1932

Abstract

Chemokines are tactic cyto that control the migratory patterns and positioning of all immune cells. Although chemokines were initially appreciated as important mediators of acute inflammation, we now know that this complex system of approximately 50 endogenous chemokine ligands and 20 G protein–coupled seven-transmembrane signaling receptors is also critical for the generation of primary and secondary adaptive cellular and humoral immune responses. Recent studies demonstrate important roles for the chemokine system in the priming of naive T cells, in cell fate decisions such as effector and memory cell differentiation, and in regulatory T cell function. In this review, we focus on recent advances in understanding how the chemokine system orchestrates immune cell migration and positioning at the organismic level in homeostasis, in acute inflammation, and during the generation and regulation of adoptive primary and secondary immune responses in the lymphoid system and peripheral nonlymphoid tissue.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120145
2014-03-21
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120145.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120145&mimeType=html&fmt=ahah

Literature Cited

  1. Rot A, von Andrian UH. 1.  2004. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22:891–928 [Google Scholar]
  2. Charo IF, Ransohoff RM. 2.  2006. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354:610–21 [Google Scholar]
  3. Viola A, Luster AD. 3.  2008. Chemokines and their receptors: drug targets in immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 48:171–97 [Google Scholar]
  4. Zlotnik A, Burkhardt AM, Homey B. 4.  2011. Homeostatic chemokine receptors and organ-specific metastasis. Nat. Rev. Immunol. 11:597–606 [Google Scholar]
  5. Love PE, Bhandoola A. 5.  2011. Signal integration and crosstalk during thymocyte migration and emigration. Nat. Rev. Immunol. 11:469–77 [Google Scholar]
  6. Ara T, Tokoyoda K, Sugiyama T, Egawa T, Kawabata K, Nagasawa T. 6.  2003. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19:257–67 [Google Scholar]
  7. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N. 7.  et al. 2010. The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33:387–99 [Google Scholar]
  8. Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S. 8.  et al. 2005. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J. Exp. Med. 201:1307–18 [Google Scholar]
  9. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T. 9.  et al. 1999. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science 283:845–48 [Google Scholar]
  10. Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A. 10.  et al. 2002. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol. 3:687–94 [Google Scholar]
  11. Mercier FE, Ragu C, Scadden DT. 11.  2012. The bone marrow at the crossroads of blood and immunity. Nat. Rev. Immunol. 12:49–60 [Google Scholar]
  12. Suratt BT, Petty JM, Young SK, Malcolm KC, Lieber JG. 12.  et al. 2004. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood 104:565–71 [Google Scholar]
  13. Eash KJ, Greenbaum AM, Gopalan PK, Link DC. 13.  2010. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Investig. 120:2423–31 [Google Scholar]
  14. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J. 14.  et al. 2003. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat. Genet. 34:70–74 [Google Scholar]
  15. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K. 15.  et al. 2004. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood 104:444–52 [Google Scholar]
  16. Shi C, Pamer EG. 16.  2011. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 11:762–74 [Google Scholar]
  17. Wang Y, Cui L, Gonsiorek W, Min SH, Anilkumar G. 17.  et al. 2009. CCR2 and CXCR4 regulate peripheral blood monocyte pharmacodynamics and link to efficacy in experimental autoimmune encephalomyelitis. J. Inflamm. 6:32 [Google Scholar]
  18. Serbina NV, Pamer EG. 18.  2006. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat. Immunol. 7:311–17 [Google Scholar]
  19. Nie Y, Waite J, Brewer F, Sunshine MJ, Littman DR, Zou YR. 19.  2004. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200:1145–56 [Google Scholar]
  20. Pereira JP, An J, Xu Y, Huang Y, Cyster JG. 20.  2009. Cannabinoid receptor 2 mediates the retention of immature B cells in bone marrow sinusoids. Nat. Immunol. 10:403–11 [Google Scholar]
  21. Allende ML, Tuymetova G, Lee BG, Bonifacino E, Wu YP, Proia RL. 21.  2010. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J. Exp. Med. 207:1113–24 [Google Scholar]
  22. van de Pavert SA, Mebius RE. 22.  2010. New insights into the development of lymphoid tissues. Nat. Rev. Immunol. 10:664–74 [Google Scholar]
  23. Wang H, Beaty N, Chen S, Qi CF, Masiuk M. 23.  et al. 2012. The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12. Blood 119:465–68 [Google Scholar]
  24. Cyster JG. 24.  2005. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23:127–59 [Google Scholar]
  25. Rangel-Moreno J, Carragher DM, de la Luz Garcia-Hernandez M, Hwang JY, Kusser K. 25.  et al. 2011. The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nat. Immunol. 12:639–46 [Google Scholar]
  26. Vuillemenot BR, Rodriguez JF, Hoyle GW. 26.  2004. Lymphoid tissue and emphysema in the lungs of transgenic mice inducibly expressing tumor necrosis factor-alpha. Am. J. Respir. Cell Mol. Biol. 30:438–48 [Google Scholar]
  27. Neyt K, Perros F, GeurtsvanKessel CH, Hammad H, Lambrecht BN. 27.  2012. Tertiary lymphoid organs in infection and autoimmunity. Trends Immunol. 33:297–305 [Google Scholar]
  28. Kreisel D, Nava RG, Li W, Zinselmeyer BH, Wang B. 28.  et al. 2010. In vivo two-photon imaging reveals monocyte-dependent neutrophil extravasation during pulmonary inflammation. Proc. Natl. Acad. Sci. USA 107:18073–78 [Google Scholar]
  29. Kolaczkowska E, Kubes P. 29.  2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13:159–75 [Google Scholar]
  30. Devi S, Wang Y, Chew WK, Lima R, A-González N. 30.  et al. 2013. Neutrophil mobilization via plerixafor-mediated CXCR4 inhibition arises from lung demargination and blockade of neutrophil homing to the bone marrow. J. Exp. Med. 210:2321–36 [Google Scholar]
  31. Martin C, Burdon PC, Bridger G, Gutierrez-Ramos JC, Williams TJ, Rankin SM. 31.  2003. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19:583–93 [Google Scholar]
