1932

Abstract

Commensal microorganisms (the microbiota) live on all the surface barriers of our body and are particularly abundant and diverse in the distal gut. The microbiota and its larger host represent a metaorganism in which the cross talk between microbes and host cells is necessary for health, survival, and regulation of physiological functions locally, at the barrier level, and systemically. The ancestral molecular and cellular mechanisms stemming from the earliest interactions between prokaryotes and eukaryotes have evolved to mediate microbe-dependent host physiology and tissue homeostasis, including innate and adaptive resistance to infections and tissue repair. Mostly because of its effects on metabolism, cellular proliferation, inflammation, and immunity, the microbiota regulates cancer at the level of predisposing conditions, initiation, genetic instability, susceptibility to host immune response, progression, comorbidity, and response to therapy. Here, we review the mechanisms underlying the interaction of the microbiota with cancer and the evidence suggesting that the microbiota could be targeted to improve therapy while attenuating adverse reactions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-immunol-051116-052133
2017-04-26
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/immunol/35/1/annurev-immunol-051116-052133.html?itemId=/content/journals/10.1146/annurev-immunol-051116-052133&mimeType=html&fmt=ahah

Literature Cited

  1. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. 1.  2008. Worlds within worlds: Evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6:776–88 [Google Scholar]
  2. Yutin N, Wolf MY, Wolf YI, Koonin EV. 2.  2009. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4:9 [Google Scholar]
  3. McInerney JO, O'Connell MJ, Pisani D. 3.  2014. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12:449–55 [Google Scholar]
  4. Chovatiya R, Medzhitov R. 4.  2014. Stress, inflammation, and defense of homeostasis. Mol. Cell 54:281–88 [Google Scholar]
  5. Chu H, Mazmanian SK. 5.  2013. Innate immune recognition of the microbiota promotes host-microbial symbiosis. Nat. Immunol. 14:668–75 [Google Scholar]
  6. 6. Hum. Microbiome Proj. Consort 2012. Structure, function and diversity of the healthy human microbiome. Nature 486:207–14 [Google Scholar]
  7. Sender R, Fuchs S, Milo R. 7.  2016. Are we really vastly outnumbered? revisiting the ratio of bacterial to host cells in humans. Cell 164:337–40 [Google Scholar]
  8. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R. 8.  et al. 2013. An estimation of the number of cells in the human body. Ann. Hum. Biol. 40:463–71 [Google Scholar]
  9. Bosch TC, McFall-Ngai MJ. 9.  2011. Metaorganisms as the new frontier. Zoology 114:185–90 [Google Scholar]
  10. Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. 10.  2012. The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–62 [Google Scholar]
  11. McFall-Ngai M. 11.  2008. Are biologists in ‘future shock’? Symbiosis integrates biology across domains. Nat. Rev. Microbiol. 6:789–92 [Google Scholar]
  12. Candela M, Biagi E, Maccaferri S, Turroni S, Brigidi P. 12.  2012. Intestinal microbiota is a plastic factor responding to environmental changes. Trends Microbiol 20:385–91 [Google Scholar]
  13. Zeng MY, Cisalpino D, Varadarajan S, Hellman J, Warren HS. 13.  et al. 2016. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44:647–58 [Google Scholar]
  14. Hand TW. Santos LM, Bouladoux N, Molloy MJ, Pagan AJ. 14. , Dos et al. 2012. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337:1553–56 [Google Scholar]
  15. Stewart EJ. 15.  2012. Growing unculturable bacteria. J. Bacteriol. 194:4151–60 [Google Scholar]
  16. Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A. 16.  et al. 2011. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. PNAS 108:6252–57 [Google Scholar]
  17. Tringe SG, Hugenholtz P. 17.  2008. A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11:442–46 [Google Scholar]
  18. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL. 18.  et al. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. PNAS 109:6241–46 [Google Scholar]
  19. Parfrey LW, Walters WA, Lauber CL, Clemente JC, Berg-Lyons D. 19.  et al. 2014. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity. Front. Microbiol. 5:298 [Google Scholar]
  20. Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ. 20.  et al. 2015. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64:1732–43 [Google Scholar]
  21. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D. 21.  et al. 2015. Personalized nutrition by prediction of glycemic responses. Cell 163:1079–94 [Google Scholar]
  22. Belkaid Y, Hand TW. 22.  2014. Role of the microbiota in immunity and inflammation. Cell 157:121–41 [Google Scholar]
  23. Cryan JF, Dinan TG. 23.  2012. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat. Rev. Neurosci. 13:701–12 [Google Scholar]
  24. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS. 24.  et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65 [Google Scholar]
  25. Tsai YC, Conlan S, Deming C, Segre JA, Kong HH. 25.  et al. 2016. Resolving the complexity of human skin metagenomes using single-molecule sequencing. mBio 7:e01948–15 [Google Scholar]
  26. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R. 26.  et al. 2015. Host genetic variation impacts microbiome composition across human body sites. Genome Biol 16:191 [Google Scholar]
  27. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. 27.  2015. The infant microbiome development: Mom matters. Trends Mol. Med. 21:109–17 [Google Scholar]
  28. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG. 28.  et al. 2012. Human gut microbiome viewed across age and geography. Nature 486:222–27 [Google Scholar]
