1932

Abstract

Acetylation is a posttranslational modification conserved in all domains of life that is carried out by -acetyltransferases. While acetylation can occur on α-amino groups, this review will focus on ε-acetylation of lysyl residues and how the posttranslational modification changes the cellular physiology of bacteria. Up until the late 1990s, acetylation was studied in eukaryotes in the context of chromatin maintenance and gene expression. At present, bacterial protein acetylation plays a prominent role in central and secondary metabolism, virulence, transcription, and translation. Given the diversity of niches in the microbial world, it is not surprising that the targets of bacterial protein acetyltransferases are very diverse, making their biochemical characterization challenging. The paradigm for acetylation in bacteria involves the acetylation of acetyl-CoA synthetase, whose activity must be tightly regulated to maintain energy charge homeostasis. While this paradigm has provided much mechanistic detail for acetylation and deacetylation, in this review we discuss advances in the field that are changing our understanding of the physiological role of protein acetylation in bacteria.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-020518-115526
2019-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/73/1/annurev-micro-020518-115526.html?itemId=/content/journals/10.1146/annurev-micro-020518-115526&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Amin R, Franz-Wachtel M, Tiffert Y, Heberer M, Meky M et al. 2016. Post-translational serine/threonine phosphorylation and lysine acetylation: a novel regulatory aspect of the global nitrogen response regulator GlnR in S. coelicolor M145. Front. Mol. Biosci. 3:38
    [Google Scholar]
  2. 2. 
    Anand C, Garg R, Ghosh S, Nagaraja V 2017. A Sir2 family protein Rv1151c deacetylates HU to alter its DNA binding mode in Mycobacterium tuberculosis. Biochem. Biophys. Res. Commun 493:1204–9
    [Google Scholar]
  3. 3. 
    Bi J, Wang Y, Yu H, Qian X, Wang H et al. 2017. Modulation of central carbon metabolism by acetylation of isocitrate lyase in Mycobacterium tuberculosis. Sci. Rep 7:44826
    [Google Scholar]
  4. 4. 
    Brinsmade SR, Escalante-Semerena JC. 2007. In vivo and in vitro analyses of single-amino acid variants of the Salmonella enterica phosphotransacetylase enzyme provide insights into the function of its N-terminal domain. J. Biol. Chem. 282:12629–40
    [Google Scholar]
  5. 5. 
    Castano-Cerezo S, Bernal V, Blanco-Catala J, Iborra JL, Canovas M 2011. cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli. Mol. Microbiol 82:1110–28
    [Google Scholar]
  6. 6. 
    Chan CH, Garrity J, Crosby HA, Escalante-Semerena JC 2011. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Mol. Microbiol. 80:168–83
    [Google Scholar]
  7. 7. 
    Chen W, Biswas T, Porter VR, Tsodikov OV, Garneau-Tsodikova S 2011. Unusual regioversatility of acetyltransferase Eis, a cause of drug resistance in XDR-TB. PNAS 108:9804–8
    [Google Scholar]
  8. 8. 
    Cheverton AM, Gollan B, Przydacz M, Wong CT, Mylona A et al. 2016. A Salmonella toxin promotes persister formation through acetylation of tRNA. Mol. Cell 63:86–96
    [Google Scholar]
  9. 9. 
    Chittori S, Savithri HS, Murthy MR 2012. Structural and mechanistic investigations on Salmonella typhimurium acetate kinase (AckA): identification of a putative ligand binding pocket at the dimeric interface. BMC Struct. Biol. 12:24
    [Google Scholar]
  10. 10. 
    Christensen DG, Meyer JG, Baumgartner JT, D'Souza AK, Nelson WC et al. 2018. Identification of novel protein lysine acetyltransferases in Escherichia coli. mBio 9:e01905–18
    [Google Scholar]
  11. 11. 
