1932

Abstract

Steroid hormones are produced throughout the phylogenetic tree, from plants to mammals. In the past 40 years, steroid receptors localized to the nucleus have been recognized as being important to mediating steroid action in many organs. This action mainly arises from the regulation of key genes that are important for organ development and function. These include but are not limited to genes influencing the reproductive tract, mammary glands, bone, brain, fat differentiation, pituitary hormone regulation, and metabolic effects in many organs. Unfortunately, steroids also promote the development of hormone-responsive cancers, including breast, uterus, and prostate cancer. It has also been shown that steroid receptors exist outside the nucleus in many organs and cells, with unclear impact for normal development, health, and disease. This review describes the evidence from many laboratories that these receptors exist and function with nuclear receptors to provide the full impact of all steroid hormones.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050913-021703
2015-01-14
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-050913-021703.html?itemId=/content/journals/10.1146/annurev-med-050913-021703&mimeType=html&fmt=ahah

Literature Cited

  1. Szego CM, Davis JS. 1.  1967. Adenosine 3,5-monophosphate in rat uterus: acute elevation by estrogen. Proc. Natl. Acad. Sci. USA 58:1711–18 [Google Scholar]
  2. Pietras RJ, Szego CM. 2.  1975. Endometrial cell calcium and oestrogen action. Nature 253:357–59 [Google Scholar]
  3. Pietras RJ, Szego CM. 3.  1977. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 265:69–72 [Google Scholar]
  4. Selye H.4.  1950. Stress and the general adaptation syndrome. Br. J. Med. 1:1383–92 [Google Scholar]
  5. Hammes SR, Levin ER. 5.  2007. Extra-nuclear steroid receptors: nature and function. Endocr. Rev. 28:726–41 [Google Scholar]
  6. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. 6.  1990. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science 249:1266–72 [Google Scholar]
  7. Pedram A, Razandi M, O'Mahony F. 7.  et al. 2013. Estrogen reduces lipid content in the liver exclusively from membrane receptor signaling. Sci. Signal. 6:ra36 [Google Scholar]
  8. Roforth MM, Atkinson E, Levin E. 8.  et al. 2014. Dissection of estrogen receptor alpha signaling pathways in osteoblasts using RNA-sequencing. PLoS ONE 28;9:4e95987 [Google Scholar]
  9. Kalyanaraman H, Schwappacher R, Joshua J. 9.  et al. 2014. Nongenomic thyroid hormone signaling occurs through a plasma membrane-localized receptor. Sci. Signal. 7:326ra48 [Google Scholar]
  10. Pedram A, Razandi M, Levin ER. 10.  2006. Nature of functional estrogen receptors at the plasma membrane. Mol. Endocrinol. 20:1996–2009 [Google Scholar]
  11. Acconcia F, Ascenzi P, Bocedi A. 11.  et al. 2004. Palmitoylation-dependent estrogen receptor α membrane localization regulation by 17-β-estradiol. Mol. Biol. Cell 16:231–37 [Google Scholar]
  12. Pedram A, Razandi M, Deschenes R, Levin ER. 12.  2012. DHHC 7 and 21 are palmitoylacyltranferases for sex steroid receptors. Mol. Biol. Cell 23:188–99 [Google Scholar]
  13. Razandi M, Oh P, Pedram A. 13.  et al. 2002. Estrogen receptors associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol. Endocrinol. 16:100–15 [Google Scholar]
  14. Kim KH, Toomre D, Bender JR. 14.  2011. Splice isoform estrogen receptors as integral membrane proteins. Mol. Biol. Cell 22:4415–23 [Google Scholar]
  15. Razandi M, Pedram A, Greene GL, Levin ER. 15.  1999. Cell membrane and nuclear estrogen receptors derive from a single transcript: studies of ERα and ERβ expressed in CHO cells. Mol. Endocrinol. 13:307–19 [Google Scholar]
  16. Kumar P, Wu Q, Chambliss KL. 16.  et al. 2007. Direct interactions with Gαi and Gβγ mediate nongenomic signaling by estrogen receptor β. Mol. Endocrinol. 21:1370–80 [Google Scholar]
  17. Filardo EJ, Quinn JA, Bland KI, Frackelton AR. 17.  2000. Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, gpr30, and occurs via transactivation of the epidermal growth factor receptor through release of HB-EGF. Mol. Endocrinol. 14:1649–60 [Google Scholar]