  29. Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG. 29.  et al. 2016. Signatures of early frailty in the gut microbiota. Genome Med 8:8 [Google Scholar]
  30. O'Toole PW, Jeffery IB. 30.  2015. Gut microbiota and aging. Science 350:1214–15 [Google Scholar]
  31. Brestoff JR, Artis D. 31.  2013. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 14:676–84 [Google Scholar]
  32. Belkaid Y, Naik S. 32.  2013. Compartmentalized and systemic control of tissue immunity by commensals. Nat. Immunol. 14:646–53 [Google Scholar]
  33. Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH. 33.  et al. 2011. Microbiota regulates immune defense against respiratory tract influenza A virus infection. PNAS 108:5354–59 [Google Scholar]
  34. Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C. 34.  et al. 2012. Priming of natural killer cells by nonmucosal mononuclear phagocytes requires instructive signals from commensal microbiota. Immunity 37:171–86 [Google Scholar]
  35. Abt MC. 35.  2016. Acute gastroenteritis leaves a lasting impression. Cell Host Microbe 19:3–5 [Google Scholar]
  36. Chervonsky AV. 36.  2013. Microbiota and autoimmunity. Cold Spring Harb. Perspect. Biol. 5:a007294 [Google Scholar]
  37. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R. 37.  et al. 2012. Compartmentalized control of skin immunity by resident commensals. Science 337:1115–19 [Google Scholar]
  38. Vaishnava S, Behrendt CL, Ismail AS, Eckmann L, Hooper LV. 38.  2008. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. PNAS 105:20858 [Google Scholar]
  39. Shen W, Li W, Hixon JA, Bouladoux N, Belkaid Y. 39.  et al. 2014. Adaptive immunity to murine skin commensals. PNAS 111:E2977–86 [Google Scholar]
  40. Khosravi A, Yanez A, Price JG, Chow A, Merad M. 40.  et al. 2014. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe 15:374–81 [Google Scholar]
  41. Balmer ML, Schurch CM, Saito Y, Geuking MB, Li H. 41.  et al. 2014. Microbiota-derived compounds drive steady-state granulopoiesis via MyD88/TICAM signaling. J. Immunol. 193:5273–83 [Google Scholar]
  42. Trompette A, Gollwitzer ES, Yadava K, Sichelstiel AK, Sprenger N. 42.  et al. 2014. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat. Med. 20:159–66 [Google Scholar]
  43. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O. 43.  et al. 2015. Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18:965–77 [Google Scholar]
  44. Zhang D, Chen G, Manwani D, Mortha A, Xu C. 44.  et al. 2015. Neutrophil ageing is regulated by the microbiome. Nature 525:528–32 [Google Scholar]
  45. Mukherji A, Kobiita A, Ye T, Chambon P. 45.  2013. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153:812–27 [Google Scholar]
  46. Nguyen KD, Fentress SJ, Qiu Y, Yun K, Cox JS, Chawla A. 46.  2013. Circadian gene Bmal1 regulates diurnal oscillations of Ly6Chi inflammatory monocytes. Science 341:1483–88 [Google Scholar]
  47. Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J. 47.  et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159:514–29 [Google Scholar]
  48. Perussia B, Dayton ET, Fanning V, Thiagarajan P, Hoxie J, Trinchieri G. 48.  1983. Immune interferon and leukocyte-conditioned medium induce normal and leukemic myeloid cells to differentiate along the monocytic pathway. J. Exp. Med. 158:2058–80 [Google Scholar]
  49. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. 49.  1992. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood 80:2012–20 [Google Scholar]
  50. de Oliveira S, Rosowski EE, Huttenlocher A. 50.  2016. Neutrophil migration in infection and wound repair: going forward in reverse. Nat. Rev. Immunol. 16:378–91 [Google Scholar]
  51. Askenase MH, Han S-J, Byrd AL, Morais da Fonseca D, Bouladoux N. 51.  et al. 2015. Bone-marrow-resident NK cells prime monocytes for regulatory function during infection. Immunity 42:1130–42 [Google Scholar]
  52. Gottschalk RA, Martins AJ, Angermann BR, Dutta B, Ng CE. 52.  et al. 2016. Distinct NF-κB and MAPK activation thresholds uncouple steady-state microbe sensing from anti-pathogen inflammatory responses. Cell Syst 2:378–90 [Google Scholar]
  53. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N. 53.  et al. 2013. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342:967–70 [Google Scholar]
  54. Ozmen L, Pericin M, Hakimi J, Chizzonite RA, Wysocka M. 54.  et al. 1994. Interleukin 12, interferon γ, and tumor necrosis factor α are the key cytokines of the generalized Shwartzman reaction. J. Exp. Med. 180:907–15 [Google Scholar]
  55. Hanahan D, Weinberg RA. 55.  2000. The hallmarks of cancer. Cell 100:57–70 [Google Scholar]
  56. Fidler IJ. 56.  2003. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3:453–58 [Google Scholar]
  57. Dolberg DS, Bissell MJ. 57.  1984. Inability of Rous sarcoma virus to cause sarcomas in the avian embryo. Nature 309:552–56 [Google Scholar]
  58. Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P. 58.  et al. 2015. Tumor evolution: high burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:880–86 [Google Scholar]
  59. Bissell MJ, Hines WC. 59.  2011. Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17:320–29 [Google Scholar]
  60. Adami J, Gabel H, Lindelof B, Ekstrom K, Rydh B. 60.  et al. 2003. Cancer risk following organ transplantation: a nationwide cohort study in Sweden. Br. J. Cancer 89:1221–27 [Google Scholar]
  61. Vogtmann E, Goedert JJ. 61.  2016. Epidemiologic studies of the human microbiome and cancer. Br. J. Cancer 114:237–42 [Google Scholar]
  62. 62. IARC Work. Group Evaluation Carcinog. Risks Hum 1994. Schistosomes, Liver Flukes and Helicobacter pylori. IARC Monogr. Evaluation Carcinog. Risks Hum 61 Geneva, Switz.: World Health Organ.
