1932

Abstract

CRISPR technology has opened a new era of genome interrogation and genome engineering. Discovered in bacteria, where it protects against bacteriophage by cleaving foreign nucleic acid sequences, the CRISPR system has been repurposed as an adaptable tool for genome editing and multiple other applications. CRISPR's ease of use, precision, and versatility have led to its widespread adoption, accelerating biomedical research and discovery in human cells and model organisms. Here we review CRISPR-based tools and discuss how they are being applied to decode the genetic circuits that control immune function in health and disease. Genetic variation in immune cells can affect autoimmune disease risk, infectious disease pathogenesis, and cancer immunotherapies. CRISPR provides unprecedented opportunities for functional mechanistic studies of coding and noncoding genome sequence function in immunity. Finally, we discuss the potential of CRISPR technology to engineer synthetic cellular immunotherapies for a wide range of human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-042718-041522
2019-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/37/1/annurev-immunol-042718-041522.html?itemId=/content/journals/10.1146/annurev-immunol-042718-041522&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Thomas KR, Folger KR, Capecchi MR 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:3419–28
    [Google Scholar]
  2. 2.
    Jasin M, Berg P 1988. Homologous integration in mammalian cells without target gene selection. Genes Dev 2:111353–63
    [Google Scholar]
  3. 3.
    Orr-Weaver TL, Szostak JW, Rothstein RJ 1981. Yeast transformation: a model system for the study of recombination. PNAS 78:106354–58
    [Google Scholar]
  4. 4.
    Rouet P, Smih F, Jasin M 1994. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. PNAS 91:136064–68
    [Google Scholar]
  5. 5.
    Rouet P, Smih F, Jasin M 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:128096–106
    [Google Scholar]
  6. 6.
    Urnov FD, Miller JC, Lee Y-L, Beausejour CM, Rock JM et al. 2005. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435:7042646–51
    [Google Scholar]
  7. 7.
    Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J et al. 2001. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21:1289–97
    [Google Scholar]
  8. 8.
    Moscou MJ, Bogdanove AJ 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:59591501
    [Google Scholar]
  9. 9.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A 1987. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J. Bacteriol. 169:125429–33
    [Google Scholar]
  10. 10.
    Jansen R, Embden JDAV, Gaastra W, Schouls LM 2002. Identification of genes that are associated with DNA repeats in prokaryotes. Mol. Microbiol. 43:61565–75
    [Google Scholar]
  11. 11.
    Bolotin A, Quinquis B, Sorokin A, Ehrlich SD 2005. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:Part 82551–61
    [Google Scholar]
  12. 12.
    Mojica FJ, Díez-Villaseñor C, Soria E, Juez G 2000. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol. Microbiol. 36:1244–46
    [Google Scholar]
  13. 13.
    Mojica FJM, Díez-Villaseñor C, García-Martínez J, Soria E 2005. Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J. Mol. Evol. 60:2174–82
    [Google Scholar]
  14. 14.
    Pourcel C, Salvignol G, Vergnaud G 2005. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:Part 3653–63
    [Google Scholar]
  15. 15.
    Makarova KS, Grishin NV, Shabalina SA, Wolf YI, Koonin EV 2006. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 1:17
    [Google Scholar]
  16. 16.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P et al. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:58191709–12
    [Google Scholar]
  17. 17.
    Hale C, Kleppe K, Terns RM, Terns MP 2008. Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus. . RNA 14:122572–79
    [Google Scholar]
  18. 18.
    Garneau JE, Dupuis M-È, Villion M, Romero DA, Barrangou R et al. 2010. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:732067–71
    [Google Scholar]
  19. 19.
    Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y et al. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:7340602–7
    [Google Scholar]
  20. 20.
    Anders C, Niewoehner O, Duerst A, Jinek M 2014. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513:7519569–73
    [Google Scholar]
  21. 21.
    Szczelkun MD, Tikhomirova MS, Sinkunas T, Gasiunas G, Karvelis T et al. 2014. Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes. PNAS 111:279798–803
    [Google Scholar]
  22. 22.
    Gasiunas G, Barrangou R, Horvath P, Siksnys V 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. PNAS 109:39E2579–86
    [Google Scholar]
  23. 23.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:6096816–21
    [Google Scholar]
  24. 24.