  32. Mishra A, Hogan SP, Lee JJ, Foster PS, Rothenberg ME. 32.  1999. Fundamental signals that regulate eosinophil homing to the gastrointestinal tract. J. Clin. Investig. 103:1719–27 [Google Scholar]
  33. Palframan RT, Collins PD, Williams TJ, Rankin SM. 33.  1998. Eotaxin induces a rapid release of eosinophils and their progenitors from the bone marrow. Blood 91:2240–48 [Google Scholar]
  34. Uguccioni M, Mackay CR, Ochensberger B, Loetscher P, Rhis S. 34.  et al. 1997. High expression of the chemokine receptor CCR3 in human blood basophils. Role in activation by eotaxin, MCP-4, and other chemokines. J. Clin. Investig. 100:1137–43 [Google Scholar]
  35. Ochi H, Hirani WM, Yuan Q, Friend DS, Austen KF, Boyce JA. 35.  1999. T helper cell type 2 cytokine-mediated comitogenic responses and CCR3 expression during differentiation of human mast cells in vitro. J. Exp. Med. 190:267–80 [Google Scholar]
  36. Nilsson G, Johnell M, Hammer CH, Tiffany HL, Nilsson K. 36.  et al. 1996. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J. Immunol. 157:1693–98 [Google Scholar]
  37. Abonia JP, Austen KF, Rollins BJ, Joshi SK, Flavell RA. 37.  et al. 2005. Constitutive homing of mast cell progenitors to the intestine depends on autologous expression of the chemokine receptor CXCR2. Blood 105:4308–13 [Google Scholar]
  38. Halova I, Draberova L, Draber P. 38.  2012. Mast cell chemotaxis—chemoattractants and signaling pathways. Front. Immunol. 3:119 [Google Scholar]
  39. Weller CL, Collington SJ, Brown JK, Miller HR, Al-Kashi A. 39.  et al. 2005. Leukotriene B4, an activation product of mast cells, is a chemoattractant for their progenitors. J. Exp. Med. 201:1961–71 [Google Scholar]
  40. Geissmann F, Jung S, Littman DR. 40.  2003. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19:71–82 [Google Scholar]
  41. Foussat A, Coulomb-L'Hermine A, Gosling J, Krzysiek R, Durand-Gasselin I. 41.  et al. 2000. Fractalkine receptor expression by T lymphocyte subpopulations and in vivo production of fractalkine in human. Eur. J. Immunol. 30:87–97 [Google Scholar]
  42. Kurth I, Willimann K, Schaerli P, Hunziker T, Clark-Lewis I, Moser B. 42.  2001. Monocyte selectivity and tissue localization suggests a role for breast and kidney-expressed chemokine (BRAK) in macrophage development. J. Exp. Med. 194:855–61 [Google Scholar]
  43. Bogunovic M, Ginhoux F, Wagers A, Loubeau M, Isola LM. 43.  et al. 2006. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J. Exp. Med. 203:2627–38 [Google Scholar]
  44. Schaerli P, Willimann K, Ebert LM, Walz A, Moser B. 44.  2005. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Immunity 23:331–42 [Google Scholar]
  45. Meuter S, Schaerli P, Roos RS, Brandau O, Bosl MR. 45.  et al. 2007. Murine CXCL14 is dispensable for dendritic cell function and localization within peripheral tissues. Mol. Cell. Biol. 27:983–92 [Google Scholar]
  46. Cook DN, Prosser DM, Forster R, Zhang J, Kuklin NA. 46.  et al. 2000. CCR6 mediates dendritic cell localization, lymphocyte homeostasis, and immune responses in mucosal tissue. Immunity 12:495–503 [Google Scholar]
  47. Varona R, Villares R, Carramolino L, Goya I, Zaballos A. 47.  et al. 2001. CCR6-deficient mice have impaired leukocyte homeostasis and altered contact hypersensitivity and delayed-type hypersensitivity responses. J. Clin. Investig. 107:R37–45 [Google Scholar]
  48. Randolph GJ, Ochando J, Partida-Sanchez S. 48.  2008. Migration of dendritic cell subsets and their precursors. Annu. Rev. Immunol. 26:293–316 [Google Scholar]
  49. Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z. 49.  et al. 2004. CCR7 governs skin dendritic cell migration under inflammatory and steady-state conditions. Immunity 21:279–88 [Google Scholar]
  50. Worbs T, Bode U, Yan S, Hoffmann MW, Hintzen G. 50.  et al. 2006. Oral tolerance originates in the intestinal immune system and relies on antigen carriage by dendritic cells. J. Exp. Med. 203:519–27 [Google Scholar]
  51. Lammermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Soldner R. 51.  et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55 [Google Scholar]
  52. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A. 52.  et al. 1999. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189:451–60 [Google Scholar]
  53. Haessler U, Pisano M, Wu M, Swartz MA. 53.  2011. Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19. Proc. Natl. Acad. Sci. USA 108:5614–19 [Google Scholar]
  54. Gatto D, Wood K, Caminschi I, Murphy-Durland D, Schofield P. 54.  et al. 2013. The chemotactic receptor EBI2 regulates the homeostasis, localization and immunological function of splenic dendritic cells. Nat. Immunol. 14:446–53 [Google Scholar]
  55. Czeloth N, Schippers A, Wagner N, Muller W, Kuster B. 55.  et al. 2007. Sphingosine-1 phosphate signaling regulates positioning of dendritic cells within the spleen. J. Immunol. 179:5855–63 [Google Scholar]
  56. Masopust D, Schenkel JM. 56.  2013. The integration of T cell migration, differentiation and function. Nat. Rev. Immunol. 13:309–20 [Google Scholar]
  57. Forster R, Schubel A, Breitfeld D, Kremmer E, Renner-Muller I. 57.  et al. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99:23–33 [Google Scholar]
  58. Nakano H, Tamura T, Yoshimoto T, Yagita H, Miyasaka M. 58.  et al. 1997. Genetic defect in T lymphocyte-specific homing into peripheral lymph nodes. Eur. J. Immunol. 27:215–21 [Google Scholar]
  59. Okada T, Ngo VN, Ekland EH, Forster R, Lipp M. 59.  et al. 2002. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196:65–75 [Google Scholar]
  60. Coelho FM, Natale D, Soriano SF, Hons M, Swoger J. 60.  et al. 2013. Naive B-cell trafficking is shaped by local chemokine availability and LFA-1-independent stromal interactions. Blood 121:4101–9 [Google Scholar]
  61. Ebisuno Y, Tanaka T, Kanemitsu N, Kanda H, Yamaguchi K. 61.  et al. 2003. Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer's patches and affects B cell trafficking across high endothelial venules. J. Immunol. 171:1642–46 [Google Scholar]
  62. Schmidt TH, Bannard O, Gray EE, Cyster JG. 62.  2013. CXCR4 promotes B cell egress from Peyer's patches. J. Exp. Med. 210:1099–107 [Google Scholar]
  63. Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD. 63.  et al. 2007. Altering the distribution of Foxp3+ regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204:1335–47CCR4 on Tregs is critical for their function in the skin and lung at homeostasis. [Google Scholar]