    Cousin C, Derouiche A, Shi L, Pagot Y, Poncet S, Mijakovic I 2013. Protein-serine/threonine/tyrosine kinases in bacterial signaling and regulation. FEMS Microbiol. Lett. 346:11–19
    [Google Scholar]
  12. 12. 
    Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC 2012. Structural insights into the substrate specificity of the protein acetyltransferase RpPat: identification of a loop critical for recognition by RpPat. J. Biol. Chem. 287:41392–404
    [Google Scholar]
  13. 13. 
    Crosby HA, Rank KC, Rayment I, Escalante-Semerena JC 2012. Structure-guided expansion of the substrate range of methylmalonyl-CoA synthetase (MatB) of Rhodopseudomonas palustris. Appl. Environ. Microbiol 78:6619–29
    [Google Scholar]
  14. 14. 
    de Diego Puente T, Gallego-Jara J, Castano-Cerezo S, Bernal Sanchez V, Fernandez Espin V et al. 2015. The protein acetyltransferase PatZ from Escherichia coli is regulated by autoacetylation-induced oligomerization. J. Biol. Chem. 290:23077–93
    [Google Scholar]
  15. 15. 
    Fukuchi J, Kashiwagi K, Takio K, Igarashi K 1994. Properties and structure of spermidine acetyltransferase in Escherichia coli. J. Biol. Chem 269:22581–85
    [Google Scholar]
  16. 16. 
    Gardner JG, Escalante-Semerena JC. 2009. In Bacillus subtilis, the sirtuin protein deacetylase encoded by the srtN gene (formerly yhdZ), and functions encoded by the acuABC genes control the activity of acetyl-CoA synthetase. J. Bacteriol. 191:1749–55
    [Google Scholar]
  17. 17. 
    Gardner JG, Grundy FJ, Henkin TM, Escalante-Semerena JC 2006. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD+ involvement in Bacillus subtilis. J. Bacteriol 188:5460–68
    [Google Scholar]
  18. 18. 
    Ghosh S, Padmanabhan B, Anand C, Nagaraja V 2016. Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol. Microbiol. 100:577–88
    [Google Scholar]
  19. 19. 
    Gould N, Doulias PT, Tenopoulou M, Raju K, Ischiropoulos H 2013. Regulation of protein function and signaling by reversible cysteine S-nitrosylation. J. Biol. Chem. 288:26473–79
    [Google Scholar]
  20. 20. 
    Gulick AM. 2009. Conformational dynamics in the acyl-CoA synthetases, adenylation domains of non-ribosomal peptide synthetases, and firefly luciferase. ACS Chem. Biol. 4:811–27
    [Google Scholar]
  21. 21. 
    Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC 2003. The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5′-propylphosphate and coenzyme A. Biochemistry 42:2866–73
    [Google Scholar]
  22. 22. 
    Hall AM, Gollan B, Helaine S 2017. Toxin-antitoxin systems: reversible toxicity. Curr. Opin. Microbiol. 36:102–10
    [Google Scholar]
  23. 23. 
    Han X, Shen L, Wang Q, Cen X, Wang J et al. 2017. Cyclic AMP inhibits the activity and promotes the acetylation of acetyl-CoA synthetase through competitive binding to the ATP/AMP pocket. J. Biol. Chem. 292:1374–84
    [Google Scholar]
  24. 24. 
    Helbig AO, Gauci S, Raijmakers R, van Breukelen B, Slijper M et al. 2010. Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol. Cell Proteom. 9:928–39
    [Google Scholar]
  25. 25. 
    Hentchel KL, Escalante-Semerena JC. 2015. Acylation of biomolecules in prokaryotes: a widespread strategy for the control of biological function and metabolic stress. Microbiol. Mol. Biol. Rev. 79:321–46
    [Google Scholar]
  26. 26. 
    Hentchel KL, Escalante-Semerena JC. 2015. Complex regulation of the sirtuin-dependent reversible lysine acetylation system of Salmonella enterica. Microbial. Cell 2:451–53
    [Google Scholar]
  27. 27. 