    Jasin M, Haber JE 2016. The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair 44:6–16
    [Google Scholar]
  25. 25.
    Cong L, Ran FA, Cox D, Lin S, Barretto R et al. 2013. Multiplex genome engineering using CRISPR/Cas systems. Science 339:6121819–23
    [Google Scholar]
  26. 26.
    Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J 2013. RNA-programmed genome editing in human cells. eLife 2:e00471
    [Google Scholar]
  27. 27.
    Mali P, Yang L, Esvelt KM, Aach J, Guell M et al. 2013. RNA-guided human genome engineering via Cas9. Science 339:6121823–26
    [Google Scholar]
  28. 28.
    Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F 2013. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8:112281–308
    [Google Scholar]
  29. 29.
    Vierstra J, Reik A, Chang K-H, Stehling-Sun S, Zhou Y et al. 2015. Functional footprinting of regulatory DNA. Nat. Methods 12:10927–30
    [Google Scholar]
  30. 30.
    Esvelt KM, Mali P, Braff JL, Moosburner M, Yaung SJ, Church GM 2013. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10:111116–21
    [Google Scholar]
  31. 31.
    Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS et al. 2015. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol. Cell. 60:3385–97
    [Google Scholar]
  32. 32.
    Chylinski K, Makarova KS, Charpentier E, Koonin EV 2014. Classification and evolution of type II CRISPR-Cas systems. Nucleic Acids Res 42:106091–105
    [Google Scholar]
  33. 33.
    Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI et al. 2014. Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell 156:5935–49
    [Google Scholar]
  34. 34.
    Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F 2016. Rationally engineered Cas9 nucleases with improved specificity. Science 351:626884–88
    [Google Scholar]
  35. 35.
    Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT et al. 2016. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529:7587490–95
    [Google Scholar]
  36. 36.
    Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA et al. 2017. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550:7676407–10
    [Google Scholar]
  37. 37.
    Kleinstiver BP, Prew MS, Tsai SQ, Nguyen NT, Topkar VV et al. 2015. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33:121293–98
    [Google Scholar]
  38. 38.
    Kleinstiver BP, Prew MS, Tsai SQ, Topkar VV, Nguyen NT et al. 2015. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:7561481–85
    [Google Scholar]
  39. 39.
    Casini A, Olivieri M, Petris G, Montagna C, Reginato G et al. 2018. A highly specific SpCas9 variant is identified by in vivo screening in yeast. Nat. Biotechnol. 36:3265–71
    [Google Scholar]
  40. 40.
    Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K 2014. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:3267–73
    [Google Scholar]
  41. 41.
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:616684–87
    [Google Scholar]
  42. 42.
    Wang T, Wei JJ, Sabatini DM, Lander ES 2014. Genetic screens in human cells using the CRISPR-Cas9 System. Science 343:616680–84
    [Google Scholar]
  43. 43.
    Schmid-Burgk JL, Chauhan D, Schmidt T, Ebert TS, Reinhardt J et al. 2016. A genome-wide CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) screen identifies NEK7 as an essential component of NLRP3 inflammasome activation. J. Biol. Chem. 291:1103–9
    [Google Scholar]
  44. 44.
    Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:3675–86
    [Google Scholar]
  45. 45.
    Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L et al. 2014. CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159:2440–55
    [Google Scholar]
  46. 46.
    Shifrut E, Carnevale J, Tobin V, Roth TL, Woo JM et al. 2018. Genome-wide CRISPR screens in primary human T cells reveal key regulators of immune function. Cell 175:7P1958–71
    [Google Scholar]
  47. 47.
    Ting PY, Parker AE, Lee JS, Trussell C, Sharif O et al. 2018. Guide Swap enables genome-scale pooled CRISPR-Cas9 screening in human primary cells. Nat. Methods 15:11941–46
    [Google Scholar]
  48. 48.
    Agrotis A, Ketteler R 2015. A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front. Genet. 6:e51942300
    [Google Scholar]
  49. 49.
    Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S et al. 2013. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31:9827–32
    [Google Scholar]
  50. 50.
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34:2184–91
    [Google Scholar]
  51. 51.
    Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5:2767
    [Google Scholar]
  52. 52.
    Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5:1
    [Google Scholar]
  53. 53.
    Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB et al. 2015. Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:6262823–26
    [Google Scholar]
  54. 54.
