicity receptor NKp46 is dispensable for IL-22-mediated innate intestinal immune defense against Citrobacter rodentium. J. Immunol. 183:6579–87 [Google Scholar]
  125. Satoh-Takayama N, Vosshenrich CA, Lesjean-Pottier S, Sawa S, Lochner M. 124.  et al. 2008. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29:958–70 [Google Scholar]
  126. Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. 125.  2008. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 29:947–57 [Google Scholar]
  127. Di Meglio P, Di Cesare A, Laggner U, Chu CC, Napolitano L. 126.  et al. 2011. The IL23R R381Q gene variant protects against immune-mediated diseases by impairing IL-23-induced Th17 effector response in humans. PLOS ONE 6:e17160 [Google Scholar]
  128. Pidasheva S, Trifari S, Phillips A, Hackney JA, Ma Y. 127.  et al. 2011. Functional studies on the IBD susceptibility gene IL23R implicate reduced receptor function in the protective genetic variant R381Q. PLOS ONE 6:e25038 [Google Scholar]
  129. Ramesh R, Kozhaya L, McKevitt K, Djuretic IM, Carlson TJ. 128.  et al. 2014. Pro-inflammatory human Th17 cells selectively express P-glycoprotein and are refractory to glucocorticoids. J. Exp. Med. 211:89–104 [Google Scholar]
  130. Longhi MS, Moss A, Bai A, Wu Y, Huang H. 129.  et al. 2014. Characterization of human CD39+ Th17 cells with suppressor activity and modulation in inflammatory bowel disease. PLOS ONE 9:e87956 [Google Scholar]
  131. Yosef N, Shalek AK, Gaublomme JT, Jin H, Lee Y. 130.  et al. 2013. Dynamic regulatory network controlling TH17 cell differentiation. Nature 496:461–68 [Google Scholar]
  132. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD. 131.  et al. 2007. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–83 [Google Scholar]
  133. Stolfi C, Rizzo A, Franze E, Rotondi A, Fantini MC. 132.  et al. 2011. Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J. Exp. Med. 208:2279–90 [Google Scholar]
  134. Fina D, Sarra M, Fantini MC, Rizzo A, Caruso R. 133.  et al. 2008. Regulation of gut inflammation and Th17 cell response by interleukin-21. Gastroenterology 134:1038–48 [Google Scholar]
  135. Salzer E, Kansu A, Sic H, Majek P, Ikinciogullari A. 134.  et al. 2014. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J. Allergy Clin. Immunol. 133:1651–9.e12 [Google Scholar]
  136. Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB. 135.  et al. 2008. Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–49 [Google Scholar]
  137. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M. 136.  et al. 2008. ATP drives lamina propria TH17 cell differentiation. Nature 455:808–12 [Google Scholar]
  138. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T. 137.  et al. 2009. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–98 [Google Scholar]
  139. Yang Y, Torchinsky MB, Gobert M, Xiong H, Xu M. 138.  et al. 2014. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 510:152–56 [Google Scholar]
  140. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM. 139.  1993. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science 260:547–49 [Google Scholar]
  141. Eun CS, Mishima Y, Wohlgemuth S, Liu B, Bower M. 140.  et al. 2014. Induction of bacterial antigen-specific colitis by a simplified human microbiota consortium in gnotobiotic interleukin-10−/− mice. Infect. Immun. 82:2239–46 [Google Scholar]
  142. Goto Y, Panea C, Nakato G, Cebula A, Lee C. 141.  et al. 2014. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 40:594–607 [Google Scholar]
  143. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K. 142.  et al. 2013. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucosal IL-17 cytokine responses. Immunity 38:970–83 [Google Scholar]
