1932

Abstract

The genetic concept of synthetic lethality, in which the combination or synthesis of mutations in multiple genes results in cell death, provides a framework to design novel therapeutic approaches to cancer. Already there are promising indications, from clinical trials exploiting this concept by using poly(ADP-ribose) polymerase (PARP) inhibitors in patients with germline or gene mutations, that this approach could be beneficial. We discuss the biological rationale for BRCA-PARP synthetic lethality, how the synthetic lethal approach is being assessed in the clinic, and how mechanisms of resistance are starting to be dissected. Applying the synthetic lethal concept to target non--mutant cancers also has clear potential, and we discuss how some of the principles learned in developing PARP inhibitors might also drive the development of additional genetic approaches.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-med-050913-022545
2015-01-14
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/med/66/1/annurev-med-050913-022545.html?itemId=/content/journals/10.1146/annurev-med-050913-022545&mimeType=html&fmt=ahah

Literature Cited

  1. Lord CJ, Ashworth A. 1.  2012. The DNA damage response and cancer therapy. Nature 481:287–94 [Google Scholar]
  2. Bernards R.2.  2014. Finding effective cancer therapies through loss of function genetic screens. Curr. Opin. Genet. Dev. 24C:23–29 [Google Scholar]
  3. Weinstein IB.3.  2002. Cancer. Addiction to oncogenes—the Achilles heel of cancer. Science 297:63–64 [Google Scholar]
  4. Druker BJ.4.  2008. Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–17 [Google Scholar]
  5. Baselga J.5.  2010. Treatment of HER2-overexpressing breast cancer. Ann. Oncol. 21:Suppl 7vii36–40 [Google Scholar]
  6. Dobzhansky T.6.  1946. Genetics of natural populations. XIII. Recombination and variability in populations of Drosophila pseudoobscura. Genetics 31:269–90 [Google Scholar]
  7. Tischler J, Lehner B, Fraser AG. 7.  2008. Evolutionary plasticity of genetic interaction networks. Nat. Genet. 40:390–91 [Google Scholar]
  8. Hartman JLT, Garvik B, Hartwell L. 8.  2001. Principles for the buffering of genetic variation. Science 291:1001–4 [Google Scholar]
  9. Zeman MK, Cimprich KA. 9.  2014. Causes and consequences of replication stress. Nat. Cell Biol. 16:2–9 [Google Scholar]
  10. Hartwell LH, Szankasi P, Roberts CJ. 10.  et al. 1997. Integrating genetic approaches into the discovery of anticancer drugs. Science 278:1064–68 [Google Scholar]
  11. Kaelin WG Jr.. 11.  2005. The concept of synthetic lethality in the context of anticancer therapy. Nat. Rev. Cancer 5:689–98 [Google Scholar]
  12. Couch FJ, Nathanson KL, Offit K. 12.  2014. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 343:1466–70 [Google Scholar]
  13. King MC.13.  2014. “The race” to clone BRCA1. Science 343:1462–65 [Google Scholar]
  14. Venkitaraman AR.14.  2014. Cancer suppression by the chromosome custodians, BRCA1 and BRCA2. Science 343:1470–75 [Google Scholar]
  15. Tutt A, Bertwistle D, Valentine J. 15.  et al. 2001. Mutation in Brca2 stimulates error-prone homology-directed repair of DNA double-strand breaks occurring between repeated sequences. EMBO J. 20:4704–16 [Google Scholar]
  16. Tutt AN, Lord CJ, McCabe N. 16.  et al. 2005. Exploiting the DNA repair defect in BRCA mutant cells in the design of new therapeutic strategies for cancer. Cold Spring Harb. Symp. Quant. Biol. 70:139–48 [Google Scholar]
  17. Kilburn LS.17.  2008. ‘Triple negative’ breast cancer: a new area for phase III breast cancer clinical trials. Clin. Oncol. 20:35–39 [Google Scholar]
  18. Farmer H, McCabe N, Lord CJ. 18.  et al. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–21 [Google Scholar]
  19. Bryant HE, Schultz N, Thomas HD. 19.  et al. 2005. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434:913–17 [Google Scholar]
  20. Satoh MS, Lindahl T. 20.  1992. Role of poly(ADP-ribose) formation in DNA repair. Nature 356:356–58 [Google Scholar]