  63. Atherton JC, Blaser MJ. 63.  2009. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Investig. 119:2475–87 [Google Scholar]
  64. Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA. 64.  et al. 2013. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe 14:207–15 [Google Scholar]
  65. Sears CL, Garrett WS. 65.  2014. Microbes, microbiota, and colon cancer. Cell Host Microbe 15:317–28 [Google Scholar]
  66. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL. 66.  et al. 2012. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79 [Google Scholar]
  67. Arthur JC, Perez-Chanona E, Muhlbauer M, Tomkovich S, Uronis JM. 67.  et al. 2012. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–23 [Google Scholar]
  68. Thomas RM, Jobin C. 68.  2015. The microbiome and cancer: Is the ‘oncobiome’ mirage real?. Trends Cancer 1:24–35 [Google Scholar]
  69. Poutahidis T, Varian BJ, Levkovich T, Lakritz JR, Mirabal S. 69.  et al. 2015. Dietary microbes modulate transgenerational cancer risk. Cancer Res 75:1197–204 [Google Scholar]
  70. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. 70.  2014. Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 384:755–65 [Google Scholar]
  71. Conroy MJ, Dunne MR, Donohoe CL, Reynolds JV. 71.  2016. Obesity-associated cancer: an immunological perspective. Proc. Nutr. Soc. 75:125–38 [Google Scholar]
  72. Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A. 72.  et al. 2016. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531:53–58 [Google Scholar]
  73. Ohtani N, Yoshimoto S, Hara E. 73.  2014. Obesity and cancer: a gut microbial connection. Cancer Res 74:1885–89 [Google Scholar]
  74. Abnet CC, Corley DA, Freedman ND, Kamangar F. 74.  2015. Diet and upper gastrointestinal malignancies. Gastroenterology 148:1234–43.e4 [Google Scholar]
  75. Doll R, Peto R. 75.  1981. The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today. J. Natl. Cancer Inst. 66:1191–308 [Google Scholar]
  76. Song M, Garrett WS, Chan AT. 76.  2015. Nutrients, foods, and colorectal cancer prevention. Gastroenterology 148:1244–60.e16 [Google Scholar]
  77. Wei W, Sun W, Yu S, Yang Y, Ai L. 77.  2016. Butyrate production from high-fiber diet protects against lymphoma tumor. Leuk. Lymphoma 57:2401–8 [Google Scholar]
  78. Masuyama H, Mitsui T, Nobumoto E, Hiramatsu Y. 78.  2015. The effects of high-fat diet exposure in utero on the obesogenic and diabetogenic traits through epigenetic changes in adiponectin and leptin gene expression for multiple generations in female mice. Endocrinology 156:2482–91 [Google Scholar]
  79. Modi SR, Collins JJ, Relman DA. 79.  2014. Antibiotics and the gut microbiota. J. Clin. Investig. 124:4212–18 [Google Scholar]
  80. Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J. 80.  et al. 2012. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–26 [Google Scholar]
  81. Scott FI, Horton DB, Mamtani R, Haynes K, Goldberg DS. 81.  et al. 2016. Administration of antibiotics to children before age 2 years increases risk for childhood obesity. Gastroenterology 151:120–129.e5 [Google Scholar]
  82. Hviid A, Svanstrom H, Frisch M. 82.  2011. Antibiotic use and inflammatory bowel diseases in childhood. Gut 60:49–54 [Google Scholar]
  83. Sergentanis TN, Zagouri F, Zografos GC. 83.  2010. Is antibiotic use a risk factor for breast cancer? A meta-analysis. Pharmacoepidemiol. Drug Saf. 19:1101–7 [Google Scholar]
  84. Xuan C, Shamonki JM, Chung A, Dinome ML, Chung M. 84.  et al. 2014. Microbial dysbiosis is associated with human breast cancer. PLOS ONE 9:e83744 [Google Scholar]
  85. Lee YY, Mahendra Raj S, Graham DY. 85.  2013. Helicobacter pylori infection—a boon or a bane: lessons from studies in a low-prevalence population. Helicobacter 18:338–46 [Google Scholar]
  86. Levkovich T, Poutahidis T, Cappelle K, Smith MB, Perrotta A. 86.  et al. 2014. ‘Hygienic’ lymphocytes convey increased cancer risk. J. Anal. Oncol. 3:113–21 [Google Scholar]
  87. Fonseca DM, Hand TW, Han S-J, Gerner MY, Glatman Zaretsky A. 87.  et al. 2015. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163:354–66 [Google Scholar]
  88. Chen JA, Splenser A, Guillory B, Luo J, Mendiratta M. 88.  et al. 2015. Ghrelin prevents tumour- and cisplatin-induced muscle wasting: characterization of multiple mechanisms involved. J. Cachexia Sarcopenia Muscle 6:132–43 [Google Scholar]
  89. de Matos-Neto EM, Lima JDCC, de Pereira WO, Figuerêdo RG, Riccardi DMDR. 89.  et al. 2015. Systemic inflammation in cachexia—is tumor cytokine expression profile the culprit?. Front. Immunol. 6:629 [Google Scholar]
  90. Kir S, White JP, Kleiner S, Kazak L, Cohen P. 90.  et al. 2014. Tumour-derived PTH-related protein triggers adipose tissue browning and cancer cachexia. Nature 513:100–4 [Google Scholar]
  91. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. 91.  2009. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLOS ONE 4:e7125 [Google Scholar]