  64. Lim HW, Broxmeyer HE, Kim CH. 64.  2006. Regulation of trafficking receptor expression in human forkhead box P3+ regulatory T cells. J. Immunol. 177:840–51 [Google Scholar]
  65. Grindebacke H, Stenstad H, Quiding-Jarbrink M, Waldenstrom J, Adlerberth I. 65.  et al. 2009. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25high regulatory T cells. J. Immunol. 183:4360–70 [Google Scholar]
  66. Bernardini G, Gismondi A, Santoni A. 66.  2012. Chemokines and NK cells: regulators of development, trafficking and functions. Immunol. Lett. 145:39–46 [Google Scholar]
  67. Peng H, Tian Z. 67.  2014. NK cell trafficking in health and autoimmunity: a comprehensive review. Clin. Rev. Allergy Immunol. In press. doi: 10.1007/s12016-013-8400-0
  68. Jenne CN, Enders A, Rivera R, Watson SR, Bankovich AJ. 68.  et al. 2009. T-bet-dependent S1P5 expression in NK cells promotes egress from lymph nodes and bone marrow. J. Exp. Med. 206:2469–81 [Google Scholar]
  69. Mayol K, Biajoux V, Marvel J, Balabanian K, Walzer T. 69.  2011. Sequential desensitization of CXCR4 and S1P5 controls natural killer cell trafficking. Blood 118:4863–71 [Google Scholar]
  70. Maghazachi AA. 70.  2010. Role of chemokines in the biology of natural killer cells. Curr. Top. Microbiol. Immunol. 341:37–58 [Google Scholar]
  71. Walker JA, Barlow JL, McKenzie AN. 71.  2013. Innate lymphoid cells—how did we miss them?. Nat. Rev. Immunol. 13:75–87 [Google Scholar]
  72. Roediger B, Kyle R, Yip KH, Sumaria N, Guy TV. 72.  et al. 2013. Cutaneous immunosurveillance and regulation of inflammation by group 2 innate lymphoid cells. Nat. Immunol 14:564–73 [Google Scholar]
  73. Sawa S, Cherrier M, Lochner M, Satoh-Takayama N, Fehling HJ. 73.  et al. 2010. Lineage relationship analysis of RORγt+ innate lymphoid cells. Science 330:665–69 [Google Scholar]
  74. Thomas SY, Hou R, Boyson JE, Means TK, Hess C. 74.  et al. 2003. CD1d-restricted NKT cells express a chemokine receptor profile indicative of Th1-type inflammatory homing cells. J. Immunol. 171:2571–80 [Google Scholar]
  75. Germanov E, Veinotte L, Cullen R, Chamberlain E, Butcher EC. 75.  et al. 2008. Critical role for the chemokine receptor CXCR6 in homeostasis and activation of CD1d-restricted NKT cells. J. Immunol. 181:81–91 [Google Scholar]
  76. Glatzel A, Wesch D, Schiemann F, Brandt E, Janssen O. 76.  et al. 2002. Patterns of chemokine receptor expression on peripheral blood γδ T lymphocytes: strong expression of CCR5 is a selective feature of Vδ2/Vγ9 γδ T cells. J. Immunol. 168:4920–29 [Google Scholar]
  77. Gonzalo JA, Qiu Y, Lora JM, Al-Garawi A, Villeval JL. 77.  et al. 2007. Coordinated involvement of mast cells and T cells in allergic mucosal inflammation: critical role of the CC chemokine ligand 1:CCR8 axis. J. Immunol. 179:1740–50 [Google Scholar]
  78. De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N. 78.  et al. 2013. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–37 [Google Scholar]
  79. Marshall JS. 79.  2004. Mast-cell responses to pathogens. Nat. Rev. Immunol. 4:787–99 [Google Scholar]
  80. Piqueras B, Connolly J, Freitas H, Palucka AK, Banchereau J. 80.  2006. Upon viral exposure, myeloid and plasmacytoid dendritic cells produce 3 waves of distinct chemokines to recruit immune effectors. Blood 107:2613–18 [Google Scholar]
  81. Kagnoff MF, Eckmann L. 81.  1997. Epithelial cells as sensors for microbial infection. J. Clin. Investig. 100:6–10 [Google Scholar]
  82. Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P. 82.  et al. 2011. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208:327–39 [Google Scholar]
  83. Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M. 83.  et al. 1990. Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76:1962–64 [Google Scholar]
  84. Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC. 84.  2002. G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity 17:413–23 [Google Scholar]
  85. Kim HK, De La Luz Sierra M, Williams CK, Gulino AV, Tosato G. 85.  2006. G-CSF down-regulation of CXCR4 expression identified as a mechanism for mobilization of myeloid cells. Blood 108:812–20 [Google Scholar]
  86. Pruenster M, Mudde L, Bombosi P, Dimitrova S, Zsak M. 86.  et al. 2009. The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity. Nat. Immunol. 10:101–8 [Google Scholar]
  87. Proudfoot AE, Handel TM, Johnson Z, Lau EK, LiWang P. 87.  et al. 2003. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100:1885–90 [Google Scholar]
  88. Hillyer P, Male D. 88.  2005. Expression of chemokines on the surface of different human endothelia. Immunol. Cell Biol. 83:375–82 [Google Scholar]
  89. Proebstl D, Voisin MB, Woodfin A, Whiteford J, D'Acquisto F. 89.  et al. 2012. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J. Exp. Med. 209:1219–34 [Google Scholar]
  90. Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M. 90.  et al. 2013. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat. Immunol. 14:41–51 [Google Scholar]
  91. Kim ND, Chou RC, Seung E, Tager AM, Luster AD. 91.  2006. A unique requirement for the leukotriene B4 receptor BLT1 for neutrophil recruitment in inflammatory arthritis. J. Exp. Med. 203:829–35 [Google Scholar]
  92. Chen M, Lam BK, Kanaoka Y, Nigrovic PA, Audoly LP. 92.  et al. 2006. Neutrophil-derived leukotriene B4 is required for inflammatory arthritis. J. Exp. Med. 203:837–42 [Google Scholar]
  93. Chou RC, Kim ND, Sadik CD, Seung E, Lan Y. 93.  et al. 2010. Lipid-cytokine-chemokine cascade drives neutrophil recruitment in a murine model of inflammatory arthritis. Immunity 33:266–78Neutrophils amplify their own recruitment through IL-1 and chemokine release. [Google Scholar]
  94. McDonald B, Pittman K, Menezes GB, Hirota SA, Slaba I. 94.  et al. 2010. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science 330:362–66 [Google Scholar]
  95. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T. 95.  et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–7 [Google Scholar]
  96. Heit B, Robbins SM, Downey CM, Guan Z, Colarusso P. 96.  et al. 2008. PTEN functions to ‘prioritize’ chemotactic cues and prevent ‘distraction’ in migrating neutrophils. Nat. Immunol. 9:743–52 [Google Scholar]
  97. Afonso PV, Janka-Junttila M, Lee YJ, McCann CP, Oliver CM. 97.  et al. 2012. LTB4 is a signal-relay molecule during neutrophil chemotaxis. Dev. Cell 22:1079–91 [Google Scholar]