    Hentchel KL, Escalante-Semerena JC. 2015. In Salmonella enterica, the Gcn5-related acetyltransferase MddA (formerly YncA) acetylates methionine sulfoximine and methionine sulfone, blocking their toxic effects. J. Bacteriol. 197:314–25
    [Google Scholar]
  28. 28. 
    Hodawadekar SC, Marmorstein R. 2007. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 26:5528–40
    [Google Scholar]
  29. 29. 
    Hoff KG, Avalos JL, Sens K, Wolberger C 2006. Insights into the sirtuin mechanism from ternary complexes containing NAD+ and acetylated peptide. Structure 14:1231–40
    [Google Scholar]
  30. 30. 
    Hung CC, Eade CR, Altier C 2016. The protein acyltransferase Pat post-transcriptionally controls HilD to repress Salmonella invasion. Mol. Microbiol. 102:121–36
    [Google Scholar]
  31. 31. 
    Hung MN, Rangarajan E, Munger C, Nadeau G, Sulea T, Matte A 2006. Crystal structure of TDP-fucosamine acetyltransferase (WecD) from Escherichia coli, an enzyme required for enterobacterial common antigen synthesis. J. Bacteriol. 188:5606–17
    [Google Scholar]
  32. 32. 
    Ikeuchi Y, Kitahara K, Suzuki T 2008. The RNA acetyltransferase driven by ATP hydrolysis synthesizes N4-acetylcytidine of tRNA anticodon. EMBO J 27:2194–203
    [Google Scholar]
  33. 33. 
    Imai S, Johnson FB, Marciniak RA, McVey M, Park PU, Guarente L 2000. Sir2: an NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging. Cold Spring Harb. Symp. Quant. Biol. 65:297–302
    [Google Scholar]
  34. 34. 
    Iqbal N, Guerout AM, Krin E, Le Roux F, Mazel D 2015. Comprehensive functional analysis of the 18 Vibrio cholerae N16961 toxin-antitoxin systems substantiates their role in stabilizing the superintegron. J. Bacteriol. 197:2150–59
    [Google Scholar]
  35. 35. 
    Jarrell KF, Ding Y, Meyer BH, Albers SV, Kaminski L, Eichler J 2014. N-Linked glycosylation in archaea: a structural, functional, and genetic analysis. Microbiol. Mol. Biol. Rev. 78:304–41
    [Google Scholar]
  36. 36. 
    Jogl G, Tong L. 2004. Crystal structure of yeast acetyl-coenzyme A synthetase in complex with AMP. Biochemistry 43:1425–31
    [Google Scholar]
  37. 37. 
    Jurenas D, Chatterjee S, Konijnenberg A, Sobott F, Droogmans L et al. 2017. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet. Nat. Chem. Biol. 13:640–46
    [Google Scholar]
  38. 38. 
    Jurenas D, Garcia-Pino A, Van Melderen L 2017. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 93:30–35
    [Google Scholar]
  39. 39. 
    Kennelly PJ. 2014. Protein Ser/Thr/Tyr phosphorylation in the Archaea. J. Biol. Chem. 289:9480–87
    [Google Scholar]
  40. 40. 
    Leibowitz MJ, Soffer RL. 1970. Enzymatic modification of proteins. 3. Purification and properties of a leucyl, phenylalanyl transfer ribonucleic acid protein transferase from Escherichia coli. J. Biol. Chem 245:2066–73
    [Google Scholar]
  41. 41. 
    Li C, Wang D, Lv X, Jing R, Bi B et al. 2017. Yersinia pestis acetyltransferase-mediated dual acetylation at the serine and lysine residues enhances the auto-ubiquitination of ubiquitin ligase MARCH8 in human cells. Cell Cycle 16:649–59
    [Google Scholar]
  42. 42. 