  92. Varian BJ, Goureshetti S, Poutahidis T, Lakritz JR, Levkovich T. 92.  et al. 2016. Beneficial bacteria inhibit cachexia. Oncotarget 7:11803–16 [Google Scholar]
  93. Bindels LB, Neyrinck AM, Claus SP, Le Roy CI, Grangette C. 93.  et al. 2016. Synbiotic approach restores intestinal homeostasis and prolongs survival in leukaemic mice with cachexia. ISME J 10:1456–70 [Google Scholar]
  94. Schieber AMP, Lee YM, Chang MW, Leblanc M, Collins B. 94.  et al. 2015. Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350:558–63 [Google Scholar]
  95. Klein GL, Petschow BW, Shaw AL, Weaver E. 95.  2013. Gut barrier dysfunction and microbial translocation in cancer cachexia: a new therapeutic target. Curr. Opin. Support. Palliat. Care 7:361–67 [Google Scholar]
  96. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F. 96.  et al. 2012. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol 13:607–15 [Google Scholar]
  97. 97. IARC Work. Group Evaluation Carcinog. Risks Hum 2012. A Review of Human Carcinogens: Part B; Biological agents. IARC Monogr. Evaluation Carcinog. Risks Hum. Vol. 100B Geneva, Switz.: World Health Organ.
  98. Zhang X, Zhang Z, Zheng B, He Z, Winberg G, Ernberg I. 98.  2013. An update on viral association of human cancers. Arch. Virol. 158:1433–43 [Google Scholar]
  99. Ng J, Wu J. 99.  2012. Hepatitis B- and hepatitis C-related hepatocellular carcinomas in the United States: similarities and differences. Hepat. Mon. 12:e7635 [Google Scholar]
  100. Psyrri A, Rampias T, Vermorken JB. 100.  2014. The current and future impact of human papillomavirus on treatment of squamous cell carcinoma of the head and neck. Ann. Oncol. 25:2101–15 [Google Scholar]
  101. Tommasino M. 101.  2014. The human papillomavirus family and its role in carcinogenesis. Semin. Cancer Biol. 26:13–21 [Google Scholar]
  102. Ciminale V, Rende F, Bertazzoni U, Romanelli MG. 102.  2014. HTLV-1 and HTLV-2: highly similar viruses with distinct oncogenic properties. Front. Microbiol. 5:398 [Google Scholar]
  103. Feng H, Shuda M, Chang Y, Moore PS. 103.  2008. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 319:1096–100 [Google Scholar]
  104. Zheng ZM. 104.  2010. Viral oncogenes, noncoding RNAs, and RNA splicing in human tumor viruses. Int. J. Biol. Sci. 6:730–55 [Google Scholar]
  105. Mitra A, MacIntyre DA, Lee YS, Smith A, Marchesi JR. 105.  et al. 2015. Cervical intraepithelial neoplasia disease progression is associated with increased vaginal microbiome diversity. Sci. Rep. 5:16865 [Google Scholar]
  106. Rehermann B, Nascimbeni M. 106.  2005. Immunology of hepatitis B virus and hepatitis C virus infection. Nature Rev. Immunol. 5:215–29 [Google Scholar]
  107. Bender S, Reuter A, Eberle F, Einhorn E, Binder M, Bartenschlager R. 107.  2015. Activation of type I and III interferon response by mitochondrial and peroxisomal MAVS and inhibition by hepatitis C virus. PLOS Pathog. 11:e1005264 [Google Scholar]
  108. Chen Y, Chen Z, Guo R, Chen N, Lu H. 108.  et al. 2011. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagn. Microbiol. Infect. Dis. 70:492–98 [Google Scholar]
  109. Xu M, Wang B, Fu Y, Chen Y, Yang F. 109.  et al. 2012. Changes of fecal Bifidobacterium species in adult patients with hepatitis B virus-induced chronic liver disease. Microb. Ecol. 63:304–13 [Google Scholar]
  110. Henao-Mejia J, Elinav E, Thaiss CA, Licona-Limon P, Flavell RA. 110.  2013. Role of the intestinal microbiome in liver disease. J. Autoimmun. 46:66–73 [Google Scholar]
  111. Chou HH, Chien WH, Wu LL, Cheng CH, Chung CH. 111.  et al. 2015. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. PNAS 112:2175–80 [Google Scholar]
  112. Moore PS, Chang Y. 112.  2010. Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nat. Rev. Cancer 10:878–89 [Google Scholar]
  113. Ki MR, Hwang M, Kim AY, Lee EM, Lee EJ. 113.  et al. 2014. Role of vacuolating cytotoxin VacA and cytotoxin-associated antigen CagA of Helicobacter pylori in the progression of gastric cancer. Mol. Cell Biochem. 396:23–32 [Google Scholar]
  114. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY. 114.  et al. 2016. Helicobacter pylori and gut microbiota modulate energy homeostasis prior to inducing histopathological changes in mice. Gut Microbes 7:48–53 [Google Scholar]
  115. Perry S, de Jong BC, Solnick JV, de la Luz Sanchez M, Yang S. 115.  et al. 2010. Infection with Helicobacter pylori is associated with protection against tuberculosis. PLOS ONE 5:e8804 [Google Scholar]
  116. Koch KN, Hartung ML, Urban S, Kyburz A, Bahlmann AS. 116.  et al. 2015. Helicobacter urease-induced activation of the TLR2/NLRP3/IL-18 axis protects against asthma. J. Clin. Investig. 125:3297–302 [Google Scholar]