  98. Lammermann T, Afonso PV, Angermann BR, Wang JM, Kastenmuller W. 98.  et al. 2013. Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498:371–75Neutrophil-derived LTB4 coordinates chemotaxis and clustering of neutrophils at sites of tissue damage in vivo. [Google Scholar]
  99. Das ST, Rajagopalan L, Guerrero-Plata A, Sai J, Richmond A. 99.  et al. 2010. Monomeric and dimeric CXCL8 are both essential for in vivo neutrophil recruitment. PLoS ONE 5:e11754 [Google Scholar]
  100. Bennouna S, Bliss SK, Curiel TJ, Denkers EY. 100.  2003. Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J. Immunol. 171:6052–58 [Google Scholar]
  101. Kuziel WA, Morgan SJ, Dawson TC, Griffin S, Smithies O. 101.  et al. 1997. Severe reduction in leukocyte adhesion and monocyte extravasation in mice deficient in CC chemokine receptor 2. Proc. Natl. Acad. Sci. USA 94:12053–58 [Google Scholar]
  102. Palframan RT, Jung S, Cheng G, Weninger W, Luo Y. 102.  et al. 2001. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. J. Exp. Med. 194:1361–73 [Google Scholar]
  103. Shi C, Jia T, Mendez-Ferrer S, Hohl TM, Serbina NV. 103.  et al. 2011. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34:590–601TLR ligands in the bloodstream drive CCR2-dependent emigration of monocytes from bone marrow. [Google Scholar]
  104. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA. 104.  et al. 1999. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 398:718–23 [Google Scholar]
  105. Bernhagen J, Krohn R, Lue H, Gregory JL, Zernecke A. 105.  et al. 2007. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13:587–96 [Google Scholar]
  106. Weber C, Weber KS, Klier C, Gu S, Wank R, Horuk R, Nelson PJ. 106.  2001. Specialized roles of the chemokine receptors CCR1 and CCR5 in the recruitment of monocytes and TH1-like/CD45RO+ T cells. Blood 97:1144–46 [Google Scholar]
  107. Le Borgne M, Etchart N, Goubier A, Lira SA, Sirard JC. 107.  et al. 2006. Dendritic cells rapidly recruited into epithelial tissues via CCR6/CCL20 are responsible for CD8+ T cell crosspriming in vivo. Immunity 24:191–201 [Google Scholar]
  108. Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O. 108.  et al. 2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317:666–70 [Google Scholar]
  109. Landsman L, Bar-On L, Zernecke A, Kim KW, Krauthgamer R. 109.  et al. 2009. CX3CR1 is required for monocyte homeostasis and atherogenesis by promoting cell survival. Blood 113:963–72 [Google Scholar]
  110. Moatti D, Faure S, Fumeron F, Amara Mel W, Seknadji P. 110.  et al. 2001. Polymorphism in the fractalkine receptor CX3CR1 as a genetic risk factor for coronary artery disease. Blood 97:1925–28 [Google Scholar]
  111. Menzies-Gow A, Robinson DS. 111.  2001. Eosinophil chemokines and chemokine receptors: their role in eosinophil accumulation and activation in asthma and potential as therapeutic targets. J. Asthma: Off. J. Assoc. Care Asthma 38:605–13 [Google Scholar]
  112. Humbles AA, Lu B, Friend DS, Okinaga S, Lora J. 112.  et al. 2002. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl. Acad. Sci. USA 99:1479–84 [Google Scholar]
  113. Mattes J, Yang M, Mahalingam S, Kuehr J, Webb DC. 113.  et al. 2002. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J. Exp. Med. 195:1433–44 [Google Scholar]
  114. Kalomenidis I, Stathopoulos GT, Barnette R, Guo Y, Peebles RS. 114.  et al. 2005. Eotaxin-3 and interleukin-5 pleural fluid levels are associated with pleural fluid eosinophilia in post-coronary artery bypass grafting pleural effusions. Chest 127:2094–100 [Google Scholar]
  115. Pope SM, Zimmermann N, Stringer KF, Karow ML, Rothenberg ME. 115.  2005. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J. Immunol. 175:5341–50 [Google Scholar]
  116. Wong CK, Hu S, Cheung PF, Lam CW. 116.  2010. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am. J. Respir. Cell Mol. Biol. 43:305–15 [Google Scholar]
  117. Struyf S, Proost P, Schols D, De Clercq E, Opdenakker G. 117.  et al. 1999. CD26/dipeptidyl-peptidase IV down-regulates the eosinophil chemotactic potency, but not the anti-HIV activity of human eotaxin by affecting its interaction with CC chemokine receptor 3. J. Immunol. 162:4903–9 [Google Scholar]
  118. Yan S, Gessner R, Dietel C, Schmiedek U, Fan H. 118.  2012. Enhanced ovalbumin-induced airway inflammation in CD26−/− mice. Eur. J. Immunol. 42:533–40 [Google Scholar]
  119. Sallusto F, Schaerli P, Loetscher P, Schaniel C, Lenig D. 119.  et al. 1998. Rapid and coordinated switch in chemokine receptor expression during dendritic cell maturation. Eur. J. Immunol. 28:2760–69 [Google Scholar]
  120. Weber M, Hauschild R, Schwarz J, Moussion C, de Vries I. 120.  et al. 2013. Interstitial dendritic cell guidance by haptotactic chemokine gradients. Science 339:328–32Endogenous gradients of immobilized CCL21 guide the directed haptotaxis of DCs into afferent lymphatics. [Google Scholar]
  121. Tal O, Lim HY, Gurevich I, Milo I, Shipony Z. 121.  et al. 2011. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J. Exp. Med. 208:2141–53 [Google Scholar]
  122. Pflicke H, Sixt M. 122.  2009. Preformed portals facilitate dendritic cell entry into afferent lymphatic vessels. J. Exp. Med. 206:2925–35 [Google Scholar]
  123. Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN. 123.  et al. 2009. Blood-derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat. Immunol. 10:394–402 [Google Scholar]
  124. Khan IA, Thomas SY, Moretto MM, Lee FS, Islam SA. 124.  et al. 2006. CCR5 is essential for NK cell trafficking and host survival following Toxoplasma gondii infection. PLoS Pathog. 2:e49 [Google Scholar]
  125. Hokeness KL, Kuziel WA, Biron CA, Salazar-Mather TP. 125.  2005. Monocyte chemoattractant protein-1 and CCR2 interactions are required for IFN-α/β-induced inflammatory responses and antiviral defense in liver. J. Immunol. 174:1549–1556 [Google Scholar]
  126. Hancock WW, Gao W, Csizmadia V, Faia KL, Shemmeri N. 126.  et al. 2001. Donor-derived IP-10 initiates development of acute allograft rejection. J. Exp. Med. 193:975–980 [Google Scholar]
  127. Wald O, Weiss ID, Wald H, Shoham H, Bar-Shavit Y. 127.  et al. 2006. IFN-γ acts on T cells to induce NK cell mobilization and accumulation in target organs. J. Immunol. 176:4716–29 [Google Scholar]
  128. Wehr A, Baeck C, Heymann F, Niemietz PM, Hammerich L. 128.  et al. 2013. Chemokine receptor CXCR6-dependent hepatic NK T cell accumulation promotes inflammation and liver fibrosis. J. Immunol 190:5226–5236 [Google Scholar]
  129. Huang D, Shi F-D, Jung S, Pien GC, Wang J. 129.  et al. 2006. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J. 20:896–905 [Google Scholar]