  21. Zaremba T, Curtin NJ. 21.  2007. PARP inhibitor development for systemic cancer targeting. Anticancer Agents Med. Chem. 7:515–23 [Google Scholar]
  22. Plummer R, Jones C, Middleton M. 22.  et al. 2008. Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin. Cancer Res. 14:7917–23 [Google Scholar]
  23. Fong PC, Boss DS, Yap TA. 23.  et al. 2009. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361:123–34 [Google Scholar]
  24. Fong PC, Yap TA, Boss DS. 24.  et al. 2010. Poly(ADP)-ribose polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J. Clin. Oncol. 28:2512–19 [Google Scholar]
  25. Tutt A, Robson M, Garber JE. 25.  et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet 376:235–44 [Google Scholar]
  26. Audeh MW, Carmichael J, Penson RT. 26.  et al. 2010. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and recurrent ovarian cancer: a proof-of-concept trial. Lancet 376:245–51 [Google Scholar]
  27. Gelmon KA, Tischkowitz M, Mackay H. 27.  et al. 2011. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 12:852–61 [Google Scholar]
  28. Turner N, Tutt A, Ashworth A. 28.  2004. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat. Rev. Cancer 4:814–19 [Google Scholar]
  29. Ledermann J, Harter P, Gourley C. 29.  et al. 2012. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N. Engl. J. Med. 366:1382–92 [Google Scholar]
  30. Ledermann JA, Harter P, Gourley C. 30.  et al. 2013. Olaparib maintenance therapy in patients with platinum-sensitive relapsed serous ovarian cancer (SOC) and a BRCA mutation (BRCAm). J. Clin. Oncol. 31:Suppl.5505 [Google Scholar]
  31. Mendeleyev J, Kirsten E, Hakam A. 31.  et al. 1995. Potential chemotherapeutic activity of 4-iodo-3-nitrobenzamide. Metabolic reduction to the 3-nitroso derivative and induction of cell death in tumor cells in culture. Biochem. Pharmacol. 50:705–14 [Google Scholar]
  32. O'Shaughnessy J, Osborne C, Pippen JE. 32.  et al. 2011. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N. Engl. J. Med. 364:205–14 [Google Scholar]
  33. Sinha G.33.  2014. Downfall of iniparib: a PARP inhibitor that doesn't inhibit PARP after all. J. Natl. Cancer Inst. 106:djt447 [Google Scholar]
  34. Mateo J, Ong M, Tan DS. 34.  et al. 2013. Appraising iniparib, the PARP inhibitor that never was—What must we learn. Nat. Rev. Clin. Oncol. 10:688–96 [Google Scholar]
  35. Liu X, Shi Y, Maag DX. 35.  et al. 2012. Iniparib nonselectively modifies cysteine-containing proteins in tumor cells and is not a bona fide PARP inhibitor. Clin. Cancer Res. 18:510–23 [Google Scholar]
  36. De Bono JS, Mina LA, Gonzalez-Hernandez M. 36.  et al. 2013. First-in-human trial of novel oral PARP inhibitor BMN 673 in patients with solid tumors. J. Clin. Oncol. 31:Suppl.2580 [Google Scholar]
  37. Sandhu SK, Schelman WR, Wilding G. 37.  et al. 2013. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 14:882–92 [Google Scholar]
  38. Kristeleit RBH, Lorusso P, Patel M. 38.  et al. 2013. Phase 1 study of continuous oral rucaparib: analysis of patient subgroup with ovarian/peritoneal cancer. J. Clin. Oncol. 31:Suppl.2585 [Google Scholar]
  39. Drew Y, Ledermann JA, Jones A. 39.  et al. 2011. Phase II trial of the poly(ADP-ribose) polymerase (PARP) inhibitor AG-014699 in BRCA 1 and 2-mutated, advanced ovarian and/or locally advanced or metastatic breast cancer. J. Clin. Oncol. 29:Suppl.3104 [Google Scholar]
  40. Huggins-Puhalla SL, Beumer JH, Appleman LJ. 40.  et al. 2012. A phase I study of chronically dosed, single-agent veliparib (ABT-888) in patients (pts) with either BRCA 1/2-mutated cancer (BRCA+), platinum-refractory ovarian cancer, or basal-like breast cancer (BRCA-wt). J. Clin. Oncol. 30:Suppl.3054 [Google Scholar]
  41. Edwards SL, Brough R, Lord CJ. 41.  et al. 2008. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451:1111–15 [Google Scholar]