  117. Kim DJ, Park JH, Franchi L, Backert S, Nunez G. 117.  2013. The Cag pathogenicity island and interaction between TLR2/NOD2 and NLRP3 regulate IL-1β production in Helicobacter pylori infected dendritic cells. Eur. J. Immunol. 43:2650–58 [Google Scholar]
  118. Peek RM. Blaser MJ. 118.  Jr., 2002. Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat. Rev. Cancer 2:28–37 [Google Scholar]
  119. Plottel CS, Blaser MJ. 119.  2011. Microbiome and malignancy. Cell Host Microbe 10:324–35 [Google Scholar]
  120. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN. 120.  et al. 2016. Helicobacter pylori eradication causes perturbation of the human gut microbiome in young adults. PLOS ONE 11:e0151893 [Google Scholar]
  121. Belkaid Y, Segre JA. 121.  2014. Dialogue between skin microbiota and immunity. Science 346:954–59 [Google Scholar]
  122. Goldszmid RS, Trinchieri G. 122.  2012. The price of immunity. Nat. Immunol. 13:932–38 [Google Scholar]
  123. Jobin C. 123.  2012. Colorectal cancer: CRC—all about microbial products and barrier function?. Nat. Rev. Gastroenterol. Hepatol. 9:694–96 [Google Scholar]
  124. Rao VP, Poutahidis T, Ge Z, Nambiar PR, Boussahmain C. 124.  et al. 2006. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res 66:7395–400 [Google Scholar]
  125. Attene-Ramos MS, Wagner ED, Plewa MJ, Gaskins HR. 125.  2006. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res. 4:9–14 [Google Scholar]
  126. Andriamihaja M, Lan A, Beaumont M, Audebert M, Wong X. 126.  et al. 2015. The deleterious metabolic and genotoxic effects of the bacterial metabolite p-cresol on colonic epithelial cells. Free Radic. Biol. Med. 85:219–27 [Google Scholar]
  127. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK. 127.  2007. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell 131:33 [Google Scholar]
  128. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA. 128.  et al. 2011. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–57 [Google Scholar]
  129. Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. 129.  2013. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe 14:195–206 [Google Scholar]
  130. Zackular JP, Baxter NT, Iverson KD, Sadler WD, Petrosino JF. 130.  et al. 2013. The gut microbiome modulates colon tumorigenesis. mBio 4:e00692–13 [Google Scholar]
  131. Mira-Pascual L, Cabrera-Rubio R, Ocon S, Costales P, Parra A. 131.  et al. 2015. Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers. J. Gastroenterol. 50:167–79 [Google Scholar]
  132. Okuda T, Kokubu E, Kawana T, Saito A, Okuda K, Ishihara K. 132.  2012. Synergy in biofilm formation between Fusobacterium nucleatum and Prevotella species. Anaerobe 18:110–16 [Google Scholar]
  133. Abed J, Emgard JE, Zamir G, Faroja M, Almogy G. 133.  et al. 2016. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed Gal-GalNAc. Cell Host Microbe 20:215–25 [Google Scholar]
  134. Gur C, Ibrahim Y, Isaacson B, Yamin R, Abed J. 134.  et al. 2015. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42:344–55 [Google Scholar]
  135. Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL. 135.  et al. 2014. Microbiota organization is a distinct feature of proximal colorectal cancers. PNAS 111:18321–26 [Google Scholar]
  136. Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF. 136.  et al. 2015. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab 21:891–97 [Google Scholar]
  137. Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. 137.  2014. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes 5:675–80 [Google Scholar]
  138. Nesic D, Hsu Y, Stebbins CE. 138.  2004. Assembly and function of a bacterial genotoxin. Nature 429:429–33 [Google Scholar]
  139. Kim JJ, Tao H, Carloni E, Leung WK, Graham DY, Sepulveda AR. 139.  2002. Helicobacter pylori impairs DNA mismatch repair in gastric epithelial cells. Gastroenterology 123:542–53 [Google Scholar]
  140. Maddocks OD, Short AJ, Donnenberg MS, Bader S, Harrison DJ. 140.  2009. Attaching and effacing Escherichia coli downregulate DNA mismatch repair protein in vitro and are associated with colorectal adenocarcinomas in humans. PLOS ONE 4:e5517 [Google Scholar]
  141. Yao Q, Zhang L, Wan X, Chen J, Hu L. 141.  et al. 2014. Structure and specificity of the bacterial cysteine methyltransferase effector NleE suggests a novel substrate in human DNA repair pathway. PLOS Pathog. 10:e1004522 [Google Scholar]
  142. Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM. 142.  et al. 2015. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis. 60:208–15 [Google Scholar]
  143. Wick EC, Rabizadeh S, Albesiano E, Wu X, Wu S. 143.  et al. 2014. Stat3 activation in murine colitis induced by enterotoxigenic Bacteroides fragilis. Inflamm. Bowel Dis. 20:821–34 [Google Scholar]
  144. Geis AL, Fan H, Wu X, Wu S, Huso DL. 144.  et al. 2015. Regulatory T-cell response to enterotoxigenic Bacteroides fragilis colonization triggers IL17-dependent colon carcinogenesis. Cancer Discov 5:1098–109 [Google Scholar]