  130. Hao J, Liu R, Piao W, Zhou Q, Vollmer TL. 130.  2010. Central nervous system (CNS)–resident natural killer cells suppress Th17 responses and CNS autoimmune pathology. J. Exp. Med. 207:1907–1921 [Google Scholar]
  131. Bajenoff M, Egen JG, Koo LY, Laugier JP, Brau F. 131.  et al. 2006. Stromal cell networks regulate lymphocyte entry, migration, and territoriality in lymph nodes. Immunity 25:989–1001 [Google Scholar]
  132. Graw F, Regoes RR. 132.  2012. Influence of the fibroblastic reticular network on cell-cell interactions in lymphoid organs. PLoS Comput. Biol. 8:e1002436 [Google Scholar]
  133. Okada T, Cyster JG. 133.  2007. CC chemokine receptor 7 contributes to Gi-dependent T cell motility in the lymph node. J. Immunol. 178:2973–78 [Google Scholar]
  134. Worbs T, Mempel TR, Bolter J, von Andrian UH, Forster R. 134.  2007. CCR7 ligands stimulate the intranodal motility of T lymphocytes in vivo. J. Exp. Med. 204:489–95 [Google Scholar]
  135. Schumann K, Lammermann T, Bruckner M, Legler DF, Polleux J. 135.  et al. 2010. Immobilized chemokine fields and soluble chemokine gradients cooperatively shape migration patterns of dendritic cells. Immunity 32:703–13 [Google Scholar]
  136. Kabashima K, Murata T, Tanaka H, Matsuoka T, Sakata D. 136.  et al. 2003. Thromboxane A2 modulates interaction of dendritic cells and T cells and regulates acquired immunity. Nat. Immunol. 4:694–701 [Google Scholar]
  137. Huang JH, Cardenas-Navia LI, Caldwell CC, Plumb TJ, Radu CG. 137.  et al. 2007. Requirements for T lymphocyte migration in explanted lymph nodes. J. Immunol. 178:7747–55 [Google Scholar]
  138. Yi T, Wang X, Kelly LM, An J, Xu Y. 138.  et al. 2012. Oxysterol gradient generation by lymphoid stromal cells guides activated B cell movement during humoral responses. Immunity 37:535–48 [Google Scholar]
  139. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. 139.  2006. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–95 [Google Scholar]
  140. Hugues S, Scholer A, Boissonnas A, Nussbaum A, Combadiere C. 140.  et al. 2007. Dynamic imaging of chemokine-dependent CD8+ T cell help for CD8+ T cell responses. Nat. Immunol. 8:921–30 [Google Scholar]
  141. Semmling V, Lukacs-Kornek V, Thaiss CA, Quast T, Hochheiser K. 141.  et al. 2010. Alternative cross-priming through CCL17-CCR4-mediated attraction of CTLs toward NKT cell-licensed DCs. Nat. Immunol. 11:313–20 [Google Scholar]
  142. Friedman RS, Jacobelli J, Krummel MF. 142.  2006. Surface-bound chemokines capture and prime T cells for synapse formation. Nat. Immunol. 7:1101–8 [Google Scholar]
  143. Gerard A, Khan O, Beemiller P, Oswald E, Hu J. 143.  et al. 2013. Secondary T cell-T cell synaptic interactions drive the differentiation of protective CD8+ T cells. Nat. Immunol. 14:356–63 [Google Scholar]
  144. Hickman HD, Li L, Reynoso GV, Rubin EJ, Skon CN. 144.  et al. 2011. Chemokines control naive CD8+ T cell selection of optimal lymph node antigen presenting cells. J. Exp. Med. 208:2511–24 [Google Scholar]
  145. Kastenmuller W, Brandes M, Wang Z, Herz J, Egen JG, Germain RN. 145.  2013. Peripheral prepositioning and local CXCL9 chemokine-mediated guidance orchestrate rapid memory CD8+ T cell responses in the lymph node. Immunity 38:502–13 [Google Scholar]
  146. Ferguson AR, Engelhard VH. 146.  2010. CD8 T cells activated in distinct lymphoid organs differentially express adhesion proteins and coexpress multiple chemokine receptors. J. Immunol. 184:4079–86 [Google Scholar]
  147. Kurachi M, Kurachi J, Suenaga F, Tsukui T, Abe J. 147.  et al. 2011. Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. J. Exp. Med. 208:1605–20CXCR3 expression on CD8+ T cells skews effector/memory formation. [Google Scholar]
  148. Kohlmeier JE, Reiley WW, Perona-Wright G, Freeman ML, Yager EJ. 148.  et al. 2011. Inflammatory chemokine receptors regulate CD8+ T cell contraction and memory generation following infection. J. Exp. Med. 208:1621–34 [Google Scholar]
  149. Hu JK, Kagari T, Clingan JM, Matloubian M. 149.  2011. Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proc. Natl. Acad. Sci. USA 108:E118–27 [Google Scholar]
  150. Bromley SK, Mempel TR, Luster AD. 150.  2008. Orchestrating the orchestrators: chemokines in control of T cell traffic. Nat. Immunol. 9:970–80 [Google Scholar]
  151. Sallusto F, Lenig D, Mackay CR, Lanzavecchia A. 151.  1998. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187:875–83 [Google Scholar]
  152. Groom JR, Richmond J, Murooka TT, Sorensen EW, Sung JH. 152.  et al. 2012. CXCR3 chemokine receptor-ligand interactions in the lymph node optimize CD4+ T helper 1 cell differentiation. Immunity 37:1091–103CXCR3 guides CD4+ cells to interfollicular niches in LN that favor Th1 differentiation. [Google Scholar]
  153. Kastenmuller W, Torabi-Parizi P, Subramanian N, Lammermann T, Germain RN. 153.  2012. A spatially-organized multicellular innate immune response in lymph nodes limits systemic pathogen spread. Cell 150:1235–48 [Google Scholar]
  154. Groom JR, Luster AD. 154.  2011. CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol. Cell Biol. 89:207–15 [Google Scholar]
  155. Oghumu S, Dong R, Varikuti S, Shawler T, Kampfrath T. 155.  et al. 2013. Distinct populations of innate CD8+ T cells revealed in a CXCR3 reporter mouse. J. Immunol. 190:2229–40 [Google Scholar]
  156. Bajenoff M, Breart B, Huang AY, Qi H, Cazareth J. 156.  et al. 2006. Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J. Exp. Med. 203:619–31 [Google Scholar]
  157. Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M. 157.  et al. 2004. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat. Immunol. 5:1260–65 [Google Scholar]
  158. Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M. 158.  et al. 2004. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16:915–28 [Google Scholar]
  159. Mori S, Nakano H, Aritomi K, Wang CR, Gunn MD, Kakiuchi T. 159.  2001. Mice lacking expression of the chemokines CCL21-Ser and CCL19 (plt mice) demonstrate delayed but enhanced T cell immune responses. J. Exp. Med. 193:207–18 [Google Scholar]
  160. Guarda G, Hons M, Soriano SF, Huang AY, Polley R. 160.  et al. 2007. L-selectin-negative CCR7- effector and memory CD8+ T cells enter reactive lymph nodes and kill dendritic cells. Nat. Immunol. 8:743–52 [Google Scholar]