    Li R, Gu J, Chen YY, Xiao CL, Wang LW et al. 2010. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol. Microbiol. 76:1162–74
    [Google Scholar]
  43. 43. 
    Li Y, Krishnan K, Duncan MJ 2018. Post-translational regulation of a Porphyromonas gingivalis regulator. J. Oral. Microbiol. 10:1487743
    [Google Scholar]
  44. 44. 
    Liimatta K, Flaherty E, Ro G, Nguyen DK, Prado C, Purdy AE 2018. A putative acetylation system in Vibrio cholerae modulates virulence in arthropod hosts. Appl. Environ. Microbiol. 84:e01113–18
    [Google Scholar]
  45. 45. 
    Lobato-Marquez D, Diaz-Orejas R, Garcia-Del Portillo F 2016. Toxin-antitoxins and bacterial virulence. FEMS Microbiol. Rev. 40:592–609
    [Google Scholar]
  46. 46. 
    Lobato-Marquez D, Moreno-Cordoba I, Figueroa V, Diaz-Orejas R, Garcia-del Portillo F 2015. Distinct type I and type II toxin-antitoxin modules control Salmonella lifestyle inside eukaryotic cells. Sci. Rep. 5:9374
    [Google Scholar]
  47. 47. 
    Lu YX, Liu XX, Liu WB, Ye BC 2017. Identification and characterization of two types of amino acid-regulated acetyltransferases in actinobacteria. Biosci. Rep. 37: BSR20170157
    [Google Scholar]
  48. 48. 
    Marvil DK, Leisinger T. 1977. N-Acetylglutamate synthase of Escherichia coli: purification, characterization, and molecular properties. J. Biol. Chem. 252:3295–303
    [Google Scholar]
  49. 49. 
    McVicker G, Tang CM. 2016. Deletion of toxin-antitoxin systems in the evolution of Shigella sonnei as a host-adapted pathogen. Nat. Microbiol. 2:16204
    [Google Scholar]
  50. 50. 
    Mizuno Y, Nagano-Shoji M, Kubo S, Kawamura Y, Yoshida A et al. 2016. Altered acetylation and succinylation profiles in Corynebacterium glutamicum in response to conditions inducing glutamate overproduction. MicrobiologyOpen 5:152–73
    [Google Scholar]
  51. 51. 
    Muller MP, Albers MF, Itzen A, Hedberg C 2014. Exploring adenylylation and phosphocholination as post-translational modifications. ChemBioChem 15:19–26
    [Google Scholar]
  52. 52. 
    Nagano-Shoji M, Hamamoto Y, Mizuno Y, Yamada A, Kikuchi M et al. 2017. Characterization of lysine acetylation of a phosphoenolpyruvate carboxylase involved in glutamate overproduction in Corynebacterium glutamicum. Mol. Microbiol 104:677–89
    [Google Scholar]
  53. 53. 
    Nakayasu ES, Burnet MC, Walukiewicz HE, Wilkins CS, Shukla AK et al. 2017. Ancient regulatory role of lysine acetylation in central metabolism. mBio 8:e01894–17
    [Google Scholar]
  54. 54. 
    Nambi S, Basu N, Visweswariah SS 2010. Cyclic AMP-regulated protein lysine acetylases in mycobacteria. J. Biol. Chem. 285:24313–23
    [Google Scholar]
  55. 55. 
    Noy T, Xu H, Blanchard JS 2014. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Arch. Biochem. Biophys. 550–51:42–49
    [Google Scholar]
  56. 56. 
    Peng C, Lu Z, Xie Z, Cheng Z, Chen Y et al. 2011. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteom. 10: M111.012658
    [Google Scholar]
  57. 57. 
    Phillips DM. 1963. The presence of acetyl groups of histones. Biochem. J. 87:258–63
    [Google Scholar]
  58. 58. 