  145. Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B. 145.  et al. 2012. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–58 [Google Scholar]
  146. Ernst M, Putoczki TL. 146.  2013. Targeting IL-11 signaling in colon cancer. Oncotarget 4:1860–61 [Google Scholar]
  147. Salcedo R, Worschech A, Cardone M, Jones Y, Gyulai Z. 147.  et al. 2010. MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J. Exp. Med. 207:1625–36 [Google Scholar]
  148. Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ. 148.  et al. 2012. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–85 [Google Scholar]
  149. Macia L, Tan J, Vieira AT, Leach K, Stanley D. 149.  et al. 2015. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6:6734 [Google Scholar]
  150. Chudnovskiy A, Mortha A, Kana V, Kennard A, Ramirez JD. 150.  et al. 2016. Host-protozoan interactions protect from mucosal infections through activation of the inflammasome. Cell 167:444–56 [Google Scholar]
  151. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA. 151.  et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341:569–73 [Google Scholar]
  152. Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R. 152.  et al. 2014. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 40:128–39 [Google Scholar]
  153. Saleh M, Trinchieri G. 153.  2011. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nat. Rev. Immunol. 11:9–20 [Google Scholar]
  154. Huber S, Gagliani N, Zenewicz LA, Huber FJ, Bosurgi L. 154.  et al. 2012. IL-22BP is regulated by the inflammasome and modulates tumorigenesis in the intestine. Nature 491:259–63 [Google Scholar]
  155. Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F. 155.  et al. 2013. Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J. Exp. Med. 210:917–31 [Google Scholar]
  156. Munoz M, Eidenschenk C, Ota N, Wong K, Lohmann U. 156.  et al. 2015. Interleukin-22 induces interleukin-18 expression from epithelial cells during intestinal infection. Immunity 42:321–31 [Google Scholar]
  157. Nowarski R, Jackson R, Gagliani N, de Zoete MR, Palm NW. 157.  et al. 2015. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163:1444–56 [Google Scholar]
  158. Elangovan S, Pathania R, Ramachandran S, Ananth S, Padia RN. 158.  et al. 2014. The niacin/butyrate receptor GPR109A suppresses mammary tumorigenesis by inhibiting cell survival. Cancer Res 74:1166–78 [Google Scholar]
  159. Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM. 159.  et al. 2013. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J 7:949–61 [Google Scholar]
  160. Tan J, McKenzie C, Potamitis M, Thorburn AN, Mackay CR, Macia L. 160.  2014. The role of short-chain fatty acids in health and disease. Adv. Immunol. 121:91–119 [Google Scholar]
  161. Belcheva A, Irrazabal T, Robertson SJ, Streutker C, Maughan H. 161.  et al. 2014. Gut microbial metabolism drives transformation of Msh2-deficient colon epithelial cells. Cell 158:288–99 [Google Scholar]
  162. Uittamo J, Siikala E, Kaihovaara P, Salaspuro M, Rautemaa R. 162.  2009. Chronic candidosis and oral cancer in APECED-patients: production of carcinogenic acetaldehyde from glucose and ethanol by Candida albicans. Int. J. Cancer 124:754–56 [Google Scholar]
  163. Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV. 163.  et al. 2016. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 351:1329–33 [Google Scholar]
  164. Nowak A, Czyzowska A, Huben K, Sojka M, Kuberski S. 164.  et al. 2016. Prebiotics and age, but not probiotics affect the transformation of 2-amino-3-methyl-3H-imidazo[4,5-f]quinoline (IQ) by fecal microbiota—an in vitro study. Anaerobe 39:124–35 [Google Scholar]
  165. Megaraj V, Ding X, Fang C, Kovalchuk N, Zhu Y, Zhang QY. 165.  2014. Role of hepatic and intestinal p450 enzymes in the metabolic activation of the colon carcinogen azoxymethane in mice. Chem. Res. Toxicol. 27:656–62 [Google Scholar]
  166. Morita N, Walaszek Z, Kinjo T, Nishimaki T, Hanausek M. 166.  et al. 2008. Effects of synthetic and natural in vivo inhibitors of β-glucuronidase on azoxymethane-induced colon carcinogenesis in rats. Mol. Med. Rep. 1:741–46 [Google Scholar]
  167. Vergara-Castaneda HA, Guevara-Gonzalez RG, Ramos-Gomez M, Reynoso-Camacho R, Guzman-Maldonado H. 167.  et al. 2010. Non-digestible fraction of cooked bean (Phaseolus vulgaris L.) cultivar Bayo Madero suppresses colonic aberrant crypt foci in azoxymethane-induced rats. Food Funct 1:294–300 [Google Scholar]
  168. Kim YG, Udayanga KG, Totsuka N, Weinberg JB, Nunez G, Shibuya A. 168.  2014. Gut dysbiosis promotes M2 macrophage polarization and allergic airway inflammation via fungi-induced PGE2. Cell Host Microbe 15:95–102 [Google Scholar]
  169. Nagamine CM, Sohn JJ, Rickman BH, Rogers AB, Fox JG, Schauer DB. 169.  2008. Helicobacter hepaticus infection promotes colon tumorigenesis in the BALB/c-Rag2−/− ApcMin/+ mouse. Infect. Immun. 76:2758–66 [Google Scholar]