  144. Persson EK, Uronen-Hansson H, Semmrich M, Rivollier A, Hagerbrand K. 143.  et al. 2013. IRF4 transcription-factor-dependent CD103+CD11b+ dendritic cells drive mucosal T helper 17 cell differentiation. Immunity 38:958–69 [Google Scholar]
  145. Thelemann C, Eren RO, Coutaz M, Brasseit J, Bouzourene H. 144.  et al. 2014. Interferon-gamma induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis. PLOS ONE 9:e86844 [Google Scholar]
  146. Steinbach EC, Kobayashi T, Russo SM, Sheikh SZ, Gipson GR. 145.  et al. 2014. Innate PI3K p110δ regulates Th1/Th17 development and microbiota-dependent colitis. J. Immunol. 192:3958–68 [Google Scholar]
  147. Hubbard-Lucey VM, Shono Y, Maurer K, West ML, Singer NV. 146.  et al. 2014. Autophagy gene Atg16L1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41:579–91 [Google Scholar]
  148. Berod L, Friedrich C, Nandan A, Freitag J, Hagemann S. 147.  et al. 2014. De novo fatty acid synthesis controls the fate between regulatory T and T helper 17 cells. Nat. Med. 20:1327–33 [Google Scholar]
  149. Shi LZ, Wang R, Huang G, Vogel P, Neale G. 148.  et al. 2011. HIF1α-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208:1367–76 [Google Scholar]
  150. Wang H, Flach H, Onizawa M, Wei L, McManus MT, Weiss A. 149.  2014. Negative regulation of Hif1a expression and TH17 differentiation by the hypoxia-regulated microRNA miR-210. Nat. Immunol. 15:393–401 [Google Scholar]
  151. Gerriets VA, Kishton RJ, Nichols AG, Macintyre AN, Inoue M. 150.  et al. 2015. Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Investig. 125:194–207 [Google Scholar]
  152. Storr M, Vogel HJ, Schicho R. 151.  2013. Metabolomics: Is it useful for inflammatory bowel diseases?. Curr. Opin. Gastroenterol. 29:378–83 [Google Scholar]
  153. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ. 152.  et al. 2001. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27:20–21 [Google Scholar]
  154. Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL. 153.  et al. 2001. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27:18–20 [Google Scholar]
  155. Li X, Liang Y, LeBlanc M, Benner C, Zheng Y. 154.  2014. Function of a Foxp3 cis-element in protecting regulatory T cell identity. Cell 158:734–48 [Google Scholar]
  156. Ueno A, Jijon H, Chan R, Ford K, Hirota C. 155.  et al. 2013. Increased prevalence of circulating novel IL-17 secreting Foxp3 expressing CD4+ T cells and defective suppressive function of circulating Foxp3+ regulatory cells support plasticity between Th17 and regulatory T cells in inflammatory bowel disease patients. Inflamm. Bowel Dis. 19:2522–34 [Google Scholar]
  157. Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K. 156.  et al. 2014. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513:564–68 [Google Scholar]
  158. Gasteiger G, Hemmers S, Bos PD, Sun JC, Rudensky AY. 157.  2013. IL-2-dependent adaptive control of NK cell homeostasis. J. Exp. Med. 210:1179–87 [Google Scholar]
  159. Mjosberg J, Bernink J, Golebski K, Karrich JJ, Peters CP. 158.  et al. 2012. The transcription factor GATA3 is essential for the function of human type 2 innate lymphoid cells. Immunity 37:649–59 [Google Scholar]
  160. Nguyen DD, Wurbel MA, Goettel JA, Eston MA, Ahmed OS. 159.  et al. 2012. Wiskott–Aldrich syndrome protein deficiency in innate immune cells leads to mucosal immune dysregulation and colitis in mice. Gastroenterology 143:719–29.e2 [Google Scholar]
  161. Prete F, Catucci M, Labrada M, Gobessi S, Castiello MC. 160.  et al. 2013. Wiskott-Aldrich syndrome protein-mediated actin dynamics control type-I interferon production in plasmacytoid dendritic cells. J. Exp. Med. 210:355–74 [Google Scholar]
  162. Limketkai BN, Bayless TM. 161.  2013. Editorial: Can stenosis in ileal Crohn's disease be prevented by current therapy?. Am. J. Gastroenterol. 108:1755–56 [Google Scholar]