    Qian H, Yao Q, Tai C, Deng Z, Gan J, Ou HY 2018. Identification and characterization of acetyltransferase-type toxin-antitoxin locus in Klebsiella pneumoniae. Mol. Microbiol 108:336–49
    [Google Scholar]
  59. 59. 
    Qian L, Nie L, Chen M, Liu P, Zhu J et al. 2016. Global profiling of protein lysine malonylation in Escherichia coli reveals its role in energy metabolism. J. Proteome Res. 15:2060–71
    [Google Scholar]
  60. 60. 
    Rack JG, Morra R, Barkauskaite E, Kraehenbuehl R, Ariza A et al. 2015. Identification of a class of protein ADP-ribosylating sirtuins in microbial pathogens. Mol. Cell 59:309–20
    [Google Scholar]
  61. 61. 
    Reverdy A, Chen Y, Hunter E, Gozzi K, Chai Y 2018. Protein lysine acetylation plays a regulatory role in Bacillus subtilis multicellularity. PLOS ONE 13:e0204687
    [Google Scholar]
  62. 62. 
    Rieser E, Cordier SM, Walczak H 2013. Linear ubiquitination: a newly discovered regulator of cell signalling. Trends Biochem. Sci. 38:94–102
    [Google Scholar]
  63. 63. 
    Rivera C, Gurard-Levin ZA, Almouzni G, Loyola A 2014. Histone lysine methylation and chromatin replication. Biochim. Biophys. Acta 1839:1433–39
    [Google Scholar]
  64. 64. 
    Rouviere-Yaniv J, Yaniv M, Germond JE 1979. E. coli DNA binding protein HU forms nucleosomelike structure with circular double-stranded DNA. Cell 17:265–74
    [Google Scholar]
  65. 65. 
    Rycroft JA, Gollan B, Grabe GJ, Hall A, Cheverton AM et al. 2018. Activity of acetyltransferase toxins involved in Salmonella persister formation during macrophage infection. Nat. Commun. 9:1–11
    [Google Scholar]
  66. 66. 
    Sang Y, Ren J, Ni JJ, Tao J, Lu J, Yao YF 2016. Protein acetylation is involved in Salmonella enterica serovar Typhimurium virulence. J. Infect. Dis. 213:1836–45
    [Google Scholar]
  67. 67. 
    Sauve AA, Wolberger C, Schramm VL, Boeke JD 2006. The biochemistry of sirtuins. Annu. Rev. Biochem. 75:435–65
    [Google Scholar]
  68. 68. 
    Schilling B, Christensen D, Davis R, Sahu AK, Hu LI et al. 2015. Protein acetylation dynamics in response to carbon overflow in Escherichia coli. Mol. Microbiol 98:847–63
    [Google Scholar]
  69. 69. 
    Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–92
    [Google Scholar]
  70. 70. 
    Starai VJ, Escalante-Semerena JC. 2004. Acetyl-coenzyme A synthetase (AMP forming). Cell. Mol. Life Sci. 61:2020–30
    [Google Scholar]
  71. 71. 
    Starai VJ, Escalante-Semerena JC. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol 340:1005–12
    [Google Scholar]
  72. 72. 
    Starai VJ, Gardner JG, Escalante-Semerena JC 2005. Residue Leu-641 of acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the protein acetyltransferase enzyme of Salmonella enterica. J. Biol. Chem 280:26200–5
    [Google Scholar]
  73. 73. 
    Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC 2003. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545–55
    [Google Scholar]
  74. 74. 
    Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC 2004. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr. Opin. Microbiol. 7:115–19
    [Google Scholar]
  75. 75. 
    Sterner DE, Berger SL. 2000. Acetylation of histones and transcription-related factors. Microbiol. Mol. Biol. Rev. 64:435–59
    [Google Scholar]
  76. 76. 