    Shin HY, Wang C, Lee HK, Yoo KH, Zeng X et al. 2017. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 8:15464
    [Google Scholar]
  55. 55.
    Li J, Shou J, Guo Y, Tang Y, Wu Y et al. 2015. Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J. Mol. Cell Biol. 7:4284–98
    [Google Scholar]
  56. 56.
    Kosicki M, Tomberg K, Bradley A 2018. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat. Biotechnol 36:765–71 Erratum. 2018 Nat. Biotechnol 36:899
    [Google Scholar]
  57. 57.
    Tsai SQ, Nguyen NT, Malagon-Lopez J, Topkar VV, Aryee MJ, Joung JK 2017. CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat. Methods 14:6607–14
    [Google Scholar]
  58. 58.
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:2187–97
    [Google Scholar]
  59. 59.
    Chailleux C, Aymard F, Caron P, Daburon V, Courilleau C et al. 2014. Quantifying DNA double-strand breaks induced by site-specific endonucleases in living cells by ligation-mediated purification. Nat. Protoc. 9:3517–28
    [Google Scholar]
  60. 60.
    Giannoukos G, Ciulla DM, Marco E, Abdulkerim HS, Barrera LA et al. 2018. UDiTaS™, a genome editing detection method for indels and genome rearrangements. BMC Genom 19:1212
    [Google Scholar]
  61. 61.
    Crosetto N, Mitra A, Silva MJ, Bienko M, Dojer N et al. 2013. Nucleotide-resolution DNA double-strand break mapping by next-generation sequencing. Nat. Methods 10:4361–65
    [Google Scholar]
  62. 62.
    Guilinger JP, Thompson DB, Liu DR 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 32:6577–82
    [Google Scholar]
  63. 63.
    Kim S, Kim D, Cho SW, Kim J, Kim J-S 2014. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res 24:61012–19
    [Google Scholar]
  64. 64.
    Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32:3279–84
    [Google Scholar]
  65. 65.
    Liang X, Potter J, Kumar S, Zou Y, Quintanilla R et al. 2015. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J. Biotechnol. 208:44–53
    [Google Scholar]
  66. 66.
    Yin H, Song C-Q, Dorkin JR, Zhu LJ, Li Y et al. 2016. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo. Nat. Biotechnol. 34:3328–33
    [Google Scholar]
  67. 67.
    Petris G, Casini A, Montagna C, Lorenzin F, Prandi D et al. 2017. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. Nat. Commun. 8:15334
    [Google Scholar]
  68. 68.
    Davis KM, Pattanayak V, Thompson DB, Zuris JA, Liu DR 2015. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11:5316–18
    [Google Scholar]
  69. 69.
    Polstein LR, Gersbach CA 2015. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11:3198–200
    [Google Scholar]
  70. 70.
    Nihongaki Y, Yamamoto S, Kawano F, Suzuki H, Sato M 2015. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol. 22:2169–74
    [Google Scholar]
  71. 71.
    Truong D-JJ, Kühner K, Kühn R, Werfel S, Engelhardt S et al. 2015. Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res 43:136450–58
    [Google Scholar]
  72. 72.
    Zetsche B, Volz SE, Zhang F 2015. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33:2139–42
    [Google Scholar]
  73. 73.
    Harrington LB, Doxzen KW, Ma E, Liu J-J, Knott GJ et al. 2017. A broad-spectrum inhibitor of CRISPR-Cas9. Cell 170:61224–33.e15
    [Google Scholar]
  74. 74.
    Moehle EA, Rock JM, Lee Y-L, Jouvenot Y, DeKelver RC et al. 2007. Targeted gene addition into a specified location in the human genome using designed zinc finger nucleases. PNAS 104:93055–60
    [Google Scholar]
  75. 75.
    Campbell CR, Keown W, Lowe L, Kirschling D, Kucherlapati R 1989. Homologous recombination involving small single-stranded oligonucleotides in human cells. New Biol 1:2223–27
    [Google Scholar]
  76. 76.
    Chen F, Pruett-Miller SM, Huang Y, Gjoka M, Duda K et al. 2011. High-frequency genome editing using ssDNA oligonucleotides with zinc-finger nucleases. Nat. Methods 8:9753–55
    [Google Scholar]
  77. 77.
