1932

Abstract

The hallmark of gram-negative bacteria and organelles such as mitochondria and chloroplasts is the presence of an outer membrane. In bacteria such as , the outer membrane is a unique asymmetric lipid bilayer with lipopolysaccharide in the outer leaflet. Integral transmembrane proteins assume a β-barrel structure, and their assembly is catalyzed by the heteropentameric Bam complex containing the outer membrane protein BamA and four lipoproteins, BamB–E. How the Bam complex assembles a great diversity of outer membrane proteins into a membrane without an obvious energy source is a particularly challenging problem, because folding intermediates are predicted to be unstable in either an aqueous or a hydrophobic environment. Two models have been put forward: the budding model, based largely on structural data, and the BamA assisted model, based on genetic and biochemical studies. Here we offer a critical discussion of the pros and cons of each.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090816-093754
2017-09-08
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/71/1/annurev-micro-090816-093754.html?itemId=/content/journals/10.1146/annurev-micro-090816-093754&mimeType=html&fmt=ahah

Literature Cited

  1. Albrecht R, Schutz M, Oberhettinger P, Faulstich M, Bermejo I. 1.  et al. 2014. Structure of BamA, an essential factor in outer membrane protein biogenesis. Acta Crystallogr. D Biol. Crystallogr. 70:1779–89 [Google Scholar]
  2. Bakelar J, Buchanan SK, Noinaj N. 2.  2016. The structure of the beta-barrel assembly machinery complex. Science 351:180–86 [Google Scholar]
  3. Basle A, Rummel G, Storici P, Rosenbusch JP, Schirmer T. 3.  2006. Crystal structure of osmoporin OmpC from E. coli at 2.0 Å. J. Mol. Biol. 362:933–42 [Google Scholar]
  4. Bernstein HD. 4.  2015. Looks can be deceiving: recent insights into the mechanism of protein secretion by the autotransporter pathway. Mol. Microbiol. 97:205–15 [Google Scholar]
  5. Botos I, Majdalani N, Mayclin SJ, McCarthy JG, Lundquist K. 5.  et al. 2016. Structural and functional characterization of the LPS transporter LptDE from gram-negative pathogens. Structure 24:965–76 [Google Scholar]
  6. Braun M, Endriss F, Killmann H, Braun V. 6.  2003. In vivo reconstitution of the FhuA transport protein of Escherichia coli K-12. J. Bacteriol. 185:5508–18 [Google Scholar]
  7. Braun M, Silhavy TJ. 7.  2002. Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol. Microbiol. 45:1289–302 [Google Scholar]
  8. Brunder W, Schmidt H, Karch H. 8.  1997. EspP, a novel extracellular serine protease of enterohaemorrhagic Escherichia coli O157:H7 cleaves human coagulation factor V. Mol. Microbiol. 24:767–78 [Google Scholar]
  9. Burgess NK, Dao TP, Stanley AM, Fleming KG. 9.  2008. Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J. Biol. Chem. 283:26748–58 [Google Scholar]
  10. Charlson ES, Werner JN, Misra R. 10.  2006. Differential effects of yfgL mutation on Escherichia coli outer membrane proteins and lipopolysaccharide. J. Bacteriol 188:7186–94 [Google Scholar]
  11. Chimalakonda G, Ruiz N, Chng SS, Garner RA, Kahne D, Silhavy TJ. 11.  2011. Lipoprotein LptE is required for the assembly of LptD by the β-barrel assembly machine in the outer membrane of Escherichia coli. PNAS 108:2492–97 [Google Scholar]
  12. Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D. 12.  2010. Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. PNAS 107:5363–68 [Google Scholar]
  13. Chng SS, Xue M, Garner RA, Kadokura H, Boyd D. 13.  et al. 2012. Disulfide rearrangement triggered by translocon assembly controls lipopolysaccharide export. Science 337:1665–68 [Google Scholar]