  161. Leon B, Ballesteros-Tato A, Browning JL, Dunn R, Randall TD, Lund FE. 161.  2012. Regulation of T(H)2 development by CXCR5+ dendritic cells and lymphotoxin-expressing B cells. Nat. Immunol. 13:681–90CXCR5 guides CD4+ cells to perifollicular niches in lymph that favor Th2 differentiation. [Google Scholar]
  162. Tang HL, Cyster JG. 162.  1999. Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science 284:819–22 [Google Scholar]
  163. Alferink J, Lieberam I, Reindl W, Behrens A, Weiss S. 163.  et al. 2003. Compartmentalized production of CCL17 in vivo: strong inducibility in peripheral dendritic cells contrasts selective absence from the spleen. J. Exp. Med. 197:585–99 [Google Scholar]
  164. Baekkevold ES, Wurbel MA, Kivisakk P, Wain CM, Power CA. 164.  et al. 2005. A role for CCR4 in development of mature circulating cutaneous T helper memory cell populations. J. Exp. Med. 201:1045–51 [Google Scholar]
  165. Reif K, Ekland EH, Ohl L, Nakano H, Lipp M. 165.  et al. 2002. Balanced responsiveness to chemoattractants from adjacent zones determines B-cell position. Nature 416:94–99 [Google Scholar]
  166. Pereira JP, Kelly LM, Xu Y, Cyster JG. 166.  2009. EBI2 mediates B cell segregation between the outer and centre follicle. Nature 460:1122–26 [Google Scholar]
  167. Okada T, Miller MJ, Parker I, Krummel MF, Neighbors M. 167.  et al. 2005. Antigen-engaged B cells undergo chemotaxis toward the T zone and form motile conjugates with helper T cells. PLoS Biol. 3:e150 [Google Scholar]
  168. Green JA, Suzuki K, Cho B, Willison LD, Palmer D. 168.  et al. 2011. The sphingosine 1-phosphate receptor S1P(2) maintains the homeostasis of germinal center B cells and promotes niche confinement. Nat. Immunol. 12:672–80 [Google Scholar]
  169. Allen CD, Ansel KM, Low C, Lesley R, Tamamura H. 169.  et al. 2004. Germinal center dark and light zone organization is mediated by CXCR4 and CXCR5. Nat. Immunol. 5:943–52 [Google Scholar]
  170. Victora GD, Nussenzweig MC. 170.  2012. Germinal centers. Annu. Rev. Immunol. 30:429–57 [Google Scholar]
  171. Cyster JG, Schwab SR. 171.  2012. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu. Rev. Immunol. 30:69–94 [Google Scholar]
  172. Pham TH, Okada T, Matloubian M, Lo CG, Cyster JG. 172.  2008. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity 28:122–33 [Google Scholar]
  173. Nolz JC, Starbeck-Miller GR, Harty JT. 173.  2011. Naive, effector and memory CD8 T-cell trafficking: parallels and distinctions. Immunotherapy 3:1223–33 [Google Scholar]
  174. Hess C, Means TK, Autissier P, Woodberry T, Altfeld M. 174.  et al. 2004. IL-8 responsiveness defines a subset of CD8 T cells poised to kill. Blood 104:3463–71 [Google Scholar]
  175. Lim HW, Lee J, Hillsamer P, Kim CH. 175.  2008. Human Th17 cells share major trafficking receptors with both polarized effector T cells and FOXP3+ regulatory T cells. J. Immunol. 180:122–29 [Google Scholar]
  176. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. 176.  2009. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10:857–63 [Google Scholar]
  177. Kara EE, Comerford I, Bastow CR, Fenix KA, Litchfield W. 177.  et al. 2013. Distinct chemokine receptor axes regulate Th9 cell trafficking to allergic and autoimmune inflammatory sites. J. Immunol. 191:1110–17 [Google Scholar]
  178. Zhou L, Chong MM, Littman DR. 178.  2009. Plasticity of CD4+ T cell lineage differentiation. Immunity 30:646–55 [Google Scholar]
  179. Freeman CM, Stolberg VR, Chiu BC, Lukacs NW, Kunkel SL, Chensue SW. 179.  2006. CCR4 participation in Th type 1 (mycobacterial) and Th type 2 (schistosomal) anamnestic pulmonary granulomatous responses. J. Immunol. 177:4149–58 [Google Scholar]
  180. Nakanishi Y, Lu B, Gerard C, Iwasaki A. 180.  2009. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462:510–13 [Google Scholar]
  181. Agace WW. 181.  2006. Tissue-tropic effector T cells: generation and targeting opportunities. Nat. Rev. Immunol. 6:682–92 [Google Scholar]
  182. Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. 182.  2004. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21:527–38 [Google Scholar]
  183. Stenstad H, Ericsson A, Johansson-Lindbom B, Svensson M, Marsal J. 183.  et al. 2006. Gut-associated lymphoid tissue-primed CD4+ T cells display CCR9-dependent and -independent homing to the small intestine. Blood 107:3447–54 [Google Scholar]
  184. Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH. 184.  2005. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J. Exp. Med. 201:303–16 [Google Scholar]
  185. Sigmundsdottir H, Pan J, Debes GF, Alt C, Habtezion A. 185.  et al. 2007. DCs metabolize sunlight-induced vitamin D3 to ‘program’ T cell attraction to the epidermal chemokine CCL27. Nat. Immunol. 8:285–93 [Google Scholar]
  186. McCully ML, Ladell K, Hakobyan S, Mansel RE, Price DA, Moser B. 186.  2012. Epidermis instructs skin homing receptor expression in human T cells. Blood 120:4591–98 [Google Scholar]
  187. Galkina E, Thatte J, Dabak V, Williams MB, Ley K, Braciale TJ. 187.  2005. Preferential migration of effector CD8+ T cells into the interstitium of the normal lung. J. Clin. Investig. 115:3473–83 [Google Scholar]
  188. Teijaro JR, Turner D, Pham Q, Wherry EJ, Lefrancois L, Farber DL. 188.  2011. Cutting edge: Tissue-retentive lung memory CD4 T cells mediate optimal protection to respiratory virus infection. J. Immunol. 187:5510–14 [Google Scholar]
  189. Mikhak Z, Strassner JP, Luster AD. 189.  2013. Lung dendritic cells imprint T cell lung homing and promote lung immunity through the chemokine receptor CCR4. J. Exp. Med. 210:1855–69 [Google Scholar]
  190. Ruane D, Brane L, Reis BS, Cheong C, Poles J. 190.  et al. 2013. Lung dendritic cells induce migration of protective T cells to the gastrointestinal tract. J. Exp. Med. 210:1871–88 [Google Scholar]
  191. Masopust D, Vezys V, Marzo AL, Lefrancois L. 191.  2001. Preferential localization of effector memory cells in nonlymphoid tissue. Science 291:2413–17 [Google Scholar]
  192. Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. 192.  2001. Visualizing the generation of memory CD4 T cells in the whole body. Nature 410:101–5 [Google Scholar]
  193. Liu L, Fuhlbrigge RC, Karibian K, Tian T, Kupper TS. 193.  2006. Dynamic programming of CD8+ T cell trafficking after live viral immunization. Immunity 25:511–20 [Google Scholar]
  194. Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED. 194.  et al. 2012. Generalized Levy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486:545–48 [Google Scholar]