  163. Scharl M, Huber N, Lang S, Furst A, Jehle E, Rogler G. 162.  2015. Hallmarks of epithelial to mesenchymal transition are detectable in Crohn's disease associated intestinal fibrosis. Clin. Transl. Med. 4:1 [Google Scholar]
  164. Otte JM, Rosenberg IM, Podolsky DK. 163.  2003. Intestinal myofibroblasts in innate immune responses of the intestine. Gastroenterology 124:1866–78 [Google Scholar]
  165. Huttenhower C, Kostic AD, Xavier RJ. 164.  2014. Inflammatory bowel disease as a model for translating the microbiome. Immunity 40:843–54 [Google Scholar]
  166. Kostic AD, Xavier RJ, Gevers D. 165.  2014. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146:1489–99 [Google Scholar]
  167. Norman JM, Handley SA, Virgin HW. 166.  2014. Kingdom-agnostic metagenomics and the importance of complete characterization of enteric microbial communities. Gastroenterology 146:1459–69 [Google Scholar]
  168. Zeissig S, Blumberg RS. 167.  2014. Life at the beginning: perturbation of the microbiota by antibiotics in early life and its role in health and disease. Nat. Immunol. 15:307–10 [Google Scholar]
  169. Saavedra JM, Dattilo AM. 168.  2012. Early development of intestinal microbiota: implications for future health. Gastroenterol. Clin. North Am. 41:717–31 [Google Scholar]
  170. Funkhouser LJ, Bordenstein SR. 169.  2013. Mom knows best: the universality of maternal microbial transmission. PLOS Biol. 11:e1001631 [Google Scholar]
  171. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG. 170.  et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  172. Bergstrom A, Skov TH, Bahl MI, Roager HM, Christensen LB. 171.  et al. 2014. Establishment of intestinal microbiota during early life: a longitudinal, explorative study of a large cohort of Danish infants. Appl. Environ. Microbiol. 80:2889–900 [Google Scholar]
  173. Rogier EW, Frantz AL, Bruno ME, Wedlund L, Cohen DA. 172.  et al. 2014. Secretory antibodies in breast milk promote long-term intestinal homeostasis by regulating the gut microbiota and host gene expression. PNAS 111:3074–79 [Google Scholar]
  174. Chung H, Pamp SJ, Hill JA, Surana NK, Edelman SM. 173.  et al. 2012. Gut immune maturation depends on colonization with a host-specific microbiota. Cell 149:1578–93 [Google Scholar]
  175. An D, Oh SF, Olszak T, Neves JF, Avci FY. 174.  et al. 2014. Sphingolipids from a symbiotic microbe regulate homeostasis of host intestinal natural killer T cells. Cell 156:123–33 [Google Scholar]
  176. Gollwitzer ES, Saglani S, Trompette A, Yadava K, Sherburn R. 175.  et al. 2014. Lung microbiota promotes tolerance to allergens in neonates via PD-L1. Nat. Med. 20:642–47 [Google Scholar]
  177. Faith JJ, Ahern PP, Ridaura VK, Cheng J, Gordon JI. 176.  2014. Identifying gut microbe-host phenotype relationships using combinatorial communities in gnotobiotic mice. Sci. Transl. Med. 6:220ra11 [Google Scholar]
  178. Guo X, Liang Y, Zhang Y, Lasorella A, Kee BL, Fu YX. 177.  2015. Innate lymphoid cells control early colonization resistance against intestinal pathogens through ID2-dependent regulation of the microbiota. Immunity 42:731–43 [Google Scholar]
  179. Fukumoto S, Toshimitsu T, Matsuoka S, Maruyama A, Oh-Oka K. 178.  et al. 2014. Identification of a probiotic bacteria-derived activator of the aryl hydrocarbon receptor that inhibits colitis. Immunol. Cell Biol. 92:460–65 [Google Scholar]
  180. Quintana FJ, Basso AS, Iglesias AH, Korn T, Farez MF. 179.  et al. 2008. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453:65–71 [Google Scholar]
  181. Lee JS, Cella M, McDonald KG, Garlanda C, Kennedy GD. 180.  et al. 2012. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13:144–51 [Google Scholar]
  182. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D. 181.  et al. 2011. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334:1561–65 [Google Scholar]