    Stuecker TN, Hodge KM, Escalante-Semerena JC 2012. The missing link in coenzyme A biosynthesis: PanM (formerly YhhK), a yeast GCN5 acetyltransferase homologue triggers aspartate decarboxylase (PanD) maturation in Salmonella enterica. Mol. Microbiol 84:608–19
    [Google Scholar]
  77. 77. 
    Suka N, Suka Y, Carmen AA, Wu J, Grunstein M 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8:473–79
    [Google Scholar]
  78. 78. 
    Tanaka S, Matsushita Y, Yoshikawa A, Isono K 1989. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol. Gen. Genet. 217:289–93
    [Google Scholar]
  79. 79. 
    Thao S, Chen CS, Zhu H, Escalante-Semerena JC 2010. Nε-Lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity. PLOS ONE 5:e15123
    [Google Scholar]
  80. 80. 
    Thao S, Escalante-Semerena JC. 2012. A positive selection approach identifies residues important for folding of Salmonella enterica Pat, an Nε-lysine acetyltransferase that regulates central metabolism enzymes. Res. Microbiol. 163:427–35
    [Google Scholar]
  81. 81. 
    Thauer RK, Jungermann K, Decker K 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100–80
    [Google Scholar]
  82. 82. 
    Tsang AW, Escalante-Semerena JC. 1998. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J. Biol. Chem. 273:31788–94
    [Google Scholar]
  83. 83. 
    Tucker AC, Escalante-Semerena JC. 2013. Acetoacetyl-CoA synthetase activity is controlled by a protein acetyltransferase with unique domain organization in Streptomyces lividans. Mol. Microbiol 87:152–67
    [Google Scholar]
  84. 84. 
    Tucker AC, Taylor KC, Rank KC, Rayment I, Escalante-Semerena JC 2014. Insights into the specificity of lysine acetyltransferases. J. Biol. Chem. 289:36249–62
    [Google Scholar]
  85. 85. 
    Van Melderen L, Jurenas D, Garcia-Pino A 2017. Messing up translation from the start: how AtaT inhibits translation initiation in E. coli. RNA Biol 15:303–7
    [Google Scholar]
  86. 86. 
    Van Meter M, Mao Z, Gorbunova V, Seluanov A 2011. Repairing split ends: SIRT6, mono-ADP ribosylation and DNA repair. Aging 3:829–35
    [Google Scholar]
  87. 87. 
    VanDrisse CM, Escalante-Semerena JC. 2018. In Salmonella enterica, OatA (formerly YjgM) uses O-acetyl-serine and acetyl-CoA to synthesize N,O-diacetylserine, which upregulates cysteine biosynthesis. Front. Microbiol. 9:2838
    [Google Scholar]
  88. 88. 
    VanDrisse CM, Escalante-Semerena JC. 2018. In Streptomyces lividans, acetyl-CoA synthetase activity is controlled by O-serine and Nε-lysine acetylation. Mol. Microbiol. 107:577–94
    [Google Scholar]
  89. 89. 
    VanDrisse CM, Escalante-Semerena JC. 2018. Small-molecule acetylation controls the degradation of benzoate and photosynthesis in Rhodopseudomonas palustris. mBio 9:e01895-18
    [Google Scholar]
  90. 90. 
    VanDrisse CM, Parks AR, Escalante-Semerena JC 2017. A toxin involved in Salmonella persistence regulates its activity by acetylating its cognate antitoxin, a modification reversed by CobB sirtuin deacetylase. mBio 8:e00708–17
    [Google Scholar]
  91. 91. 
    Venkat S, Gregory C, Gan Q, Fan C 2017. Biochemical characterization of the lysine acetylation of tyrosyl-tRNA synthetase in Escherichia coli. ChemBioChem 18:1928–34
    [Google Scholar]
  92. 92. 
    Vetting MW, Carvalho LPS, Yu M, Hegde SS, Magnet S et al. 2005. Structure and functions of the GNAT superfamily of acetyltransferases. Arch. Biochem. Biophys. 433:212–26
    [Google Scholar]
  93. 93. 