  195. Khan IA, MacLean JA, Lee FS, Casciotti L, DeHaan E. 195.  et al. 2000. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12:483–94 [Google Scholar]
  196. Mionnet C, Buatois V, Kanda A, Milcent V, Fleury S. 196.  et al. 2010. CX3CR1 is required for airway inflammation by promoting T helper cell survival and maintenance in inflamed lung. Nat. Med. 16:1305–12 [Google Scholar]
  197. Bromley SK, Thomas SY, Luster AD. 197.  2005. Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat. Immunol. 6:895–901 [Google Scholar]
  198. Debes GF, Arnold CN, Young AJ, Krautwald S, Lipp M. 198.  et al. 2005. Chemokine receptor CCR7 required for T lymphocyte exit from peripheral tissues. Nat. Immunol. 6:889–94 [Google Scholar]
  199. Jennrich S, Lee MH, Lynn RC, Dewberry K, Debes GF. 199.  2012. Tissue exit: a novel control point in the accumulation of antigen-specific CD8 T cells in the influenza a virus-infected lung. J. Virol. 86:3436–45 [Google Scholar]
  200. Brown MN, Fintushel SR, Lee MH, Jennrich S, Geherin SA. 200.  et al. 2010. Chemoattractant receptors and lymphocyte egress from extralymphoid tissue: changing requirements during the course of inflammation. J. Immunol. 185:4873–82 [Google Scholar]
  201. Ledgerwood LG, Lal G, Zhang N, Garin A, Esses SJ. 201.  et al. 2008. The sphingosine 1-phosphate receptor 1 causes tissue retention by inhibiting the entry of peripheral tissue T lymphocytes into afferent lymphatics. Nat. Immunol. 9:42–53 [Google Scholar]
  202. Lee KM, McKimmie CS, Gilchrist DS, Pallas KJ, Nibbs RJ. 202.  et al. 2011. D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood 118:6220–29 [Google Scholar]
  203. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. 203.  1999. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401:708–12 [Google Scholar]
  204. Scimone ML, Felbinger TW, Mazo IB, Stein JV, Von Andrian UH, Weninger W. 204.  2004. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med. 199:1113–20 [Google Scholar]
  205. Sung JH, Zhang H, Moseman EA, Alvarez D, Iannacone M. 205.  et al. 2012. Chemokine guidance of central memory T cells is critical for antiviral recall responses in lymph nodes. Cell 150:1249–63CXCR3 guides TCM to sites of antigen in the LN for efficient recall responses. [Google Scholar]
  206. Martin-Fontecha A, Baumjohann D, Guarda G, Reboldi A, Hons M. 206.  et al. 2008. CD40L+ CD4+ memory T cells migrate in a CD62P-dependent fashion into reactive lymph nodes and license dendritic cells for T cell priming. J. Exp. Med. 205:2561–74 [Google Scholar]
  207. Brinkman CC, Rouhani SJ, Srinivasan N, Engelhard VH. 207.  2013. Peripheral tissue homing receptors enable T cell entry into lymph nodes and affect the anatomical distribution of memory cells. J. Immunol. 191:2412–25 [Google Scholar]
  208. Mueller SN, Gebhardt T, Carbone FR, Heath WR. 208.  2013. Memory T cell subsets, migration patterns, and tissue residence. Annu. Rev. Immunol. 31:137–61 [Google Scholar]
  209. Mackay LK, Rahimpour A, Ma JZ, Collins N, Stock AT. 209.  et al. 2013. The developmental pathway for CD103+CD8+ tissue-resident memory T cells of skin. Nat. Immunol. 14:1294–301 [Google Scholar]
  210. Skon CN, Lee J, Anderson KG, Masopust D, Hogquist KA. 210.  et al. 2013. Transcriptional downregulation of S1pr1 is required for the establishment of resident memory CD8+ T cells. Nat. Immunol 14:1285–93 [Google Scholar]
  211. Gebhardt T, Whitney PG, Zaid A, Mackay LK, Brooks AG. 211.  et al. 2011. Different patterns of peripheral migration by memory CD4+ and CD8+ T cells. Nature 477:216–19 [Google Scholar]
  212. Ariotti S, Beltman JB, Chodaczek G, Hoekstra ME, van Beek AE. 212.  et al. 2012. Tissue-resident memory CD8+ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proc. Natl. Acad. Sci. USA 109:19739–44 [Google Scholar]
  213. Bromley SK, Yan S, Tomura M, Kanagawa O, Luster AD. 213.  2013. Recirculating memory T cells are a unique subset of CD4+ T cells with a distinct phenotype and migratory pattern. J. Immunol. 190:970–76 [Google Scholar]
  214. Gebhardt T, Wakim LM, Eidsmo L, Reading PC, Heath WR, Carbone FR. 214.  2009. Memory T cells in nonlymphoid tissue that provide enhanced local immunity during infection with herpes simplex virus. Nat. Immunol. 10:524–30 [Google Scholar]
  215. Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS. 215.  2012. Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483:227–31 [Google Scholar]
  216. Strutt TM, McKinstry KK, Dibble JP, Winchell C, Kuang Y. 216.  et al. 2010. Memory CD4+ T cells induce innate responses independently of pathogen. Nat. Med. 16:558–64 [Google Scholar]
  217. Schenkel JM, Fraser KA, Vezys V, Masopust D. 217.  2013. Sensing and alarm function of resident memory CD8+ T cells. Nat. Immunol. 14:509–13 [Google Scholar]
  218. Ueha S, Yoneyama H, Hontsu S, Kurachi M, Kitabatake M. 218.  et al. 2007. CCR7 mediates the migration of Foxp3+ regulatory T cells to the paracortical areas of peripheral lymph nodes through high endothelial venules. J. Leukoc. Biol. 82:1230–38 [Google Scholar]
  219. Smigiel KS, Richards E, Srivastava S, Thomas KR, Dudda JC. 219.  et al. 2014. CCR7 provides localized access to IL-2 and defines homeostatically distinct regulatory T cell subsets. J. Exp. Med. 211:121–36 [Google Scholar]
  220. Menning A, Hopken UE, Siegmund K, Lipp M, Hamann A, Huehn J. 220.  2007. Distinctive role of CCR7 in migration and functional activity of naive- and effector/memory-like Treg subsets. Eur. J. Immunol. 37:1575–83 [Google Scholar]
  221. Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A. 221.  2007. CCR7 is required for the in vivo function of CD4+ CD25+ regulatory T cells. J. Exp. Med. 204:735–45 [Google Scholar]
  222. Afshar R, Strassner JP, Seung E, Causton B, Cho JL. 222.  et al. 2013. Compartmentalized chemokine-dependent regulatory T-cell inhibition of allergic pulmonary inflammation. J. Allergy Clin. Immunol. 131:1644–52 [Google Scholar]
  223. Szanya V, Ermann J, Taylor C, Holness C, Fathman CG. 223.  2002. The subpopulation of CD4+CD25+ splenocytes that delays adoptive transfer of diabetes expresses L-selectin and high levels of CCR7. J. Immunol. 169:2461–65 [Google Scholar]
  224. Taylor PA, Panoskaltsis-Mortari A, Swedin JM, Lucas PJ, Gress RE. 224.  et al. 2004. L-selectinhi but not the L-selectinlo CD4+25+ T-regulatory cells are potent inhibitors of GVHD and BM graft rejection. Blood 104:3804–12 [Google Scholar]