    Schumann K, Lin S, Boyer E, Simeonov DR, Subramaniam M et al. 2015. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins. PNAS 112:3310437–42
    [Google Scholar]
  78. 78.
    Richardson CD, Ray GJ, DeWitt MA, Curie GL, Corn JE 2016. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34:339–44
    [Google Scholar]
  79. 79.
    Dever DP, Bak RO, Reinisch A, Camarena J, Washington G et al. 2016. CRISPR/Cas9 β-globin gene targeting in human haematopoietic stem cells. Nature 539:7629384–89
    [Google Scholar]
  80. 80.
    Wang J, Exline CM, DeClercq JJ, Llewellyn GN, Hayward SB et al. 2015. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors. Nat. Biotechnol. 33:121256–63
    [Google Scholar]
  81. 81.
    Sather BD, Romano Ibarra GS, Sommer K, Curinga G, Hale M et al. 2015. Efficient modification of CCR5 in primary human hematopoietic cells using a megaTAL nuclease and AAV donor template. Sci. Transl. Med. 7:307307ra156
    [Google Scholar]
  82. 82.
    Wang J, DeClercq JJ, Hayward SB, Li PW-L, Shivak DA et al. 2016. Highly efficient homology-driven genome editing in human T cells by combining zinc-finger nuclease mRNA and AAV6 donor delivery. Nucleic Acids Res 44:3e30
    [Google Scholar]
  83. 83.
    Eyquem J, Mansilla-Soto J, Giavridis T, van der Stegen SJC, Hamieh M et al. 2017. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature 543:7643113–17
    [Google Scholar]
  84. 84.
    Hung KL, Meitlis I, Hale M, Chen C-Y, Singh S et al. 2018. Engineering protein-secreting plasma cells by homology-directed repair in primary human B cells. Mol. Ther. 26:2456–67
    [Google Scholar]
  85. 85.
    Leonetti MD, Sekine S, Kamiyama D, Weissman JS, Huang B 2016. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. PNAS 113:25E3501–8
    [Google Scholar]
  86. 86.
    Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:7714405–9
    [Google Scholar]
  87. 87.
    Li H, Beckman KA, Pessino V, Huang B, Weissman JS, Leonetti MD 2017. Design and specificity of long ssDNA donors for CRISPR-based knock-in. bioRxiv 178905
  88. 88.
    Suzuki K, Tsunekawa Y, Hernandez-Benitez R, Wu J, Zhu J et al. 2016. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 540:7631144–49
    [Google Scholar]
  89. 89.
    Nakade S, Tsubota T, Sakane Y, Kume S, Sakamoto N et al. 2014. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat. Commun. 5:15560
    [Google Scholar]
  90. 90.
    Capecchi MR 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6:6507–12
    [Google Scholar]
  91. 91.
    Pelletier S, Gingras S, Green DR 2015. Mouse genome engineering via CRISPR-Cas9 for study of immune function. Immunity 42:118–27
    [Google Scholar]
  92. 92.
    Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R 2013. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154:61370–79
    [Google Scholar]
  93. 93.
    Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW et al. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:4910–18
    [Google Scholar]
  94. 94.
    Li F, Cowley DO, Banner D, Holle E, Zhang L, Su L 2014. Efficient genetic manipulation of the NOD-Rag1-/-IL2RgammaC-null mouse by combining in vitro fertilization and CRISPR/Cas9 technology. Sci. Rep. 4:15290
    [Google Scholar]
  95. 95.
    Miyasaka Y, Uno Y, Yoshimi K, Kunihiro Y, Yoshimura T et al. 2018. CLICK: one-step generation of conditional knockout mice. BMC Genom 19:1318
    [Google Scholar]
  96. 96.
    Modzelewski AJ, Chen S, Willis BJ, Lloyd KCK, Wood JA, He L 2018. Efficient mouse genome engineering by CRISPR-EZ technology. Nat. Protoc. 13:61253–74
    [Google Scholar]
  97. 97.
    Chen S, Lee B, Lee AY-F, Modzelewski AJ, He L 2016. Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J. Biol. Chem. 291:2814457–67
    [Google Scholar]
  98. 98.
    Chen J, Du Y, He X, Huang X, Shi YS 2017. A convenient Cas9-based conditional knockout strategy for simultaneously targeting multiple genes in mouse. Sci. Rep. 7:1517
    [Google Scholar]
  99. 99.
