1932

Abstract

Eighty percent of individuals with multiple sclerosis (MS) initially develop a clinical pattern with periodic relapses followed by remissions, called relapsing-remitting MS (RRMS). This period of fluctuating disease may last for a decade or more. Clinical relapses reflect acute inflammation in the central nervous system (CNS), composed of the brain and spinal cord. Often, different anatomic areas in the CNS are involved each time a relapse occurs, resulting in varied clinical manifestations in each instance. Relapses are nearly always followed by some degree of remission, though recovery to baseline status before the flare is often incomplete. There are nine approved drugs for treatment of RRMS. The most potent drug for inhibiting relapses, the humanized anti-α4 integrin antibody known as Natalizumab, blocks homing of mononuclear cells to the CNS. The mechanisms of action of the approved drugs for RRMS provide a strong foundation for understanding the pathobiology of the relapse. Despite substantial progress in controlling relapses with the current armamentarium of medications, there is much to learn and ever more effective and safe therapies to develop.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-032713-120227
2014-03-21
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/32/1/annurev-immunol-032713-120227.html?itemId=/content/journals/10.1146/annurev-immunol-032713-120227&mimeType=html&fmt=ahah

Literature Cited

  1. Steinman L, Martin R, Bernard CCA, Conlon P, Oksenberg JR. 1.  2002. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 25:491–505 [Google Scholar]
  2. Steinman L. 2.  2013. Weighing in on autoimmune disease: ‘hub and spoke’ T cell traffic in autoimmunity. Nat. Med. 19:139–41 [Google Scholar]
  3. Mealy MA, Wingerchuk DM, Greenberg BM, Levy M. 3.  2012. Epidemiology of neuromyelitis optica in the United States: a multicenter analysis. Arch. Neurol. 69:91176–80 [Google Scholar]
  4. Jacob A, McKeon A, Nakashima I, Sato DK, Elsone L. 4.  et al. 2013. Current concept of neuromyelitis optica (NMO) and NMO spectrum disorders. J. Neurol. Neurosurg. Psychiatry 84:8922–30 [Google Scholar]
  5. 5. Multiple Sclerosis Society 2012. Relapsing Remitting (RRMS) London: MS Natl. Cent. (MSNC) http://www.mssociety.org.uk/what-is-ms/types-of-ms/relapsing-remitting-rrms [Google Scholar]
  6. Frohman TC, Davis SL, Beh S, Greenberg BM, Remington G, Frohman EM. 6.  2013. Uhthoff's phenomena in MS-clinical features and pathophysiology. Nat. Rev. Neurol. 9:535–40 [Google Scholar]
  7. Yednock T, Cannon C, Fritz L, Sanchez-Madrid F, Steinman L, Karin N. 7.  1992. Prevention of experimental autoimmune encephalomyelitis by antibodies against α4β1 integrin. Nature 356:63–66 [Google Scholar]
  8. Steinman L. 8.  2005. Blocking adhesion molecules as therapy for multiple sclerosis: Natalizumab. Nat. Rev. Drug Discov. 4:510–19 [Google Scholar]
  9. Steinman L. 9.  2012. The discovery of natalizumab, a potent therapeutic for multiple sclerosis. J. Cell Biol. 199:3413–16 [Google Scholar]
  10. Steinman RM. 10.  2005. Research on human subjects in the JEM. J. Exp. Med. 201:91349–50 [Google Scholar]
  11. Verbeek MM, Westphal JR, Ruiter DJ, de Waal RM. 11.  1995. T lymphocyte adhesion to human brain pericytes is mediated via very late antigen-4/vascular cell adhesion molecule-1 interactions. J. Immunol. 154:115876–84 [Google Scholar]
  12. Osborn L, Hession C, Tizard R, Vassallo C, Luhowskyj S. 12.  et al. 1989. Direct expression cloning of vascular cell adhesion molecule 1, a cytokine-induced endothelial protein that binds to lymphocytes. Cell 59:61203–11 [Google Scholar]
  13. Steinman L. 13.  2009. A molecular trio in relapse and remission in multiple sclerosis. Nat. Rev. Immunol. 9:440–47 [Google Scholar]
  14. Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R. 14.  et al. 1985. T cell clones specific for myelin basic protein induce chronic relapsing EAE and demyelination. Nature 317:355–58 [Google Scholar]
  15. Zamvil S, Nelson P, Mitchell D, Knobler R, Fritz R, Steinman L. 15.  1985. Encephalitogenic T cell clones specific for myelin basic protein: an unusual bias in antigen presentation. J. Exp. Med. 162:2107–24 [Google Scholar]