  170. Poutahidis T, Cappelle K, Levkovich T, Lee CW, Doulberis M. 170.  et al. 2013. Pathogenic intestinal bacteria enhance prostate cancer development via systemic activation of immune cells in mice. PLOS ONE 8:e73933 [Google Scholar]
  171. Fox JG, Feng Y, Theve EJ, Raczynski AR, Fiala JL. 171.  et al. 2010. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut 59:88–97 [Google Scholar]
  172. Erdman SE, Poutahidis T, Tomczak M, Rogers AB, Cormier K. 172.  et al. 2003. CD4+ CD25+ regulatory T lymphocytes inhibit microbially induced colon cancer in Rag2-deficient mice. Am. J. Pathol. 162:691–702 [Google Scholar]
  173. Lakritz JR, Poutahidis T, Mirabal S, Varian BJ, Levkovich T. 173.  et al. 2015. Gut bacteria require neutrophils to promote mammary tumorigenesis. Oncotarget 6:9387–96 [Google Scholar]
  174. Yamamoto ML, Maier I, Dang AT, Berry D, Liu J. 174.  et al. 2013. Intestinal bacteria modify lymphoma incidence and latency by affecting systemic inflammatory state, oxidative stress, and leukocyte genotoxicity. Cancer Res 73:4222–32 [Google Scholar]
  175. Westbrook AM, Wei B, Hacke K, Xia M, Braun J, Schiestl RH. 175.  2012. The role of tumour necrosis factor-α and tumour necrosis factor receptor signalling in inflammation-associated systemic genotoxicity. Mutagenesis 27:77–86 [Google Scholar]
  176. Rutkowski MR, Stephen TL, Svoronos N, Allegrezza MJ, Tesone AJ. 176.  et al. 2015. Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. Cancer Cell 27:27–40 [Google Scholar]
  177. Coley WB. 177.  1893. Treatment of malignant tumors by repeated inoculation of erysipelas: with a report of 10 cases. Am. J. Med. Sci. 105:487–564 [Google Scholar]
  178. Tang DH, Chang SS. 178.  2015. Management of carcinoma in situ of the bladder: best practice and recent developments. Adv. Urol. 7:351–64 [Google Scholar]
  179. Forbes NS. 179.  2010. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 10:785–94 [Google Scholar]
  180. Bettegowda C, Huang X, Lin J, Cheong I, Kohli M. 180.  et al. 2006. The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat. Biotechnol. 24:1573–80 [Google Scholar]
  181. Forbes NS. 181.  2006. Profile of a bacterial tumor killer. Nat. Biotechnol. 24:1484–85 [Google Scholar]
  182. Mlynarczyk GS, Berg CA, Withrock IC, Fick ME, Anderson SJ. 182.  et al. 2014. Salmonella as a biological “Trojan horse” for neoplasia: future possibilities including brain cancer. Med. Hypotheses 83:343–45 [Google Scholar]
  183. Zhang M, Forbes NS. 183.  2015. Trg-deficient Salmonella colonize quiescent tumor regions by exclusively penetrating or proliferating. J. Control Release 199:180–89 [Google Scholar]
  184. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. 184.  2016. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14:273–87 [Google Scholar]
  185. Dzutsev A, Goldszmid RS, Viaud S, Zitvogel L, Trinchieri G. 185.  2015. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy. Eur. J. Immunol. 45:17–31 [Google Scholar]
  186. Li H, Jia W. 186.  2013. Cometabolism of microbes and host: implications for drug metabolism and drug-induced toxicity. Clin. Pharmacol. Ther. 94:574–81 [Google Scholar]
  187. Maurice CF, Haiser HJ, Turnbaugh PJ. 187.  2013. Xenobiotics shape the physiology and gene expression of the active human gut microbiome. Cell 152:39–50 [Google Scholar]
  188. Fujita K, Sparreboom A. 188.  2010. Pharmacogenetics of irinotecan disposition and toxicity: a review. Curr. Clin. Pharmacol. 5:209–17 [Google Scholar]
  189. Stringer AM, Gibson RJ, Logan RM, Bowen JM, Yeoh AS, Keefe DM. 189.  2008. Faecal microflora and β-glucuronidase expression are altered in an irinotecan-induced diarrhea model in rats. Cancer Biol. Ther. 7:1919–25 [Google Scholar]
  190. McIntosh FM, Maison N, Holtrop G, Young P, Stevens VJ. 190.  et al. 2012. Phylogenetic distribution of genes encoding β-glucuronidase activity in human colonic bacteria and the impact of diet on faecal glycosidase activities. Environ. Microbiol. 14:1876–87 [Google Scholar]
  191. Wallace BD, Wang H, Lane KT, Scott JE, Orans J. 191.  et al. 2010. Alleviating cancer drug toxicity by inhibiting a bacterial enzyme. Science 330:831–35 [Google Scholar]
  192. Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G. 192.  et al. 2014. Systems biology of cisplatin resistance: past, present and future. Cell Death Dis 5:e1257 [Google Scholar]
  193. Roy S, Ryals MM, Van den Bruele AB, Fitzgerald TS, Cunningham LL. 193.  2013. Sound preconditioning therapy inhibits ototoxic hearing loss in mice. J. Clin. Investig. 123:4945–49 [Google Scholar]
  194. Zhu S, Pabla N, Tang C, He L, Dong Z. 194.  2015. DNA damage response in cisplatin-induced nephrotoxicity. Arch. Toxicol. 89:2197–205 [Google Scholar]