    Katigbak A, Robert F, Paquet M, Pelletier J 2018. Inducible genome editing with conditional CRISPR/Cas9 mice. G3 8:51627–35
    [Google Scholar]
  100. 100.
    Seki A, Rutz S 2018. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J. Exp. Med. 215:3985–97
    [Google Scholar]
  101. 101.
    Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS et al. 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:51173–83
    [Google Scholar]
  102. 102.
    Gilbert LA, Larson MH, Morsut L, Liu Z, Brar GA et al. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154:2442–51
    [Google Scholar]
  103. 103.
    Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK 2013. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10:10977–79
    [Google Scholar]
  104. 104.
    Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat. Methods 10:10973–76
    [Google Scholar]
  105. 105.
    Cheng AW, Wang H, Yang H, Shi L, Katz Y et al. 2013. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res 23:101163–71
    [Google Scholar]
  106. 106.
    Konermann S, Brigham MD, Trevino A, Hsu PD, Heidenreich M et al. 2013. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500:7463472–76
    [Google Scholar]
  107. 107.
    Mali P, Aach J, Stranges PB, Esvelt KM, Moosburner M et al. 2013. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31:9833–38
    [Google Scholar]
  108. 108.
    Hu J, Lei Y, Wong W-K, Liu S, Lee K-C et al. 2014. Direct activation of human and mouse Oct4 genes using engineered TALE and Cas9 transcription factors. Nucleic Acids Res 42:74375–90
    [Google Scholar]
  109. 109.
    Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD 2014. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:3635–46
    [Google Scholar]
  110. 110.
    Chavez A, Scheiman J, Vora S, Pruitt BW, Tuttle M et al. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12:4326–28
    [Google Scholar]
  111. 111.
    Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO et al. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:7536583–88
    [Google Scholar]
  112. 112.
    Yeo NC, Chavez A, Lance-Byrne A, Chan Y, Menn D et al. 2018. An enhanced CRISPR repressor for targeted mammalian gene regulation. Nat. Methods 15:8611–16
    [Google Scholar]
  113. 113.
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:3647–61
    [Google Scholar]
  114. 114.
    Balboa D, Weltner J, Eurola S, Trokovic R, Wartiovaara K, Otonkoski T 2015. Conditionally stabilized dCas9 activator for controlling gene expression in human cell reprogramming and differentiation. Stem Cell Rep 5:3448–59
    [Google Scholar]
  115. 115.
    Black JB, Adler AF, Wang H-G, D'Ippolito AM, Hutchinson HA et al. 2016. Targeted epigenetic remodeling of endogenous loci by CRISPR/Cas9-based transcriptional activators directly converts fibroblasts to neuronal cells. Cell Stem Cell 19:3406–14
    [Google Scholar]
  116. 116.
    Liu XS, Wu H, Ji X, Stelzer Y, Wu X et al. 2016. Editing DNA methylation in the mammalian genome. Cell 167:1233–47.e17
    [Google Scholar]
  117. 117.
    Stepper P, Kungulovski G, Jurkowska RZ, Chandra T, Krueger F et al. 2017. Efficient targeted DNA methylation with chimeric dCas9-Dnmt3a-Dnmt3L methyltransferase. Nucleic Acids Res 45:41703–13
    [Google Scholar]
  118. 118.
    Xu X, Tao Y, Gao X, Zhang L, Li X et al. 2016. A CRISPR-based approach for targeted DNA demethylation. Cell Discov 2:116009
    [Google Scholar]
  119. 119.
    Choudhury SR, Cui Y, Lubecka K, Stefanska B, Irudayaraj J 2016. CRISPR-dCas9 mediated TET1 targeting for selective DNA demethylation at BRCA1 promoter. Oncotarget 7:2946545–56
    [Google Scholar]
  120. 120.
    Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M et al. 2016. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat. Biotechnol. 34:101060–65
    [Google Scholar]
  121. 121.
    Kearns NA, Pham H, Tabak B, Genga RM, Silverstein NJ et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12:5401–3
    [Google Scholar]
  122. 122.
    Kim J-M, Kim K, Schmidt T, Punj V, Tucker H et al. 2015. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res 43:188868–83
    [Google Scholar]
  123. 123.