  16. Zamvil SS, Mitchell DJ, Moore AC, Kitamura K, Steinman L, Rothbard J. 16.  1986. T cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. Nature 324:258–60 [Google Scholar]
  17. Baron JL, Madri JA, Ruddle NH, Hashim G, Janeway CA Jr. 17.  1993. Surface expression of alpha 4 integrin by CD4 T cells is required for their entry into brain parenchyma. J. Exp. Med. 177:157–68 [Google Scholar]
  18. Baron JL, Reich EP, Visintin I, Janeway CA Jr. 18.  1994. The pathogenesis of adoptive murine autoimmune diabetes requires an interaction between alpha 4-integrins and vascular cell adhesion molecule-1. J. Clin. Investig. 93:41700–8 [Google Scholar]
  19. Polman CH, O'Connor PW, Havrdova E, Hutchinson M, Kappos L. 19.  et al. 2006. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 354:9899–910 [Google Scholar]
  20. Rudick RA, Stuart WH, Calabresi PA, Confavreux C, Galetta SL. 20.  et al. 2006. Natalizumab plus interferon beta-1a for relapsing multiple sclerosis. N. Engl. J. Med. 354:9911–23 [Google Scholar]
  21. Brocke S, Gijbels K, Allegretta M, Ferber I, Piercy C. 21.  et al. 1996. Treatment of experimental encephalomyelitis with a peptide analogue of myelin basic protein. Nature 379:343–45 [Google Scholar]
  22. Steinman L. 22.  1996. A few autoreactive cells in an autoimmune infiltrate control a vast population of nonspecific cells: a tale of smart bombs and the infantry. Proc. Natl. Acad. Sci. USA 93:2253–56 [Google Scholar]
  23. Oksenberg JR, Panzara MA, Begovich AB, Mitchell D, Erlich HA. 23.  et al. 1993. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis. Nature 362:68–70 [Google Scholar]
  24. Babbe H, Roers A, Waisman A, Lassmann H, Goebels N. 24.  et al. 2000. Clonal expansions of CD8+ T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J. Exp. Med. 192:393–404 [Google Scholar]
  25. Steinman L, Miller A, Bernard CC, Oksenberg JR. 25.  1994. The epigenetics of multiple sclerosis: clues to etiology and a rationale for immune therapy. Annu. Rev. Neurosci. 17:247–65 [Google Scholar]
  26. Gorelik L, Lerner M, Bixler S, Crossman M, Schlain B. 26.  et al. 2010. Anti-JC virus antibodies: implications for PML risk stratification. Ann. Neurol. 68:295–303 [Google Scholar]
  27. Bloomgren G, Richman S, Hotermans C, Subramanyam M, Goelz S. 27.  et al. 2012. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. N. Engl. J. Med. 366:1870–80 [Google Scholar]
  28. Ransohoff RM, Engelhardt B. 28.  2012. The anatomical and cellular basis of immune surveillance in the central nervous system. Nat. Rev. Immunol. 12:9623–35 [Google Scholar]
  29. Stamper HB Jr, Woodruff JJ. 29.  1976. Lymphocyte homing into lymph nodes: in vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J. Exp. Med. 144:828–33 [Google Scholar]
  30. Flanagan K, Fitzgerald K, Baker J, Regnstrom K, Gardai S. 30.  et al. 2012. Laminin-411 is a vascular ligand for MCAM and facilitates TH17 cell entry into the CNS. PLoS ONE 7:7e40443 [Google Scholar]
  31. Larochelle C, Cayrol R, Kebir H, Alvarez JI, Lécuyer MA. 31.  et al. 2012. Melanoma cell adhesion molecule identifies encephalitogenic T lymphocytes and promotes their recruitment to the central nervous system. Brain 135:Pt. 102906–24 [Google Scholar]
  32. Cruz-Orengo L, Holman DW, Dorsey D, Zhou L, Zhang P. 32.  et al. 2011. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. J. Exp. Med. 208:327–39 [Google Scholar]
  33. McCandless EE, Piccio L, Woerner BM, Schmidt RE, Rubin JB. 33.  et al. 2008. Pathological expression of CXCL12 at the blood-brain barrier correlates with severity of multiple sclerosis. Am. J. Pathol. 172:799–808 [Google Scholar]
  34. Odoardi F, Sie C, Streyl K, Ulaganathan VK, Schlager C. 34.  et al. 2012. T cells become licensed in the lung to enter the central nervous system. Nature 488:675–79 [Google Scholar]
  35. Steinman L. 35.  2013. Weighing in on autoimmune disease: ‘hub and spoke’ T cell traffic in autoimmunity. Nat. Med. 19:139–41 [Google Scholar]
  36. Pelletier D, Hafler D. 36.  2012. Fingolimod for multiple sclerosis. N. Engl. J. Med. 366:4339–47 [Google Scholar]