  42. Sakai W, Swisher EM, Karlan BY. 42.  et al. 2008. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 451:1116–20 [Google Scholar]
  43. Norquist B, Wurz KA, Pennil CC. 43.  et al. 2011. Secondary somatic mutations restoring BRCA1/2 predict chemotherapy resistance in hereditary ovarian carcinomas. J. Clin. Oncol. 29:3008–15 [Google Scholar]
  44. Barber LJ, Sandhu S, Chen L. 44.  et al. 2013. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J. Pathol. 229:422–29 [Google Scholar]
  45. Greaves M, Maley CC. 45.  2012. Clonal evolution in cancer. Nature 481:306–13 [Google Scholar]
  46. Lord CJ, Ashworth A. 46.  2013. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat. Med. 19:1381–88 [Google Scholar]
  47. Rottenberg S, Jaspers JE, Kersbergen A. 47.  et al. 2008. High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs. Proc. Natl. Acad. Sci. USA 105:17079–84 [Google Scholar]
  48. Jaspers JE, Kersbergen A, Boon U. 48.  et al. 2013. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 3:68–81 [Google Scholar]
  49. Callen E, Di Virgilio M, Kruhlak MJ. 49.  et al. 2013. 53BP1 mediates productive and mutagenic DNA repair through distinct phosphoprotein interactions. Cell 153:1266–80 [Google Scholar]
  50. Oplustilova L, Wolanin K, Mistrik M. 50.  et al. 2012. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle 11:3837–50 [Google Scholar]
  51. Johnson N, Johnson SF, Yao W. 51.  et al. 2013. Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proc. Natl. Acad. Sci. USA 110:17041–46 [Google Scholar]
  52. Bouwman P, Aly A, Escandell JM. 52.  et al. 2010. 53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers. Nat. Struct. Mol. Biol. 17:688–95 [Google Scholar]
  53. Pettitt SJ, Rehman F, Bajrami I. 53.  et al. 2013. A genetic screen using the piggyBac transposon in haploid cells identifies Parp1 as a mediator of olaparib toxicity. PLOS ONE 8:61520 [Google Scholar]
  54. Murai J, Huang SY, Das BB. 54.  et al. 2012. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 72:5588–99 [Google Scholar]
  55. Murai J, Huang SY, Renaud A. 55.  et al. 2014. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13:433–43 [Google Scholar]
  56. Shen Y, Rehman FL, Feng Y. 56.  et al. 2013. BMN 673, a novel and highly potent PARP1/2 inhibitor for the treatment of human cancers with DNA repair deficiency. Clin. Cancer Res. 19:5003–15 [Google Scholar]
  57. McCabe N, Turner NC, Lord CJ. 57.  et al. 2006. Deficiency in the repair of DNA damage by homologous recombination and sensitivity to poly(ADP-ribose) polymerase inhibition. Cancer Res. 66:8109–15 [Google Scholar]
  58. Shen WH, Balajee AS, Wang J. 58.  et al. 2007. Essential role for nuclear PTEN in maintaining chromosomal integrity. Cell 128:157–70 [Google Scholar]
  59. Bassi C, Ho J, Srikumar T. 59.  et al. 2013. Nuclear PTEN controls DNA repair and sensitivity to genotoxic stress. Science 341:395–99 [Google Scholar]
  60. Minami D, Takigawa N, Takeda H. 60.  et al. 2013. Synergistic effect of olaparib with combination of cisplatin on PTEN-deficient lung cancer cells. Mol. Cancer Res. 11:140–48 [Google Scholar]
  61. Lin F, de Gooijer MC, Moreno Roig E. 61.  et al. 2014. ABCB1, ABCG2 and PTEN determine the response of glioblastoma to temozolomide and ABT-888 therapy. Clin. Cancer Res. 202703–13
  62. Mendes-Pereira AM, Martin SA, Brough R. 62.  et al. 2009. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol. Med. 1:315–22 [Google Scholar]
  63. Miyasaka A, Oda K, Ikeda Y. 63.  et al. 2014. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer 14:179–89 [Google Scholar]
  64. Brenner JC, Feng FY, Han S. 64.  et al. 2012. PARP-1 inhibition as a targeted strategy to treat Ewing's sarcoma. Cancer Res. 72:1608–13 [Google Scholar]
  65. Brenner JC, Ateeq B, Li Y. 65.  et al. 2011. Mechanistic rationale for inhibition of poly(ADP-ribose) polymerase in ETS gene fusion-positive prostate cancer. Cancer Cell 19:664–78 [Google Scholar]