    Cano-Rodriguez D, Gjaltema RAF, Jilderda LJ, Jellema P, Dokter-Fokkens J et al. 2016. Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat. Commun. 7:12284
    [Google Scholar]
  124. 124.
    Kwon DY, Zhao Y-T, Lamonica JM, Zhou Z 2017. Locus-specific histone deacetylation using a synthetic CRISPR-Cas9-based HDAC. Nat. Commun. 8:15315
    [Google Scholar]
  125. 125.
    Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:510–17
    [Google Scholar]
  126. 126.
    Klann TS, Black JB, Chellappan M, Safi A, Song L et al. 2017. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35:6561–68
    [Google Scholar]
  127. 127.
    Amabile A, Migliara A, Capasso P, Biffi M, Cittaro D et al. 2016. Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell 167:1219–32.e14
    [Google Scholar]
  128. 128.
    Fujita T, Asano Y, Ohtsuka J, Takada Y, Saito K et al. 2013. Identification of telomere-associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP). Sci. Rep. 3:13171
    [Google Scholar]
  129. 129.
    Liu X, Zhang Y, Chen Y, Li M, Zhou F et al. 2017. In situ capture of chromatin interactions by biotinylated dCas9. Cell 170:51028–43.e19
    [Google Scholar]
  130. 130.
    Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:71479–91
    [Google Scholar]
  131. 131.
    Lackner DH, Carré A, Guzzardo PM, Banning C, Mangena R et al. 2015. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nat. Commun. 6:110237
    [Google Scholar]
  132. 132.
    Dalvai M, Loehr J, Jacquet K, Huard CC, Roques C et al. 2015. A scalable genome-editing-based approach for mapping multiprotein complexes in human cells. Cell Rep 13:3621–33
    [Google Scholar]
  133. 133.
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:7603420–24
    [Google Scholar]
  134. 134.
    Kuscu C, Parlak M, Tufan T, Yang J, Szlachta K et al. 2017. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14:7710–12
    [Google Scholar]
  135. 135.
    Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M et al. 2016. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353:6305aaf8729
    [Google Scholar]
  136. 136.
    Komor AC, Zhao KT, Packer MS, Gaudelli NM, Waterbury AL et al. 2017. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3:8eaao4774
    [Google Scholar]
  137. 137.
    Hess GT, Frésard L, Han K, Lee CH, Li A et al. 2016. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13:121036–42
    [Google Scholar]
  138. 138.
    Ma Y, Zhang J, Yin W, Zhang Z, Song Y, Chang X 2016. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13:121029–35
    [Google Scholar]
  139. 139.
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J et al. 2017. RNA targeting with CRISPR-Cas13. Nature 550:7675280–84
    [Google Scholar]
  140. 140.
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  141. 141.
    Jaitin DA, Weiner A, Yofe I, Lara-Astiaso D, Keren-Shaul H et al. 2016. Dissecting immune circuits by linking CRISPR-pooled screens with single-cell RNA-seq. Cell 167:71883–1896.e15
    [Google Scholar]
  142. 142.
    Adamson B, Norman TM, Jost M, Cho MY, Nuñez JK et al. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell 167:71867–82.e21
    [Google Scholar]
  143. 143.
    Datlinger P, Rendeiro AF, Schmidl C, Krausgruber T, Traxler P et al. 2017. Pooled CRISPR screening with single-cell transcriptome readout. Nat. Methods 14:3297–301
    [Google Scholar]
  144. 144.
    Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:7539337–43
    [Google Scholar]
  145. 145.
    Mouse ENCODE Consort. Stamatoyannopoulos JA, Snyder M, Hardison R, Ren B et al. 2012. An encyclopedia of mouse DNA elements (Mouse ENCODE). Genome Biol 13:8418
    [Google Scholar]
  146. 146.
    Roadmap Epigenomics Consort. Kundaje A, Meuleman W, Ernst J, Bilenky M et al. 2015. Integrative analysis of 111 reference human epigenomes. Nature 518:7539317–30
    [Google Scholar]
  147. 147.
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:985–89
    [Google Scholar]
  148. 148.
    Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P et al. 2016. High-resolution interrogation of functional elements in the noncoding genome. Science 353:63071545–49
    [Google Scholar]
  149. 149.