  37. Hooper LV, Littman DR, Macpherson AJ. 37.  2012. Interactions between the microbiota and the immune system. Science 336:1268–73 [Google Scholar]
  38. Berer K, Mues M, Koutrolos M, Rasbi ZA, Boziki M. 38.  et al. 2011. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 479538–41
  39. Goverman J, Woods A, Larson L, Weiner LP, Hood L. 39.  et al. 1993. Transgenic mice that express a myelin basic protein–specific T cell receptor develop spontaneous autoimmunity. Cell 72:551–60 [Google Scholar]
  40. Sibley WA, Bamford CR, Clark K. 40.  1985. Clinical viral infections and multiple sclerosis. Lancet 325:84411313–15 [Google Scholar]
  41. Correale J, Fiol M, Gilmore W. 41.  2006. The risk of relapses in multiple sclerosis during systemic infections. Neurology 67:4652–59 [Google Scholar]
  42. Correale J, Farez MF. 42.  2011. The impact of parasite infections on the course of multiple sclerosis. J. Neuroimmunol. 33:1–26–11 [Google Scholar]
  43. Correale J, Farez MF. 43.  2011. The impact of environmental infections (parasites) on MS activity. Mult. Scler. 17:101162–69 [Google Scholar]
  44. Wucherpfennig KW, Strominger JL. 44.  1995. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80:5695–705 [Google Scholar]
  45. Wucherpfennig KW, Catz I, Hausmann S, Strominger JL, Steinman L. 45.  et al. 1997. Recognition of the immunodominant myelin basic protein peptide by autoantibodies and HLA-DR2-restricted T cell clones from multiple sclerosis patients. Identity of key contact residues in the B-cell and T-cell epitopes. J. Clin. Investig. 100:51114–22 [Google Scholar]
  46. Steinman L. 46.  1993. Autoimmune disease. Sci. Am. 269:106–14 [Google Scholar]
  47. Schoenberger LB, Bregman DJ, Sullivan-Bolyai JZ, Keenlyside RA, Ziegler DW. 47.  et al. 1979. Guillain Barré Syndrome following vaccination in the National Influenza Immunization Program, United States, 1976–1977. Am. J. Epidemiol. 100:105–23 [Google Scholar]
  48. Langmuir AD, Bregman DJ, Kurland LT, Nathanson N, Victor M. 48.  1984. An epidemiological and clinical evaluation of Guillain Barré Syndrome reported in association with the administration of the swine influenza vaccine. Am. J. Epidemiol. 119:841–79 [Google Scholar]
  49. Menge T, Cree B, Saleh A, Waterboer T, Berthele A. 49.  2012. Neuromyelitis optica flowing human papillomavirus vaccination. Neurology 79:285–87 [Google Scholar]
  50. Sutton I, Lahoria R, Tan I, Clouston P, Barnett M. 50.  2009. CNS demyelination and quadrivalent HPV vaccination. Mult. Scler. 15:116–19 [Google Scholar]
  51. Bogdanos DP, Smith H, Ma Y, Baum H, Mieli-Vergani G. 51.  et al. 2005. A study of molecular mimicry and immunological cross-reactivity between hepatitis B surface antigen and myelin mimics. Clin. Dev. Immunol. 12:3217–24 [Google Scholar]
  52. Ufret-Vincenty RL, Quigley L, Tresser N, Pak SH, Gado A. 52.  et al. 1998. In vivo survival of viral antigen-specific T cells that induce experimental autoimmune encephalomyelitis. J. Exp. Med. 188:91725–38 [Google Scholar]
  53. Ruiz PJ, Garren H, Hirschberg DL, Langer-Gould AM, Levite M. 53.  et al. 1999. Microbial epitopes act as altered peptide ligands to prevent EAE. J. Exp. Med. 189:1275–84 [Google Scholar]
  54. Brocke S, Gaur A, Piercy C, Gautam A, Gijbels K. 54.  et al. 1993. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365:642–44 [Google Scholar]
  55. Soos JM, Hobeika AC, Butfiloski EJ, Schiffenbauer J, Johnson HM. 55.  1995. Accelerated induction of experimental allergic encephalomyelitis in PL/J mice by a non-Vβ8-specific superantigen. Proc. Natl. Acad. Sci. USA 92:6082–86 [Google Scholar]
  56. Garren H, Robinson W, Krasulová E, Havrdová E, Nadj C. 56.  et al. 2008. Phase 2b trial of a DNA vaccine encoding myelin basic protein in relapsing multiple sclerosis. Ann. Neurol. 63:5611–20 [Google Scholar]
  57. Lennon VA, Kryzer TJ, Pittock SJ, Verkman AS, Hinson SR. 57.  2005. IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J. Exp. Med. 202:4473–77 [Google Scholar]
  58. Lehmann PV, Forsthuber T, Miller A, Sercarz EE. 58.  1992. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358:6382155–57 [Google Scholar]