  183. Huai W, Zhao R, Song H, Zhao J, Zhang L. 182.  et al. 2014. Aryl hydrocarbon receptor negatively regulates NLRP3 inflammasome activity by inhibiting NLRP3 transcription. Nat. Commun. 5:4738 [Google Scholar]
  184. Moura-Alves P, Fae K, Houthuys E, Dorhoi A, Kreuchwig A. 183.  et al. 2014. AhR sensing of bacterial pigments regulates antibacterial defence. Nature 512:387–92 [Google Scholar]
  185. Zelante T, Iannitti RG, Cunha C, De Luca A, Giovannini G. 184.  et al. 2013. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39:372–85 [Google Scholar]
  186. Bessede A, Gargaro M, Pallotta MT, Matino D, Servillo G. 185.  et al. 2014. Aryl hydrocarbon receptor control of a disease tolerance defence pathway. Nature 511:184–90 [Google Scholar]
  187. Opitz CA, Litzenburger UM, Sahm F, Ott M, Tritschler I. 186.  et al. 2011. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature 478:197–203 [Google Scholar]
  188. Wolf AM, Wolf D, Rumpold H, Moschen AR, Kaser A. 187.  et al. 2004. Overexpression of indoleamine 2,3-dioxygenase in human inflammatory bowel disease. Clin. Immunol. 113:47–55 [Google Scholar]
  189. Ananthakrishnan AN, Khalili H, Higuchi LM, Bao Y, Korzenik JR. 188.  et al. 2012. Higher predicted vitamin D status is associated with reduced risk of Crohn's disease. Gastroenterology 142:482–89 [Google Scholar]
  190. Assa A, Vong L, Pinnell LJ, Avitzur N, Johnson-Henry KC, Sherman PM. 189.  2014. Vitamin D deficiency promotes epithelial barrier dysfunction and intestinal inflammation. J. Infect. Dis. 210:1296–305 [Google Scholar]
  191. Wu S, Zhang YG, Lu R, Xia Y, Zhou D. 190.  et al. 2015. Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut 64:1082–94 [Google Scholar]
  192. Cantorna MT. 191.  2010. Mechanisms underlying the effect of vitamin D on the immune system. Proc. Nutr. Soc. 69:286–89 [Google Scholar]
  193. Chen J, Waddell A, Lin YD, Cantorna MT. 192.  2015. Dysbiosis caused by vitamin D receptor deficiency confers colonization resistance to Citrobacter rodentium through modulation of innate lymphoid cells. Mucosal Immunol. 8:618–26 [Google Scholar]
  194. Huda-Faujan N, Abdulamir AS, Fatimah AB, Anas OM, Shuhaimi M. 193.  et al. 2010. The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J. 4:53–58 [Google Scholar]
  195. Wang W, Chen L, Zhou R, Wang X, Song L. 194.  et al. 2014. Increased proportions of Bifidobacterium and the Lactobacillus group and loss of butyrate-producing bacteria in inflammatory bowel disease. J. Clin. Microbiol. 52:398–406 [Google Scholar]
  196. Machiels K, Joossens M, Sabino J, De Preter V, Arijs I. 195.  et al. 2014. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 63:1275–83 [Google Scholar]
  197. Chang PV, Hao L, Offermanns S, Medzhitov R. 196.  2014. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. PNAS 111:2247–52 [Google Scholar]
  198. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J. 197.  et al. 2013. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504:451–55 [Google Scholar]
  199. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R. 198.  et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39 [Google Scholar]
  200. Lukovac S, Belzer C, Pellis L, Keijser BJ, de Vos WM. 199.  et al. 2014. Differential modulation by Akkermansia muciniphila and Faecalibacterium prausnitzii of host peripheral lipid metabolism and histone acetylation in mouse gut organoids. mBio 5:e01438–14 [Google Scholar]
  201. Alenghat T, Osborne LC, Saenz SA, Kobuley D, Ziegler CG. 200.  et al. 2013. Histone deacetylase 3 coordinates commensal-bacteria-dependent intestinal homeostasis. Nature 504:153–57 [Google Scholar]
  202. Macia L, Tan J, Vieira AT, Leach K, Stanley D. 201.  et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734 [Google Scholar]
  203. Kaakoush NO, Day AS, Huinao KD, Leach ST, Lemberg DA. 202.  et al. 2012. Microbial dysbiosis in pediatric patients with Crohn's disease. J. Clin. Microbiol. 50:3258–66 [Google Scholar]