    Bauer DE, Kamran SC, Lessard S, Xu J, Fujiwara Y et al. 2013. An erythroid enhancer of BCL11A subject to genetic variation determines fetal hemoglobin level. Science 342:6155253–57
    [Google Scholar]
  150. 150.
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:6313769–73
    [Google Scholar]
  151. 151.
    Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD et al. 2017. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549:7670111–15 Correction. 2018 Nature 559:E13
    [Google Scholar]
  152. 152.
    Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:7577192–97
    [Google Scholar]
  153. 153.
    Xie S, Duan J, Li B, Zhou P, Hon GC 2017. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell. 66:2285–99.e5
    [Google Scholar]
  154. 154.
    Huang H, Fang M, Jostins L, Umićević Mirkov M, Boucher G et al. 2017. Fine-mapping inflammatory bowel disease loci to single-variant resolution. Nature 547:7662173–78
    [Google Scholar]
  155. 155.
    Onengut-Gumuscu S, Chen W-M, Burren O, Cooper NJ, Quinlan AR et al. 2015. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nature 47:4381–86
    [Google Scholar]
  156. 156.
    Lin S, Staahl BT, Alla RK, Doudna JA 2014. Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. eLife 3:e04766
    [Google Scholar]
  157. 157.
    Zuris JA, Thompson DB, Shu Y, Guilinger JP, Bessen JL et al. 2015. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33:173–80
    [Google Scholar]
  158. 158.
    Wu C-AM, Roth TL, Baglaenko Y, Ferri DM, Brauer P et al. 2018. Genetic engineering in primary human B cells with CRISPR-Cas9 ribonucleoproteins. J. Immunol. Methods. 457:33–40
    [Google Scholar]
  159. 159.
    Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y 2017. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin. Cancer Res. 23:92255–66
    [Google Scholar]
  160. 160.
    Guo MH, Nandakumar SK, Ulirsch JC, Zekavat SM, Buenrostro JD et al. 2017. Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. PNAS 114:3E327–36
    [Google Scholar]
  161. 161.
    Chang C-W, Lai Y-S, Westin E, Khodadadi-Jamayran A, Pawlik KM et al. 2015. Modeling human severe combined immunodeficiency and correction by CRISPR/Cas9-enhanced gene targeting. Cell Rep 12:101668–77
    [Google Scholar]
  162. 162.
    De Ravin SS, Li L, Wu X, Choi U, Allen C et al. 2017. CRISPR-Cas9 gene repair of hematopoietic stem cells from patients with X-linked chronic granulomatous disease. Sci. Transl. Med. 9:372eaah3480
    [Google Scholar]
  163. 163.
    Flynn R, Grundmann A, Renz P, Hänseler W, James WS et al. 2015. CRISPR-mediated genotypic and phenotypic correction of a chronic granulomatous disease mutation in human iPS cells. Exp. Hematol. 43:10838–48.e3
    [Google Scholar]
  164. 164.
    Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat. Biotechnol. 31:9839–43
    [Google Scholar]
  165. 165.
    Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D et al. 2013. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31:9822–26
    [Google Scholar]
  166. 166.
    Boroviak K, Fu B, Yang F, Doe B, Bradley A 2017. Revealing hidden complexities of genomic rearrangements generated with Cas9. Sci. Rep. 7:112867
    [Google Scholar]
  167. 167.
    Wienert B, Shin J, Zelin E, Pestal K, Corn JE 2018. In vitro-transcribed guide RNAs trigger an innate immune response via the RIG-I pathway. PLOS Biol 16:7e2005840
    [Google Scholar]
  168. 168.
    Kim S, Koo T, Jee H-G, Cho H-Y, Lee G et al. 2018. CRISPR RNAs trigger innate immune responses in human cells. Genome Res 28:3367–73
    [Google Scholar]
  169. 169.
    Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat. Med. 24:7927–30
    [Google Scholar]
  170. 170.
    Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D et al. 2018. P53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat. Med. 24:7939–46
    [Google Scholar]
  171. 171.
    König R, Zhou Y, Elleder D, Diamond TL, Bonamy GMC et al. 2008. Global analysis of host-pathogen interactions that regulate early-stage HIV-1 replication. Cell 135:149–60
    [Google Scholar]
  172. 172.
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A et al. 2008. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319:5865921–26
    [Google Scholar]
  173. 173.