  59. Robinson WH, Fontoura P, Lee BJ, Neuman de Vegvar HE, Tom J. 59.  et al. 2003. Protein microarrays guide tolerizing DNA vaccine treatment of autoimmune encephalomyelitis. Nat. Biotechnol. 21:1033–39 [Google Scholar]
  60. Zamvil SS, Mitchell D, Powell M, Sakai K, Rothbard J, Steinman L. 60.  1988. Multiple discrete epitopes of the autoantigen myelin basic protein. J. Exp. Med. 168:1181–86 [Google Scholar]
  61. Sakai K, Sinha A, Mitchell DJ, Zamvil SS, McDevitt HO. 61.  et al. 1988. Involvement of distinct T cell receptors in the autoimmune encephalitogenic response to nested epitopes of myelin basic protein. Proc. Natl. Acad. Sci. USA 85:8608–12 [Google Scholar]
  62. Steinman L. 62.  1999. Absence of “original antigenic sin” in autoimmunity provides an unforseen platform for immune therapy. J. Exp. Med. 189:1021–24 [Google Scholar]
  63. Steinman L. 63.  2013. The road not taken: antigen-specific therapy and neuroinflammatory disease. JAMA Neurol. 70:1100–1 [Google Scholar]
  64. Bar-Or A, Vollmer T, Antel J, Arnold D, Bodner C. 64.  et al. 2007. Induction of antigen-specific tolerance in multiple sclerosis after immunization with DNA encoding myelin basic protein in a randomized, placebo-controlled phase 1–2 trial. Arch. Neurol. 64:1407–15 [Google Scholar]
  65. Lutterotti A, Yousef S, Sputtek A, Stürner KH, Stellmann JP. 65.  et al. 2013. Antigen-specific tolerance by autologous myelin peptide-coupled cells: a phase 1 trial in multiple sclerosis. Sci. Transl. Med. 5:188188ra75 [Google Scholar]
  66. Walczak A, Siger M, Ciach A, Szczepanik M, Selmaj K. 66.  2013. Transdermal application of myelin peptides in multiple sclerosis treatment. JAMA Neurol. 70:1105–9 [Google Scholar]
  67. Kanter J, Narayana S, Ho P, Catz I, Warren K. 67.  et al. 2006. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat. Med. 12:138–43 [Google Scholar]
  68. Ho P, Kanter J, Johnson AM, Srinagesh H, Chang E. 68.  et al. 2012. Identification of naturally occurring fatty acids of the myelin sheath that resolve neuroinflammation. Sci. Transl. Med. 4:137137ra73 [Google Scholar]
  69. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T. 69. Pregnancy in Multiple Sclerosis Group 1998. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med. 339:5285–91 [Google Scholar]
  70. Langer-Gould A, Garren H, Slansky A, Ruiz PJ, Steinman L. 70.  2002. Late pregnancy suppresses relapses in experimental autoimmune encephalomyelitis: evidence for a suppressive pregnancy-related serum factor. J. Immunol. 169:21084–91 [Google Scholar]
  71. Lock C, Hermans G, Pedotti R, Brendolan A, Schadt E. 71.  et al. 2002. Gene microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat. Med. 8:500–8 [Google Scholar]
  72. Portaccio E, Ghezzi A, Hakiki B, Martinelli V, Moiola L. 72.  et al. 2011. Breastfeeding is not related to postpartum relapses in multiple sclerosis. Neurology 77:2145–50 [Google Scholar]
  73. Langer-Gould A, Huang S, Van Den Eeden SK, Gupta R, Leimpeter AD. 73.  et al. 2011. Vitamin D, pregnancy, breastfeeding, and postpartum multiple sclerosis relapses. Arch. Neurol. 68:3310–13 [Google Scholar]
  74. Cree BA, Rioux JD, McCauley JL, Gourraud PA, Goyette P. 74.  et al. 2010. A major histocompatibility class I locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1*15:01. PLoS ONE 5:6e11296 [Google Scholar]
  75. Morandi F, Venturi C, Rizzo R, Castellazzi M, Baldi E. 75.  et al. 2013. Intrathecal soluble HLA-E correlates with disease activity in patients with multiple sclerosis and may cooperate with soluble HLA-G in the resolution of neuroinflammation. J. Neuroimmune Pharmacol. 8:4944–55 [Google Scholar]
  76. Panitch HS, Hirsch RL, Haley AS, Johnson KP. 76.  1987. Exacerbations of multiple sclerosis in patients treated with gamma interferon. Lancet 329:8538893–95 [Google Scholar]
  77. Panitch HS, Hirsch RL, Schindler J, Johnson KP. 77.  1987. Treatment of multiple sclerosis with gamma interferon: exacerbations associated with activation of the immune system. Neurology 37:71097–102 [Google Scholar]
  78. Steinman L. 78.  2007. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13:139–45 [Google Scholar]