  66. Garnett MJ, Edelman EJ, Heidorn SJ. 66.  et al. 2012. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483:570–75 [Google Scholar]
  67. Blazek D, Kohoutek J, Bartholomeeusen K. 67.  et al. 2011. The cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25:2158–72 [Google Scholar]
  68. Joshi PM, Sutor SL, Huntoon CJ, Karnitz LM. 68.  2014. Ovarian cancer-associated mutations disable catalytic activity of CDK12, a kinase that promotes homologous recombination repair and resistance to cisplatin and poly(ADP-ribose) polymerase inhibitors. J. Biol. Chem. 289:9247–53 [Google Scholar]
  69. Bajrami I, Frankum JR, Konde A. 69.  et al. 2014. Genome-wide profiling of genetic synthetic lethality identifies CDK12 as a novel determinant of PARP1/2 inhibitor sensitivity. Cancer Res. 74:287–97 [Google Scholar]
  70. Cheng H, Zhang Z, Borczuk A. 70.  et al. 2013. PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis 34:739–49 [Google Scholar]
  71. Postel-Vinay S, Bajrami I, Friboulet L. 71.  et al. 2013. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32:5377–87 [Google Scholar]
  72. Willyard C.72.  2013. ‘Basket studies’ will hold intricate data for cancer drug approvals. Nat. Med. 19:655 [Google Scholar]
  73. Morandell S, Reinhardt HC, Cannell IG. 73.  et al. 2013. A reversible gene-targeting strategy identifies synthetic lethal interactions between MK2 and p53 in the DNA damage response in vivo. Cell Rep. 5:868–77 [Google Scholar]
  74. Emerling BM, Hurov JB, Poulogiannis G. 74.  et al. 2013. Depletion of a putatively druggable class of phosphatidylinositol kinases inhibits growth of p53-null tumors. Cell 155:844–57 [Google Scholar]
  75. Origanti S, Cai SR, Munir AZ. 75.  et al. 2013. Synthetic lethality of Chk1 inhibition combined with p53 and/or p21 loss during a DNA damage response in normal and tumor cells. Oncogene 32:577–88 [Google Scholar]
  76. Reaper PM, Griffiths MR, Long JM. 76.  et al. 2011. Selective killing of ATM- or p53-deficient cancer cells through inhibition of ATR. Nat. Chem. Biol. 7:428–30 [Google Scholar]
  77. Ruzankina Y, Schoppy DW, Asare A. 77.  et al. 2009. Tissue regenerative delays and synthetic lethality in adult mice after combined deletion of Atr and Trp53. Nat. Genet. 41:1144–49 [Google Scholar]
  78. Sangster-Guity N, Conrad BH, Papadopoulos N, Bunz F. 78.  2011. ATR mediates cisplatin resistance in a p53 genotype-specific manner. Oncogene 30:2526–33 [Google Scholar]
  79. Milosevic N, Kuhnemuth B, Muhlberg L. 79.  et al. 2013. Synthetic lethality screen identifies RPS6KA2 as modifier of epidermal growth factor receptor activity in pancreatic cancer. Neoplasia 15:1354–62 [Google Scholar]
  80. Kumar MS, Hancock DC, Molina-Arcas M. 80.  et al. 2012. The GATA2 transcriptional network is requisite for RAS oncogene-driven non-small cell lung cancer. Cell 149:642–55 [Google Scholar]
  81. Grabocka E, Pylayeva-Gupta Y, Jones MJ. 81.  et al. 2014. Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response. Cancer Cell 25:243–56 [Google Scholar]
  82. Ashworth A, Lord CJ, Reis-Filho JS. 82.  2011. Genetic interactions in cancer progression and treatment. Cell 145:30–38 [Google Scholar]
  83. Steckel M, Molina-Arcas M, Weigelt B. 83.  et al. 2012. Determination of synthetic lethal interactions in KRAS oncogene-dependent cancer cells reveals novel therapeutic targeting strategies. Cell Res. 22:1227–45 [Google Scholar]
  84. Barretina J, Caponigro G, Stransky N. 84.  et al. 2012. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–7 [Google Scholar]
  85. Daemen A, Griffith OL, Heiser LM. 85.  et al. 2013. Modeling precision treatment of breast cancer. Genome Biol. 14:R110 [Google Scholar]
  86. Bouwman P, Jonkers J. 86.  2014. Molecular pathways: How can BRCA-mutated tumors become resistant to PARP inhibitors?. Clin. Cancer Res. 20:540–47 [Google Scholar]
/content/journals/10.1146/annurev-med-050913-022545
Loading
/content/journals/10.1146/annurev-med-050913-022545
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error