  14. Cowan SW, Schirmer T, Rummel G, Steiert M, Ghosh R. 14.  et al. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358:727–33 [Google Scholar]
  15. Danoff EJ, Fleming KG. 15.  2015. Membrane defects accelerate outer membrane beta-barrel protein folding. Biochemistry 54:97–99 [Google Scholar]
  16. Dautin N. 16.  2010. Serine protease autotransporters of Enterobacteriaceae (SPATEs): biogenesis and function. Toxins 2:1179–206 [Google Scholar]
  17. Dong C, Yang X, Hou HF, Shen YQ, Dong YH. 17.  2012. Structure of Escherichia coli BamB and its interaction with POTRA domains of BamA. Acta Crystallogr. D Biol. Crystallogr. 68:1134–39 [Google Scholar]
  18. Dong H, Xiang Q, Gu Y, Wang Z, Paterson NG. 18.  et al. 2014. Structural basis for outer membrane lipopolysaccharide insertion. Nature 511:52–56 [Google Scholar]
  19. Dwyer RS, Ricci DP, Colwell LJ, Silhavy TJ, Wingreen NS. 19.  2013. Predicting functionally informative mutations in Escherichia coli BamA using evolutionary covariance analysis. Genetics 195:443–55 [Google Scholar]
  20. Eggert US, Ruiz N, Falcone BV, Branstrom AA, Goldman RC. 20.  et al. 2001. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294:361–64 [Google Scholar]
  21. Endo T, Kawano S, Yamano K. 21.  2011. BamE structure: the assembly of beta-barrel proteins in the outer membranes of bacteria and mitochondria. EMBO Rep 12:94–95 [Google Scholar]
  22. Eppens EF, Nouwen N, Tommassen J. 22.  1997. Folding of a bacterial outer membrane protein during passage through the periplasm. EMBO J 16:4295–301 [Google Scholar]
  23. Ferguson AD, Hofmann E, Coulton JW, Diederichs K, Welte W. 23.  1998. Siderophore-mediated iron transport: crystal structure of FhuA with bound lipopolysaccharide. Science 282:2215–20 [Google Scholar]
  24. Fleming KG. 24.  2015. A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos. Trans. R. Soc. Lond. B. 370:20150026 [Google Scholar]
  25. Fleming PJ, Patel DS, Wu EL, Qi Y, Yeom MS. 25.  et al. 2016. BamA POTRA domain interacts with a native lipid membrane surface. Biophys. J. 110:2698–709 [Google Scholar]
  26. Gatzeva-Topalova PZ, Walton TA, Sousa MC. 26.  2008. Crystal structure of YaeT: conformational flexibility and substrate recognition. Structure 16:1873–81 [Google Scholar]
  27. Gatzeva-Topalova PZ, Warner LR, Pardi A, Sousa MC. 27.  2010. Structure and flexibility of the complete periplasmic domain of BamA: the protein insertion machine of the outer membrane. Structure 18:1492–501 [Google Scholar]
  28. Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW. 28.  et al. 2014. Outer membrane beta-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. PNAS 111:5878–83 [Google Scholar]
  29. Grabowicz M, Andres D, Lebar MD, Malojcic G, Kahne D, Silhavy TJ. 29.  2014. A mutant Escherichia coli that attaches peptidoglycan to lipopolysaccharide and displays cell wall on its surface. eLife 3:e05334 [Google Scholar]
  30. Gromiha MM, Suwa M. 30.  2007. Current developments on beta-barrel membrane proteins: sequence and structure analysis, discrimination and prediction. Curr. Protein Pept. Sci. 8:580–99 [Google Scholar]
  31. Gu Y, Li H, Dong H, Zeng Y, Zhang Z. 31.  et al. 2016. Structural basis of outer membrane protein insertion by the BAM complex. Nature 531:64–69 [Google Scholar]
  32. Hagan CL, Kim S, Kahne D. 32.  2010. Reconstitution of outer membrane protein assembly from purified components. Science 328:890–92 [Google Scholar]
  33. Hagan CL, Westwood DB, Kahne D. 33.  2013. Bam lipoproteins assemble BamA in vitro. Biochemistry 52:6108–13 [Google Scholar]