  79. Billiau A, Heremans H, Vandekerckhove F, Dijkmans R, Sobis H. 79.  et al. 1988. Enhancement of experimental allergic encephalomyelitis in mice by antibodies against IFN-γ. J. Immunol. 140:1506–10 [Google Scholar]
  80. Ferber IA, Brocke S, Taylor-Edwards C, Ridgway W, Dinisco C. 80.  et al. 1996. Mice with a disrupted interferon-γ gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J. Immunol. 156:5–7 [Google Scholar]
  81. Voorthuis JA, Uitdehaag BM, De Groot CJ, Goede PH, van der Meide PH, Dijkstra CD. 81.  1990. Suppression of experimental allergic encephalomyelitis by intraventricular administration of interferon-γ in Lewis rats. Clin. Exp. Immunol. 81:183–88 [Google Scholar]
  82. Willenborg D, Fordham S, Bernard CC, Cowden W, Ramshaw I. 82.  1996. IFN-γ plays a critical down-regulatory role in the induction and effector phase of MOG-induced encephalomyelitis. J. Immunol. 157:3223–27 [Google Scholar]
  83. Krakowski M, Owens T. 83.  1996. Interferon-γ confers resistance to EAE. Eur. J. Immunol. 26:1641–46 [Google Scholar]
  84. Axtell RC, de Jong BA, Boniface K, van der Voort F, Bhat R. 84.  et al. 2010. T helper type 1 and 17 cells determine efficacy of IFN-β in multiple sclerosis and experimental encephalomyelitis. Nat. Med. 16:406–12 [Google Scholar]
  85. Hartung HP, Steinman L, Goodin DS, Comi G, Cook S. 85.  et al. 2013. Interleukin 17F level and interferon beta response in patients with multiple sclerosis. JAMA Neurol. 70:1017–21 [Google Scholar]
  86. Bushnell SE, Zhao Z, Stebbins CC, Cadavid D, Buko AM. 86.  et al. 2012. Serum IL-17F does not predict poor response to IM IFNβ-1a in relapsing-remitting MS. Neurology 79:6531–37 [Google Scholar]
  87. Comabella M, Lünemann JD, Río J, Sánchez A, López C. 87.  et al. 2009. A type I interferon signature in monocytes is associated with poor response to interferon-β in multiple sclerosis. Brain 132:3353–65 [Google Scholar]
  88. Rudick RA, Rani MR, Xu Y, Lee JC, Na J. 88.  et al. 2011. Excessive biologic response to IFNβ is associated with poor treatment response in patients with multiple sclerosis. PLoS ONE 6:5e19262 [Google Scholar]
  89. Axtell RC, Raman C, Steinman L. 89.  2011. Interferon-β exacerbates Th17-mediated inflammatory disease. Trends Immunol. 32:6272–77 [Google Scholar]
  90. Warabi Y, Matsumoto Y, Hayashi H. 90.  2007. Interferon β-1b exacerbates multiple sclerosis with severe optic nerve and spinal cord demyelination. J. Neurol. Sci. 252:57–61 [Google Scholar]
  91. Wang AG, Lin YC, Wang SJ, Tsai CP, Yen MY. 91.  2006. Early relapse in multiple sclerosis-associated optic neuritis following the use of interferon β-1a in Chinese patients. Jpn. J. Ophthalmol. 50:537–42 [Google Scholar]
  92. Shimizu Y, Yokoyama K, Misu T, Takahashi T, Fujihara K. 92.  et al. 2008. Development of extensive brain lesions following interferon β therapy in relapsing neuromyelitis optica and longitudinally extensive myelitis. J. Neurol. 255:305–7 [Google Scholar]
  93. Palace J, Leite MI, Nairne A, Vincent A. 93.  2010. Interferon β treatment in neuromyelitis optica: increase in relapses and aquaporin 4 antibody titers. Arch. Neurol. 67:81016–17 [Google Scholar]
  94. Ishizu T, Osoegawa M, Mei FJ, Kikuchi H, Tanaka M. 94.  et al. 2005. Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis. Brain 128:988–1002 [Google Scholar]
  95. Lucchinetti CF, Mandler RN, McGavern D, Bruck W, Gleich G. 95.  et al. 2002. A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain 125:1450–61 [Google Scholar]
  96. Paul F, Jarius S, Aktas O, Bluthner M, Bauer O. 96.  et al. 2007. Antibody to aquaporin 4 in the diagnosis of neuromyelitis optica. PLoS Med. 4:e133 [Google Scholar]
  97. Bourre B, Marignier R, Zéphir H, Papeix C, Brassat D. 97.  et al. 2012. Neuromyelitis optica and pregnancy. Neurology 78:12875–79 [Google Scholar]
  98. Cornelio DB, Braga RP, Rosa MW, Ayub AC. 98.  2009. Devic's neuromyelitis optica and pregnancy: distinction from multiple sclerosis is essential. Arch. Gynecol. Obstet. 280:475–77 [Google Scholar]
  99. Fragoso YD, Adoni T, Bichuetti DB, Brooks JB, Ferreira ML. 99.  et al. 2013. Neuromyelitis optica and pregnancy. J. Neurol. 260:2614–19 [Google Scholar]