  225. Ochando JC, Homma C, Yang Y, Hidalgo A, Garin A. 225.  et al. 2006. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7:652–62 [Google Scholar]
  226. Yuan Q, Bromley SK, Means TK, Jones KJ, Hayashi F. 226.  et al. 2007. CCR4-dependent regulatory T cell function in inflammatory bowel disease. J. Exp. Med. 204:1327–34 [Google Scholar]
  227. Pace L, Tempez A, Arnold-Schrauf C, Lemaitre F, Bousso P. 227.  et al. 2012. Regulatory T cells increase the avidity of primary CD8+ T cell responses and promote memory. Science 338:532–36Tregs can alter CD8 priming by modulation of chemokine production in the LN. [Google Scholar]
  228. Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC. 228.  et al. 2006. Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J. Exp. Med. 203:505–11 [Google Scholar]
  229. Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT. 229.  et al. 2006. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat. Immunol. 7:83–92 [Google Scholar]
  230. Lund JM, Hsing L, Pham TT, Rudensky AY. 230.  2008. Coordination of early protective immunity to viral infection by regulatory T cells. Science 320:1220–24 [Google Scholar]
  231. Sarween N, Chodos A, Raykundalia C, Khan M, Abbas AK, Walker LS. 231.  2004. CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J. Immunol. 173:2942–51 [Google Scholar]
  232. Chung Y, Tanaka S, Chu F, Nurieva RI, Martinez GJ. 232.  et al. 2011. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17:983–88 [Google Scholar]
  233. Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S. 233.  et al. 2011. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17:975–82 [Google Scholar]
  234. Bystry RS, Aluvihare V, Welch KA, Kallikourdis M, Betz AG. 234.  2001. B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol. 2:1126–32 [Google Scholar]
  235. Lee JH, Kang SG, Kim CH. 235.  2007. FoxP3+ T cells undergo conventional first switch to lymphoid tissue homing receptors in thymus but accelerated second switch to nonlymphoid tissue homing receptors in secondary lymphoid tissues. J. Immunol. 178:301–11 [Google Scholar]
  236. Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA. 236.  2006. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 203:2451–60 [Google Scholar]
  237. Moreira AP, Cavassani KA, Massafera Tristao FS, Campanelli AP, Martinez R. 237.  et al. 2008. CCR5-dependent regulatory T cell migration mediates fungal survival and severe immunosuppression. J. Immunol. 180:3049–56 [Google Scholar]
  238. Wysocki CA, Jiang Q, Panoskaltsis-Mortari A, Taylor PA, McKinnon KP. 238.  et al. 2005. Critical role for CCR5 in the function of donor CD4+CD25+ regulatory T cells during acute graft-versus-host disease. Blood 106:3300–7 [Google Scholar]
  239. Coghill JM, Fowler KA, West ML, Fulton LM, van Deventer H. 239.  et al. 2013. CC chemokine receptor 8 potentiates donor Treg survival and is critical for the prevention of murine graft-versus-host disease. Blood 122:825–36 [Google Scholar]
  240. Zhang N, Schroppel B, Lal G, Jakubzick C, Mao X. 240.  et al. 2009. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30:458–69 [Google Scholar]
  241. Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ. 241.  2009. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10:595–602 [Google Scholar]
  242. Hall AO, Beiting DP, Tato C, John B, Oldenhove G. 242.  et al. 2012. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37:511–23 [Google Scholar]
  243. Muller M, Carter SL, Hofer MJ, Manders P, Getts DR. 243.  et al. 2007. CXCR3 signaling reduces the severity of experimental autoimmune encephalomyelitis by controlling the parenchymal distribution of effector and regulatory T cells in the central nervous system. J. Immunol. 179:2774–86 [Google Scholar]
  244. Erhardt A, Wegscheid C, Claass B, Carambia A, Herkel J. 244.  et al. 2011. CXCR3 deficiency exacerbates liver disease and abrogates tolerance in a mouse model of immune-mediated hepatitis. J. Immunol. 186:5284–93 [Google Scholar]
  245. Duhen T, Duhen R, Lanzavecchia A, Sallusto F, Campbell DJ. 245.  2012. Functionally distinct subsets of human FOXP3+ Treg cells that phenotypically mirror effector Th cells. Blood 119:4430–40 [Google Scholar]
  246. Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM. 246.  et al. 2009. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458:351–56 [Google Scholar]
  247. Faustino L, da Fonseca DM, Takenaka MC, Mirotti L, Florsheim EB. 247.  et al. 2013. Regulatory T cells migrate to airways via CCR4 and attenuate the severity of airway allergic inflammation. J. Immunol. 190:2614–21 [Google Scholar]
  248. Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y. 248.  et al. 2009. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326:986–91 [Google Scholar]
  249. Yamazaki T, Yang XO, Chung Y, Fukunaga A, Nurieva R. 249.  et al. 2008. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181:8391–401 [Google Scholar]
  250. Barth T, Schmidt D, Botteron C, Nguyen TT, Ritter U. 250.  et al. 2012. An early reduction in Treg cells correlates with enhanced local inflammation in cutaneous leishmaniasis in CCR6-deficient mice. PLoS ONE 7:e44499 [Google Scholar]
  251. Iellem A, Mariani M, Lang R, Recalde H, Panina-Bordignon P. 251.  et al. 2001. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J. Exp. Med. 194:847–53 [Google Scholar]
  252. Siewert C, Menning A, Dudda J, Siegmund K, Lauer U. 252.  et al. 2007. Induction of organ-selective CD4+ regulatory T cell homing. Eur. J. Immunol. 37:978–89 [Google Scholar]
  253. Cassani B, Villablanca EJ, Quintana FJ, Love PE, Lacy-Hulbert A. 253.  et al. 2011. Gut-tropic T cells that express integrin α4β7 and CCR9 are required for induction of oral immune tolerance in mice. Gastroenterology 141:2109–18 [Google Scholar]
  254. Walters MJ, Ebsworth K, Sullivan TJ, Zhang P, Powers JP. 254.  et al. 2013. CCR9 inhibition does not interfere with the development of immune tolerance to oral antigens. Immunol. Lett. 151:44–47 [Google Scholar]
  255. Rosenblum MD, Gratz IK, Paw JS, Lee K, Marshak-Rothstein A, Abbas AK. 255.  2011. Response to self antigen imprints regulatory memory in tissues. Nature 480:538–42 [Google Scholar]
  256. Bachelerie FB-BA, Burkhardt AM, Combadiere C, Farber JM, Graham GJ. 256.  et al. 2014. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66:1–79 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120145
Loading
/content/journals/10.1146/annurev-immunol-032713-120145
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error