  18. Li L, Haynes MP, Bender JR. 18.  2003. Plasma membrane localization and function of the estrogen receptor alpha variant (ER46) in human endothelial cells. Proc. Natl. Acad. Sci. USA 100:4807–12 [Google Scholar]
  19. Wang Z, Zhang X, Shen P. 19.  et al. 2006. A variant of estrogen receptor-α, hER-α36: transduction of estrogen- and antiestrogen-dependent membrane-initiated mitogenic signaling. Proc. Natl. Acad. Sci. USA 103:9063–68 [Google Scholar]
  20. Otto C, Rohde-Schulz B, Schwarz G. 20.  et al. 2008. G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol. Endocrinology 149:4846–56 [Google Scholar]
  21. Lubahn DB, Moyer JS, Golding TS. 21.  et al. 1993. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 90:11162–66 [Google Scholar]
  22. Lydon J, DeMayo FJ, Funk CR. 22.  et al. 1995. Mice lacking progesterone receptor exhibit pleiotropic reproductive abnormalities. Genes Dev. 9:2266–78 [Google Scholar]
  23. Matsumoto TL, Takeyama K, Sato T, Kato S. 23.  2003. Androgen receptor functions from reverse genetic models. J. Steroid Biochem. Mol. Biol. 85:2–595–99 [Google Scholar]
  24. Pedram A, Razandi M, Kim JK. 24.  et al. 2009. Developmental phenotype of a membrane only estrogen receptor α (MOER) mouse. J. Biol. Chem. 284:3488–95 [Google Scholar]
  25. Pedram A, Razandi M, Lewis M. 25.  et al. 2014. Membrane-localized estrogen receptor alpha is required for normal organ development and function. Dev. Cell 29:482–90 [Google Scholar]
  26. Pedram A, Razandi M, Aitkenhead M, Levin ER. 26.  2005. Estrogen inhibits cardiomyocyte hypertrophy in-vitro: antagonism of calcineurin-related hypertrophy through induction of MCIP1. J. Biol. Chem. 280:26339–48 [Google Scholar]
  27. Pedram A, Razandi M, O'Mahony F. 27.  et al. 2010. Estrogen receptor beta prevents cardiac fibrosis. Mol. Endocrinol. 24:2152–65 [Google Scholar]
  28. Wong WP, Tiano JP, Liu S. 28.  et al. 2010. Extranuclear estrogen receptor-alpha stimulates NeuroD1 binding to the insulin promoter and favors insulin synthesis. Proc. Natl. Acad. Sci. USA 107:13057–62 [Google Scholar]
  29. O'Mahony F, Pedram A, Razandi M. 29.  et al. 2012. Estrogen modulates metabolic pathway adaptation to available glucose in breast cancer cells. Mol. Endocrinol. 26:2058–70 [Google Scholar]
  30. Mauvais-Jarvis F, Clegg DJ, Hevener AL. 30.  2013. The role of estrogens in control of energy balance and glucose homeostasis. Endocr. Rev. 34:309–38 [Google Scholar]
  31. Heine PA, Taylor JA, Iwamoto GA. 31.  et al. 2000. Increased adipose tissue in male and female estrogen receptor-alpha knockout mice. Proc. Natl. Acad. Sci. USA 97:12729–34 [Google Scholar]
  32. Alonso-Magdalena P, Ropero AB, Garcia-Arevelo M. 32.  et al. 2013. Antidiabetic actions of an estrogen receptor β selective agonist. Diabetes 62:2015–25 [Google Scholar]
  33. Salpeter SR, Walsh JME, Ormiston TM. 33.  et al. 2006. Meta-analysis: effect of hormone replacement therapy on components of the metabolic syndrome in post-menopausal women. Diabetes Obes. Metab. 8:538–54 [Google Scholar]
  34. Chambliss KL, Wu Q, Oltmann S. 34.  et al. 2010. Non-nuclear estrogen receptor α signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J. Clin. Invest. 120:2319–30 [Google Scholar]
  35. Ueda K, Lu Q, Baur W. 35.  et al. 2013. Rapid estrogen receptor signaling mediates estrogen-induced inhibition of vascular smooth muscle cell proliferation. Arterioscler. Thromb. Vasc. Biol. 33:1837–43 [Google Scholar]
  36. Adams JW, Sakata Y, Davis MG. 36.  et al. 1998. Enhanced Gαq signaling: a common pathway mediates cardiac hypertrophy and apoptotic failure. Proc. Natl. Acad. Sci. USA 95:10140–45 [Google Scholar]
  37. Jazbutyte V, Arias-Loza PA, Hu K. 37.  et al. 2007. Ligand-dependent activation of ER lowers blood pressure and attenuates cardiac hypertrophy in ovariectomized SHR. Cardiovasc. Res. 77:774–78 [Google Scholar]
  38. Nadadur RD, Umar S, Wong G, Eghbali M. 38.  2012. Reverse right ventricular structural and extracellular matrix remodeling by estrogen in severe pulmonary hypertension. J. Appl. Physiol. 113:149–58 [Google Scholar]
  39. Pedram A, Razandi M, Korach K. 39.  et al. 2013. ER β selective agonist inhibits angiotensin-induced cardiovascular pathology in female mice. Endocrinology 154:4352–64 [Google Scholar]