  100. Weix J, Häupl T, Raio L, Villiger PM, Förger F. 100.  2013. IFN pregnancy and infection. Transl. Res. 161:6505–12 [Google Scholar]
  101. Herges K, de Jong BA, Kolkowitz I, Dunn C, Mandelbaum G. 101.  et al. 2012. Protective effect of an elastase inhibitor in a neuromyelitis optica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. Mult. Scler. J. 18:4398–408 [Google Scholar]
  102. Saadoun S, Waters P, MacDonald C, Bell BA, Vincent A. 102.  et al. 2012. Neutrophil protease inhibition reduces neuromyelitis optica-immunoglobulin G-induced damage in mouse brain. Ann. Neurol. 71:3323–33 [Google Scholar]
  103. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM. 103.  2008. Differential regulation of central nervous system autoimmunity by TH1 and TH17 cells. Nat. Med. 14:3337–42 [Google Scholar]
  104. Lowther DE, Chong DL, Ascough S, Ettorre A, Ingram RJ. 104.  et al. 2013. Th1 not Th17 cells drive spontaneous MS-like disease despite a functional regulatory T cell response. Acta Neuropathol. 126:4501–15 [Google Scholar]
  105. Steinman L. 105.  2013. Pathogenic T helper 1 cells reach the brain before T helper 17 cells, and T regulatory cells suppress them albeit incompletely. Acta Neuropathol. 126:4517–18 [Google Scholar]
  106. Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J. 106.  et al. 2008. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358:7676–88 [Google Scholar]
  107. Kappos L, Li D, Calabresi PA, O'Connor P, Bar-Or A. 107.  et al. 2012. Ocrelizumab in relapsing-remitting multiple sclerosis: a phase 2, randomised, placebo-controlled, multicentre trial. Lancet 378:98051779–87 [Google Scholar]
  108. Jacob A, Weinshenker BG, Violich I, McLinskey N, Krupp L. 108.  et al. 2008. Treatment of neuromyelitis optica with rituximab: retrospective analysis of 25 patients. Arch. Neurol. 65:111443–48 [Google Scholar]
  109. Nakashima I, Takahashi T, Cree BA, Kim HJ, Suzuki C. 109.  et al. 2011. Transient increases in anti-aquaporin-4 antibody titers following rituximab treatment in neuromyelitis optica, in association with elevated serum BAFF levels. J. Clin. Neurosci. 18:7997–98 [Google Scholar]
  110. Lindsey JW, Hodgkinson S, Mehta R, Mitchell D, Enzmann D. 110.  et al. 1994. Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann. Neurol. 36:2183–89 [Google Scholar]
  111. van Oosten BW, Lai M, Hodgkinson S, Barkhof F, Miller DH. 111.  et al. 1997. Treatment of multiple sclerosis with the monoclonal anti-CD4 antibody cM-T412: results of a randomized, double-blind, placebo-controlled, MR-monitored phase II trial. Neurology 49:2351–57 [Google Scholar]
  112. Ji Q, Castelli L, Goverman J. 112.  2013. MHC class I-restricted myelin epitopes are cross-presented by Tip-DCs that promote determinant spreading to CD8+ T cells. Nat Immunol. 14:3254–61 [Google Scholar]
  113. Steinman L. 113.  2013. A tip leads cytotoxic T cells to the crime scene in neuroinflammation. Nat. Immunol. 14:3196–97 [Google Scholar]
  114. Ayzenberg I, Kleiter I, Schröder A, Hellwig K, Chan A. 114.  et al. 2013. Interleukin 6 receptor blockade in patients with neuromyelitis optica nonresponsive to anti-CD20 therapy. JAMA Neurol. 70:3394–97 [Google Scholar]
  115. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C. 115.  et al. 2012. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: a randomised controlled phase 3 trial. Lancet 380:98561829–39 [Google Scholar]
  116. Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH. 116.  et al. 2013. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nat. Immunol. 14:7741–48 [Google Scholar]
  117. Jones JL, Phuah CL, Cox AL, Thompson SA, Ban M. 117.  et al. 2009. IL-21 drives secondary autoimmunity in patients with multiple sclerosis, following therapeutic lymphocyte depletion with alemtuzumab (Campath-1H). J. Clin. Investig. 119:72052–61 [Google Scholar]
  118. Chabas D, Baranzini SE, Mitchell D, Bernard CC, Rittling SR. 118.  et al. 2001. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294:55471731–35 [Google Scholar]
  119. Satoh J, Obayashi S, Misawa T, Tabunoki H, Yamamura T. 119.  et al. 2008. Neuromyelitis optica/Devic's disease: gene expression profiling of brain lesions. Neuropathology 28:6561–76 [Google Scholar]