  195. Park SB, Goldstein D, Krishnan AV, Lin CSY, Friedlander ML. 195.  et al. 2013. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. CA Cancer J. Clin. 63:419–37 [Google Scholar]
  196. Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J. 196.  et al. 2005. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–56 [Google Scholar]
  197. Gui QF, Lu HF, Zhang CX, Xu ZR, Yang YH. 197.  2015. Well-balanced commensal microbiota contributes to anti-cancer response in a lung cancer mouse model. Genet. Mol. Res. 14:5642–51 [Google Scholar]
  198. Chitapanarux I, Chitapanarux T, Traisathit P, Kudumpee S, Tharavichitkul E, Lorvidhaya V. 198.  2010. Randomized controlled trial of live Lactobacillus acidophilus plus Bifidobacterium bifidum in prophylaxis of diarrhea during radiotherapy in cervical cancer patients. Radiat. Oncol. 5:31 [Google Scholar]
  199. Wang Y, Luo X, Pan H, Huang W, Wang X. 199.  et al. 2015. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism. Food Chem. Toxicol. 83:251–60 [Google Scholar]
  200. Dhiman RK. 200.  2013. Gut microbiota and hepatic encephalopathy. Metab. Brain Dis. 28:321–26 [Google Scholar]
  201. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R. 201.  et al. 2013. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342:971–6 [Google Scholar]
  202. Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ. 202.  et al. 2011. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 sequencing and PCR-DGGE fingerprinting. PLOS ONE 6:e28654 [Google Scholar]
  203. Daillere R, Vetizou M, Waldschmitt N, Yamazaki T, Isnard C. 203.  et al. 2016. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity 45:931–43 [Google Scholar]
  204. Couzin-Frankel J. 204.  2013. Breakthrough of the year 2013: cancer immunotherapy. Science 342:1432–33 [Google Scholar]
  205. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N. 205.  et al. 2015. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350:1079–84 [Google Scholar]
  206. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K. 206.  et al. 2015. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–89 [Google Scholar]
  207. Paulos CM, Wrzesinski C, Kaiser A, Hinrichs CS, Chieppa M. 207.  et al. 2007. Microbial translocation augments the function of adoptively transferred self/tumor-specific CD8+ T cells via TLR4 signaling. J. Clin. Investig. 117:2197–204 [Google Scholar]
  208. Guiducci C, Vicari AP, Sangaletti S, Trinchieri G, Colombo MP. 208.  2005. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res 65:3437–46 [Google Scholar]
  209. Vicari AP, Chiodoni C, Vaure C, Ait-Yahia S, Dercamp C. 209.  et al. 2002. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J. Exp. Med. 196:541–49 [Google Scholar]
  210. Stewart CA, Metheny H, Iida N, Smith L, Hanson M. 210.  et al. 2013. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J. Clin. Investig. 123:4859–74 [Google Scholar]
  211. Netea MG, Joosten LA, Latz E, Mills KH, Natoli G. 211.  et al. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352:aaf1098 [Google Scholar]
  212. Schreiber RD, Old LJ, Smyth MJ. 212.  2011. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 331:1565–70 [Google Scholar]
  213. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. 213.  2014. Immune modulation in cancer with antibodies. Annu. Rev. Med. 65:185–202 [Google Scholar]
  214. Sharma P, Allison JP. 214.  2015. The future of immune checkpoint therapy. Science 348:56–61 [Google Scholar]
  215. Teply BA, Lipson EJ. 215.  2014. Identification and management of toxicities from immune checkpoint-blocking drugs. Oncology 28:Suppl. 330–38 [Google Scholar]
  216. Dubin K, Callahan MK, Ren B, Khanin R, Viale A. 216.  et al. 2016. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7:10391 [Google Scholar]
  217. Santiago-Rodriguez TM, Ly M, Daigneault MC, Brown IH, McDonald JA. 217.  et al. 2015. Chemostat culture systems support diverse bacteriophage communities from human feces. Microbiome 3:58 [Google Scholar]
  218. Kim HJ, Li H, Collins JJ, Ingber DE. 218.  2016. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. PNAS 113:E7–15 [Google Scholar]
  219. Goldszmid RS, Dzutsev A, Viaud S, Zitvogel L, Restifo NP, Trinchieri G. 219.  2015. Microbiota modulation of myeloid cells in cancer therapy. Cancer Immunol. Res. 3:103–9 [Google Scholar]
  220. Kelly CR, Ihunnah C, Fischer M, Khoruts A, Surawicz C. 220.  et al. 2014. Fecal microbiota transplant for treatment of Clostridium difficile infection in immunocompromised patients. Am. J. Gastroenterol. 109:1065–71 [Google Scholar]
  221. Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L. 221.  et al. 2015. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517:205–8 [Google Scholar]
/content/journals/10.1146/annurev-immunol-051116-052133
Loading
/content/journals/10.1146/annurev-immunol-051116-052133
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error