    Walsh CT. 2006. Posttranslational Modification of Proteins: Expanding Nature's Inventory Greenwood Village, CO: Roberts and Co.
  94. 94. 
    Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D et al. 2013. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4:842–51
    [Google Scholar]
  95. 95. 
    Xu H, Hegde SS, Blanchard JS 2011. Reversible acetylation and inactivation of Mycobacterium tuberculosis acetyl-CoA synthetase is dependent on cAMP. Biochemistry 50:5883–92
    [Google Scholar]
  96. 96. 
    Xu JY, Xu Z, Liu X, Tan M, Ye BC 2018. Protein acetylation and butyrylation regulate the phenotype and metabolic shifts of the endospore-forming Clostridium acetobutylicum. Mol. Cell Proteom 17:1156–69
    [Google Scholar]
  97. 97. 
    Xu JY, You D, Leng PQ, Ye BC 2014. Allosteric regulation of a protein acetyltransferase in Micromonospora aurantiaca by the amino acids cysteine and arginine. J. Biol. Chem. 289:27034–45
    [Google Scholar]
  98. 98. 
    Yang H, Sha W, Liu Z, Tang T, Liu H et al. 2018. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis.Emerg. Microbes Infect 7:34
    [Google Scholar]
  99. 99. 
    Yeo CC. 2018. GNAT toxins of bacterial toxin-antitoxin systems: acetylation of charged tRNAs to inhibit translation. Mol. Microbiol. 108:331–35
    [Google Scholar]
  100. 100. 
    Yoshikawa A, Isono S, Sheback A, Isono K 1987. Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol. Gen. Genet. 209:481–88
    [Google Scholar]
  101. 101. 
    You D, Wang MM, Ye BC 2017. Acetyl-CoA synthetases of Saccharopolyspora erythraea are regulated by the nitrogen response regulator GlnR at both transcriptional and post-translational levels. Mol. Microbiol. 103:845–59
    [Google Scholar]
  102. 102. 
    You D, Yao LL, Huang D, Escalante-Semerena JC, Ye BC 2014. Acetyl-CoA synthetase is acetylated on multiple lysine residues by a protein acetyltransferase with single GNAT domain in Saccharopolyspora erythraea. J. Bacteriol 196:3169–78
    [Google Scholar]
  103. 103. 
    You D, Yin BC, Li ZH, Zhou Y, Yu WB et al. 2016. Sirtuin-dependent reversible lysine acetylation of glutamine synthetases reveals an autofeedback loop in nitrogen metabolism. PNAS 113:6653–58
    [Google Scholar]
  104. 104. 
    Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG 2008. The diversity of lysine-acetylated proteins in Escherichia coli. J. Microbiol. Biotechnol 18:1529–36
    [Google Scholar]
  105. 105. 
    Yuan H, Marmorstein R. 2012. Structural basis for sirtuin activity and inhibition. J. Biol. Chem. 287:42428–35
    [Google Scholar]
  106. 106. 
    Zhang J, Sprung R, Pei J, Tan X, Kim S et al. 2009. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol. Cell Proteom 8:215–25
    [Google Scholar]
  107. 107. 
    Zhou Q, Zhou YN, Jin DJ, Tse-Dinh YC 2017. Deacetylation of topoisomerase I is an important physiological function of E. coli CobB. Nucleic Acids Res 45:53349–58
    [Google Scholar]
  108. 108. 
    Zverina EA, Lamphear CL, Wright EN, Fierke CA 2012. Recent advances in protein prenyltransferases: substrate identification, regulation, and disease interventions. Curr. Opin. Chem. Biol. 16:544–52
    [Google Scholar]
/content/journals/10.1146/annurev-micro-020518-115526
Loading
/content/journals/10.1146/annurev-micro-020518-115526
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error