  120. Hur EM, Youssef S, Haws ME, Zhang SY, Sobel RA. 120.  et al. 2007. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat. Immunol. 8:174–83 [Google Scholar]
  121. Börnsen L, Khademi M, Olsson T, Sørensen PS, Sellebjerg F. 121.  2011. Osteopontin concentrations are increased in cerebrospinal fluid during attacks of multiple sclerosis. Mult. Scler. 17:132–42 [Google Scholar]
  122. Vogt MH, Lopatinskaya L, Smits M, Polman CH, Nagelkerken L. 122.  2003. Elevated osteopontin levels in active relapsing-remitting multiple sclerosis. Ann. Neurol. 53:6819–22 [Google Scholar]
  123. Vogt MH, Floris S, Killestein J, Knol DL, Smits M. 123.  et al. 2004. Osteopontin levels and increased disease activity in relapsing-remitting multiple sclerosis patients. J. Neuroimmunol. 155:1–2155–60 [Google Scholar]
  124. Comabella M, Pericot I, Goertsches R, Nos C, Castillo M. 124.  et al. 2005. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158:1–2231–39 [Google Scholar]
  125. Murugaiyan G, Mittal A, Weiner HL. 125.  2008. Increased osteopontin expression in dendritic cells amplifies IL-17 production by CD4+ T cells in experimental autoimmune encephalomyelitis and in multiple sclerosis. J. Immunol. 181:117480–88 [Google Scholar]
  126. Murugaiyan G, Mittal A, Weiner HL. 126.  2010. Identification of an IL-27/osteopontin axis in dendritic cells and its modulation by IFN-gamma limits IL-17-mediated autoimmune inflammation. Proc. Natl. Acad. Sci. USA 107:2511495–500 [Google Scholar]
  127. Sato W, Tomita A, Ichikawa D, Lin Y, Kishida H. 127.  et al. 2012. CCR2+CCR5+ T cells produce matrix metalloproteinase-9 and osteopontin in the pathogenesis of multiple sclerosis. J. Immunol. 189:105057–65 [Google Scholar]
  128. Khademi M, Bornsen L, Rafatnia F, Andersson M, Brundin L. 128.  et al. 2009. The effects of natalizumab on inflammatory mediators in multiple sclerosis: prospects for treatment-sensitive biomarkers. Eur. J. Neurol. 16:4528–36 [Google Scholar]
  129. Shimizu Y, Ota K, Ikeguchi R, Kubo S, Kabasawa C, Uchiyama S. 129.  2013. Plasma osteopontin levels are associated with disease activity in the patients with multiple sclerosis and neuromyelitis optica. J. Neuroimmunol. 263:148–51 [Google Scholar]
  130. Lowther DE, Hafler DA. 130.  2012. Regulatory T cells in the central nervous system. Immunol. Rev. 248:1156–69 [Google Scholar]
  131. Dominguez-Villar M, Baecher-Allan CM, Hafler DA. 131.  2011. Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat. Med. 17:6673–75 [Google Scholar]
  132. Frisullo G, Nociti V, Iorio R, Patanella AK, Caggiula M. 132.  et al. 2009. Regulatory T cells fail to suppress CD4+T-bet+ T cells in relapsing multiple sclerosis patients. Immunology 127:3418–28 [Google Scholar]
  133. Schneider A, Long SA, Cerosaletti K, Ni CT, Samuels P. 133.  et al. 2013. In active relapsing-remitting multiple sclerosis, effector T cell resistance to adaptive Tregs involves IL-6–mediated signaling. Sci. Transl. Med. 5:170170ra15 [Google Scholar]
  134. Caggiula M, Batocchi AP, Frisullo G, Angelucci F, Patanella AK. 134.  et al. 2005. Neurotrophic factors and clinical recovery in relapsing-remitting multiple sclerosis. Scand. J. Immunol. 62:2176–82 [Google Scholar]
  135. Ziemssen T, Kümpfel T, Klinkert WE, Neuhaus O, Hohlfeld R. 135.  2002. Glatiramer acetate-specific T-helper 1- and 2-type cell lines produce BDNF: implications for multiple sclerosis therapy. Brain-derived neurotrophic factor. Brain 125:Pt. 112381–91 [Google Scholar]
  136. Aharoni R, Kayhan B. Eilam R, Sela M, Arnon R. 136.  2003. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc. Natl. Acad. Sci. USA 100:2414157–62Erratum in Proc. Natl. Acad. Sci. USA. 2005 102:3412288 [Google Scholar]
  137. Runia TF, Hop WC, de Rijke YB, Buljevac D, Hintzen RQ. 137.  2012. Lower serum vitamin D levels are associated with a higher relapse risk in multiple sclerosis. Neurology 79:3261–66 [Google Scholar]
  138. Joshi S, Pantalena LC, Liu XK, Gaffen SL, Liu H. 138.  et al. 2011. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol. 31:173653–69 [Google Scholar]