  40. Pedram A, Razandi M, Narayanan R. 40.  et al. 2013. Estrogen regulates histone deacetylases to prevent cardiac hypertrophy. Mol. Biol. Cell 24:3805–18 [Google Scholar]
  41. Razandi M, Pedram A, Parks S, Levin ER. 41.  2003. Proximal events in ER signaling from the plasma membrane. J. Biol. Chem. 278:2701–12 [Google Scholar]
  42. Song RX, Zhang Z, Chen Y. 42.  et al. 2007. Estrogen signaling via a linear pathway involving insulin-like growth factor 1 receptor, matrix metallo-proteinases, and epidermal growth factor receptor to activate mitogen-activated protein kinase. Endocrinology 148:4091–101 [Google Scholar]
  43. Sanchez AM, Flamini MI, Baldacci C. 43.  et al. 2010. Estrogen receptor-alpha promotes breast cancer cell motility and invasion via focal adhesion kinase and N-WASP. Mol. Endocrinol. 24:2114–25 [Google Scholar]
  44. Osborne CK, Schiff R. 44.  2011. Mechanisms of endocrine resistance in breast cancer. Annu. Rev. Med. 62:233–47 [Google Scholar]
  45. Kumar R, Wang R-A, Mazumdar A. 45.  et al. 2002. A naturally occurring MTA1 variant sequesters oestrogen receptor-α in the cytoplasm. Nature 418:654–57 [Google Scholar]
  46. Peterziel H, Mink S, Schonert A. 46.  et al. 1999. Rapid signaling by androgen receptor in prostate cancer cells. Oncogene 18:6322–29 [Google Scholar]
  47. Unni E, Sun S, Nan B. 47.  et al. 2004. Changes in androgen receptor nongenotropic signaling correlate with transition of LNCaP cells to androgen independence. Cancer Res. 64:7156–68 [Google Scholar]
  48. Sen A, Prizant H, Hammes SR. 48.  2011. Understanding extranuclear (nongenomic) androgen signaling: what a frog oocyte can tell us about human biology. Steroids 76:822–28 [Google Scholar]
  49. Sen A, O'Malley K, Wang Z. 49.  et al. 2010. Paxillin regulates androgen- and epidermal growth factor-induced MAPK signaling and cell proliferation in prostate cancer cells. J. Biol. Chem. 285:28787–95 [Google Scholar]
  50. Sen A, De Castro I, Defranco DB. 50.  et al. 2012. Paxillin mediates extranuclear and intranuclear signaling in prostate cancer proliferation. J. Clin. Invest. 122:2469–81 [Google Scholar]
  51. McPherson SJ, Hussain S, Balananthan P. 51.  et al. 2010. Estrogen receptor-beta activated apoptosis in benign hyperplasia and cancer of the prostate is androgen independent and TNFalpha mediated. Proc. Natl. Acad. Sci. USA 107:3123–28 [Google Scholar]
  52. Hickey TE, Robinson JL, Caroll JS, Tilley WD. 52.  2012. Minireview: the androgen receptor in breast cancer tissues: growth inhibitor, tumor suppressor, oncogene?. Mol. Endocrinol. 26:1252–67 [Google Scholar]
  53. Simpson ER, Jefcoate CR, McCarthy JL, Boyd GS. 53.  1974. Effect of calcium ions on steroid-binding spectra and pregnenolone formation in rat-adrenal mitochondria. Eur. J. Biochem. 45:181–88 [Google Scholar]
  54. Bardon S, Vignon F, Montcourrier P, Rochefort H. 54.  1987. Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res. 47:1441–48 [Google Scholar]
  55. Yang S-H, Liu R, Perez EJ. 55.  et al. 2004. Mitochondrial localization of estrogen receptor beta. Proc. Natl. Acad. Sci. USA 101:4130–35 [Google Scholar]
  56. Chen J-Q, Delannoy M, Cooke C, Yager JD. 56.  2004. Mitochondrial localization of ERα and ERβ in human MCF-7 cells. Am. J. Physiol. Endocrinol. Metab. 28:E1011–22 [Google Scholar]
  57. Chen J-Q, Yager JD, Russo J. 57.  2005. Regulation of mitochondrial respiratory chain structure and function by estrogens/estrogen receptors and potential physiological/pathophysiological implications. Biochim. Biophys. Acta 1746:1–17 [Google Scholar]
  58. Pedram A, Razandi M, Wallace DC, Levin ER. 58.  2006. Functional estrogen receptors in the mitochondria of breast cancer cells. Mol. Biol. Cell 17:2125–37 [Google Scholar]
  59. Razandi M, Pedram A, Jordan VC. 59.  et al. 2013. Tamoxifen regulates cell fate through mitochondrial estrogen receptor beta in breast cancer. Oncogene 32:3274–85 [Google Scholar]
  60. Zhang GF, Yanamala N, Lathrop KL. 60.  et al. 2010. Ligand-independent antiapoptotic function of estrogen receptor-beta in lung cancer cells. Mol. Endocrinol. 24:1737–47 [Google Scholar]
/content/journals/10.1146/annurev-med-050913-021703
Loading
/content/journals/10.1146/annurev-med-050913-021703
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error