  204. Hansen R, Russell RK, Reiff C, Louis P, McIntosh F. 203.  et al. 2012. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn's but not in ulcerative colitis. Am. J. Gastroenterol. 107:1913–22 [Google Scholar]
  205. Gevers D, Kugathasan S, Denson LA, Vazquez-Baeza Y, Van Treuren W. 204.  et al. 2014. The treatment-naive microbiome in new-onset Crohn's disease. Cell Host Microbe 15:382–92 [Google Scholar]
  206. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL. 205.  et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 13:R79 [Google Scholar]
  207. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J. 206.  et al. 2014. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell 158:1000–10 [Google Scholar]
  208. Virgin HW. 207.  2014. The virome in mammalian physiology and disease. Cell 157:142–50 [Google Scholar]
  209. Wang W, Jovel J, Halloran B, Wine E, Patterson J. 208.  et al. 2015. Metagenomic analysis of microbiome in colon tissue from subjects with inflammatory bowel diseases reveals interplay of viruses and bacteria. Inflamm. Bowel Dis. 21:1419–27 [Google Scholar]
  210. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY. 209.  et al. 2015. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 160:447–60 [Google Scholar]
  211. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC. 210.  et al. 2010. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–45 [Google Scholar]
  212. Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O. 211.  et al. 2014. Human genetics shape the gut microbiome. Cell 159:789–99 [Google Scholar]
  213. Kumar H, Lund R, Laiho A, Lundelin K, Ley RE. 212.  et al. 2014. Gut microbiota as an epigenetic regulator: pilot study based on whole-genome methylation analysis. mBio 5:e02113–14 [Google Scholar]
  214. Li E, Hamm CM, Gulati AS, Sartor RB, Chen H. 213.  et al. 2012. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLOS ONE 7:e26284 [Google Scholar]
  215. Knights D, Silverberg MS, Weersma RK, Gevers D, Dijkstra G. 214.  et al. 2014. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med. 6:107 [Google Scholar]
  216. Rivas MA, Beaudoin M, Gardet A, Stevens C, Sharma Y. 215.  Natl. Inst. Diabetes Dig. Kidney Dis. 2011. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43:1066–73 [Google Scholar]
  217. Beaudoin M, Goyette P, Boucher G, Lo KS, Rivas MA. 216.  et al. 2013. Deep resequencing of GWAS loci identifies rare variants in CARD9, IL23R and RNF186 that are associated with ulcerative colitis. PLOS Genet. 9:e1003723 [Google Scholar]
  218. Diogo D, Kurreeman F, Stahl EA, Liao KP, Gupta N. 217.  et al. 2013. Rare, low-frequency, and common variants in the protein-coding sequence of biological candidate genes from GWASs contribute to risk of rheumatoid arthritis. Am. J. Hum. Genet. 92:15–27 [Google Scholar]
  219. Chen R, Stahl EA, Kurreeman FA, Gregersen PK, Siminovitch KA. 218.  et al. 2011. Fine mapping the TAGAP risk locus in rheumatoid arthritis. Genes Immun. 12:314–18 [Google Scholar]
  220. Inoue N, Tamura K, Kinouchi Y, Fukuda Y, Takahashi S. 219.  et al. 2002. Lack of common NOD2 variants in Japanese patients with Crohn's disease. Gastroenterology 123:86–91 [Google Scholar]
  221. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A. 220.  et al. 2010. A method and server for predicting damaging missense mutations. Nat. Methods 7:248–49 [Google Scholar]
  222. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J. 221.  et al. 2014. Guidelines for investigating causality of sequence variants in human disease. Nature 508:469–76 [Google Scholar]
  223. Lange LA, Hu Y, Zhang H, Xue C, Schmidt EM. 222.  et al. 2014. Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol. Am. J. Hum. Genet. 94:233–45 [Google Scholar]