  139. Stellmann JP, Neuhaus A, Herich L, Schippling S, Roeckel M. 139.  et al. 2012. Placebo cohorts in phase-3 MS treatment trials—predictors for on-trial disease activity 1990–2010 based on a meta-analysis and individual case data. PLoS ONE 7:11e50347 [Google Scholar]
  140. Ousman SS, Tomooka BH, Van Noort JM, Wawrousek EF, O'Conner K. 140.  et al. 2007. Protective and therapeutic role for αB-crystallin in autoimmune demyelination. Nature 448:474–79 [Google Scholar]
  141. Han MH, Hwang S, Roy DB, Lundgren DH, Price JV. 141.  et al. 2008. Proteomic analysis of active multiple sclerosis lesions reveals therapeutic targets. Nature 451:1076–81 [Google Scholar]
  142. van Noort JM, Bsibsi M, Gerritsen WH, van der Valk P, Bajramovic JJ. 142.  et al. 2010. αB-crystallin is a target for adaptive immune responses and a trigger of innate responses in preactive multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 69:7694–703 [Google Scholar]
  143. Rothbard J, Zhao X, Sharpe O, Strohman M, Kurnellas M. 143.  et al. 2011. The chaperone activity of αB crystallin is responsible for the incorrect assignment the protein as an autoantigen in multiple sclerosis. J. Immunol. 186:74263–68 [Google Scholar]
  144. Rothbard JB, Kurnellas MP, Brownell S, Adams CM, Su L. 144.  et al. 2012. Therapeutic effects of systemic administration of the chaperone αB crystallin associated with binding proinflammatory plasma proteins. J. Biol. Chem. 287:139708–21 [Google Scholar]
  145. Grant JL, Bou Ghosn EE, Axtell RC, Herges K, Kuipers HF. 145.  et al. 2012. Reversal of paralysis and reduced inflammation from peripheral administration of amyloid-β in Th1 and Th17 versions of experimental autoimmune encephalomyelitis. Sci. Transl. Med. 4:145ra105 [Google Scholar]
  146. Kurnellas MP, Brownell SE, Su L, Malkovskiy AV. 146.  et al. 2012. Chaperone activity of small heat shock proteins underlies therapeutic efficacy in experimental autoimmune encephalomyelitis. J. Biol. Chem. 287:36423–34 [Google Scholar]
  147. Kurnellas MP, Adams CM, Sobel RA, Steinman L, Rothbard JR. 147.  2013. Amyloid fibrils composed of hexameric peptides attenuate neuroinflammation. Sci. Transl. Med. 179:179ra42 [Google Scholar]
  148. Quach QL, Metz LM, Thomas JC, Rothbard JB, Steinman L. 148.  et al. 2013. CRYAB modulates the activation of CD4+ T cells from relapsing-remitting multiple sclerosis patients. Mult. Scler. J. 19:1867–77 [Google Scholar]
  149. Gourdain P, Ballerini C, Nicot AB, Carnaud C. 149.  2012. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J. Neuroinflamm. 9:25 [Google Scholar]
  150. Ji Z, Ke J, Geng JG. 150.  2012. SAP suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. Immunol. Cell Biol. 90:388–95 [Google Scholar]
  151. Weinger JG, Davies P, Acker CM, Brosnan CF, Tsiperson V. 151.  et al. 2012. Mice devoid of Tau have increased susceptibility to neuronal damage in myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis. J. Neuropathol. Exp. Neurol. 71:422–33 [Google Scholar]
  152. Arac A, Brownell SE, Rothbard JB, Chen C, Ko RM. 152.  et al. 2011. Systemic augmentation of αB-crystallin provides therapeutic benefit twelve hours post-stroke onset via immune modulation. Proc. Natl. Acad. Sci. USA 108:3213287–92 [Google Scholar]
  153. Corrigan F, Vink R, Blumbergs PC, Masters CL, Cappai R. 153.  et al. 2012. sAPPα rescues deficits in amyloid precursor protein knockout mice following focal traumatic brain injury. J. Neurochem. 122:208–20 [Google Scholar]
  154. Flatow I. 154.  2013. Amyloid proteins help paralyzed mice walk again. Talk of the Nation Apr. 5. http://www.npr.org/2013/04/05/176339692/amyloid-proteins-help-paralyzed-mice-walk-again
  155. Eisenberg D, Jucker M. 155.  2012. The amyloid state of proteins in human diseases. Cell 148:1188–203 [Google Scholar]
  156. Augutis K, Axelsson M, Portelius E, Brinkmalm G, Andreasson U. 156.  et al. 2013. Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis. Mult. Scler. 19:5543–52 [Google Scholar]
/content/journals/10.1146/annurev-immunol-032713-120227
Loading
/content/journals/10.1146/annurev-immunol-032713-120227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error