    Zhou H, Xu M, Huang Q, Gates AT, Zhang XD et al. 2008. Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4:5495–504
    [Google Scholar]
  174. 174.
    Park RJ, Wang T, Koundakjian D, Hultquist JF, Lamothe-Molina P et al. 2017. A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors. Nature 49:2193–203
    [Google Scholar]
  175. 175.
    Jäger S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE et al. 2011. Global landscape of HIV-human protein complexes. Nature 481:7381365–70
    [Google Scholar]
  176. 176.
    Hultquist JF, Schumann K, Woo JM, Manganaro L, McGregor MJ et al. 2016. A Cas9 ribonucleoprotein platform for functional genetic studies of HIV-host interactions in primary human T cells. Cell Rep 17:51438–52
    [Google Scholar]
  177. 177.
    Tebas P, Stein D, Tang WW, Frank I, Wang SQ et al. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 370:10901–10
    [Google Scholar]
  178. 178.
    Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A et al. 2009. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360:7692–98
    [Google Scholar]
  179. 179.
    Didigu CA, Wilen CB, Wang J, Duong J, Secreto AJ et al. 2014. Simultaneous zinc-finger nuclease editing of the HIV coreceptors ccr5 and cxcr4 protects CD4+ T cells from HIV-1 infection. Blood 123:161–69
    [Google Scholar]
  180. 180.
    Ebina H, Misawa N, Kanemura Y, Koyanagi Y 2013. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Sci. Rep. 3:2510
    [Google Scholar]
  181. 181.
    Hu W, Kaminski R, Yang F, Zhang Y, Cosentino L et al. 2014. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. PNAS 111:3111461–66
    [Google Scholar]
  182. 182.
    Ophinni Y, Inoue M, Kotaki T, Kameoka M 2018. CRISPR/Cas9 system targeting regulatory genes of HIV-1 inhibits viral replication in infected T-cell cultures. Sci. Rep. 8:17784
    [Google Scholar]
  183. 183.
    Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM et al. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. Nature 535:7610159–63
    [Google Scholar]
  184. 184.
    Ma H, Dang Y, Wu Y, Jia G, Anaya E et al. 2015. A CRISPR-based screen identifies genes essential for West-Nile-virus-induced cell death. Cell Rep 12:4673–83
    [Google Scholar]
  185. 185.
    Zhang R, Miner JJ, Gorman MJ, Rausch K, Ramage H et al. 2016. A CRISPR screen defines a signal peptide processing pathway required by flaviviruses. Nature 535:7610164–68
    [Google Scholar]
  186. 186.
    Kim HS, Lee K, Kim S-J, Cho S, Shin HJ et al. 2018. Arrayed CRISPR screen with image-based assay reliably uncovers host genes required for coxsackievirus infection. Genome Res 28:6859–68
    [Google Scholar]
  187. 187.
    Pardoll DM 2012. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 12:4252–64
    [Google Scholar]
  188. 188.
    Burr ML, Sparbier CE, Chan Y-C, Williamson JC, Woods K et al. 2017. CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature 549:7670101–5
    [Google Scholar]
  189. 189.
    Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U et al. 2016. The epigenetic landscape of T cell exhaustion. Science 354:63161165–69
    [Google Scholar]
  190. 190.
    Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK et al. 2017. Identification of essential genes for cancer immunotherapy. Nature 548:7669537–42
    [Google Scholar]
  191. 191.
    Pan D, Kobayashi A, Jiang P, Ferrari de Andrade L, Tay RE et al. 2018. A major chromatin regulator determines resistance of tumor cells to T cell-mediated killing. Science 359:6377770–75
    [Google Scholar]
  192. 192.
    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. 2017. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:7664413–18
    [Google Scholar]
  193. 193.
    Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ et al. 2017. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7:1737
    [Google Scholar]
  194. 194.
    Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K et al. 2018. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:7693544–48
    [Google Scholar]
  195. 195.
    Roybal KT, Lim WA 2017. Synthetic immunology: hacking immune cells to expand their therapeutic capabilities. Annu. Rev. Immunol. 35:1229–53
    [Google Scholar]
/content/journals/10.1146/annurev-immunol-042718-041522
Loading
/content/journals/10.1146/annurev-immunol-042718-041522
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error