  224. 223. Natl. Heart Blood Lung Inst 2014. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 371:22–31 [Google Scholar]
  225. Flannick J, Thorleifsson G, Beer NL, Jacobs SB, Grarup N. 224.  et al. 2014. Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat. Genet. 46:357–63 [Google Scholar]
  226. Christodoulou K, Wiskin AE, Gibson J, Tapper W, Willis C. 225.  et al. 2013. Next generation exome sequencing of paediatric inflammatory bowel disease patients identifies rare and novel variants in candidate genes. Gut 62:977–84 [Google Scholar]
  227. Okou DT, Mondal K, Faubion WA, Kobrynski LJ, Denson LA. 226.  et al. 2014. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J. Pediatr. Gastroenterol. Nutr. 58:561–68 [Google Scholar]
  228. Lee MN, Ye C, Villani AC, Raj T, Li W. 227.  et al. 2014. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:1246980 [Google Scholar]
  229. Kabakchiev B, Silverberg MS. 228.  2013. Expression quantitative trait loci analysis identifies associations between genotype and gene expression in human intestine. Gastroenterology 144:1488–96, e1–3 [Google Scholar]
  230. Cui J, Stahl EA, Saevarsdottir S, Miceli C, Diogo D. 229.  et al. 2013. Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLOS Genet. 9:e1003394 [Google Scholar]
  231. Okada Y, Wu D, Trynka G, Raj T, Terao C. 230.  et al. 2014. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506:376–81 [Google Scholar]
  232. Li G, Diogo D, Wu D, Spoonamore J, Dancik V. 231.  et al. 2013. Human genetics in rheumatoid arthritis guides a high-throughput drug screen of the CD40 signaling pathway. PLOS Genet. 9:e1003487 [Google Scholar]
  233. Raine T. 232.  2014. Insights from immunology: new targets for new drugs?. Best Pract. Res. Clin. Gastroenterol. 28:411–20 [Google Scholar]
  234. Sandborn WJ, Ghosh S, Panes J, Vranic I, Su C. 233.  et al. 2012. Tofacitinib, an oral Janus kinase inhibitor, in active ulcerative colitis. N. Engl. J. Med. 367:616–24 [Google Scholar]
  235. Sandborn WJ, Gasink C, Gao LL, Blank MA, Johanns J. 234.  et al. 2012. Ustekinumab induction and maintenance therapy in refractory Crohn's disease. N. Engl. J. Med. 367:1519–28 [Google Scholar]
  236. Kaser A. 235.  2014. Not all monoclonals are created equal—lessons from failed drug trials in Crohn's disease. Best Pract. Res. Clin. Gastroenterol. 28:437–49 [Google Scholar]
  237. O’Morain C, Segal AW, Levi AJ. 236.  1984. Elemental diet as primary treatment of acute Crohn's disease: a controlled trial. Br. Med. J. 288:1859–62 [Google Scholar]
  238. Soo J, Malik BA, Turner JM, Persad R, Wine E. 237.  et al. 2013. Use of exclusive enteral nutrition is just as effective as corticosteroids in newly diagnosed pediatric Crohn's disease. Dig. Dis. Sci. 58:3584–91 [Google Scholar]
  239. Cameron FL, Gerasimidis K, Papangelou A, Missiou D, Garrick V. 238.  et al. 2013. Clinical progress in the two years following a course of exclusive enteral nutrition in 109 paediatric patients with Crohn's disease. Aliment. Pharmacol. Ther. 37:622–29 [Google Scholar]
  240. Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A. 239.  et al. 2014. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J. Crohn's Colitis 8:1179–207 [Google Scholar]
  241. Gerasimidis K, Bertz M, Hanske L, Junick J, Biskou O. 240.  et al. 2014. Decline in presumptively protective gut bacterial species and metabolites are paradoxically associated with disease improvement in pediatric Crohn's disease during enteral nutrition. Inflamm. Bowel Dis. 20:861–71 [Google Scholar]
  242. Gerich ME, McGovern DP. 241.  2014. Towards personalized care in IBD. Nat. Rev. Gastroenterol. Hepatol. 11:287–99 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032414-112151
Loading
/content/journals/10.1146/annurev-immunol-032414-112151
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error