  34. Hagan CL, Wzorek JS, Kahne D. 34.  2015. Inhibition of the beta-barrel assembly machine by a peptide that binds BamD. PNAS 112:2011–16 [Google Scholar]
  35. Han L, Zheng J, Wang Y, Yang X, Liu Y. 35.  et al. 2016. Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat. Struct. Mol. Biol. 23:192–96 [Google Scholar]
  36. Huysmans GH, Baldwin SA, Brockwell DJ, Radford SE. 36.  2010. The transition state for folding of an outer membrane protein. PNAS 107:4099–104 [Google Scholar]
  37. Iadanza MG, Higgins AJ, Schiffrin B, Calabrese AN, Brockwell DJ. 37.  et al. 2016. Lateral opening in the intact β-barrel assembly machinery captured by cryo-EM. Nat. Commun. 7:12865 [Google Scholar]
  38. Ieva R, Bernstein HD. 38.  2009. Interaction of an autotransporter passenger domain with BamA during its translocation across the bacterial outer membrane. PNAS 106:19120–25 [Google Scholar]
  39. Ieva R, Skillman KM, Bernstein HD. 39.  2008. Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67:188–201 [Google Scholar]
  40. Ieva R, Tian P, Peterson JH, Bernstein HD. 40.  2011. Sequential and spatially restricted interactions of assembly factors with an autotransporter beta domain. PNAS 108:E383–91 [Google Scholar]
  41. Ishida H, Garcia-Herrero A, Vogel HJ. 41.  2014. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition. Biochim. Biophys. Acta 1838:3014–24 [Google Scholar]
  42. Jansen KB, Baker SL, Sousa MC. 42.  2015. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the beta-barrel assembly machine. J. Biol. Chem. 290:2126–36 [Google Scholar]
  43. Kim KH, Aulakh S, Paetzel M. 43.  2011. Crystal structure of beta-barrel assembly machinery BamCD protein complex. J. Biol. Chem. 286:39116–21 [Google Scholar]
  44. Kim KH, Paetzel M. 44.  2011. Crystal structure of Escherichia coli BamB, a lipoprotein component of the beta-barrel assembly machinery complex. J. Mol. Biol. 406:667–78 [Google Scholar]
  45. Kim S, Malinverni JC, Sliz P, Silhavy TJ, Harrison SC, Kahne D. 45.  2007. Structure and function of an essential component of the outer membrane protein assembly machine. Science 317:961–64 [Google Scholar]
  46. Kleinschmidt JH. 46.  2015. Folding of beta-barrel membrane proteins in lipid bilayers—unassisted and assisted folding and insertion. Biochim. Biophys. Acta 1848:1927–43 [Google Scholar]
  47. Kleinschmidt JH, Bulieris PV, Qu J, Dogterom M, den Blaauwen T. 47.  2011. Association of neighboring beta-strands of outer membrane protein A in lipid bilayers revealed by site-directed fluorescence quenching. J. Mol. Biol. 407:316–32 [Google Scholar]
  48. Kleinschmidt JH, Tamm LK. 48.  1999. Time-resolved distance determination by tryptophan fluorescence quenching: probing intermediates in membrane protein folding. Biochemistry 38:4996–5005 [Google Scholar]
  49. Knowles TJ, Browning DF, Jeeves M, Maderbocus R, Rajesh S. 49.  et al. 2011. Structure and function of BamE within the outer membrane and the beta-barrel assembly machine. EMBO Rep 12:123–28 [Google Scholar]
  50. Konovalova A, Mitchell AM, Silhavy TJ. 50.  2016. A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. eLife 5:e15276 [Google Scholar]
  51. Konovalova A, Perlman DH, Cowles CE, Silhavy TJ. 51.  2014. Transmembrane domain of surface-exposed outer membrane lipoprotein RcsF is threaded through the lumen of beta-barrel proteins. PNAS 111:E4350–58 [Google Scholar]
  52. Konovalova A, Schwalm JA, Silhavy TJ. 52.  2016. A suppressor mutation that creates a faster and more robust σE envelope stress response. J. Bacteriol. 198:2345–51 [Google Scholar]
  53. Konovalova A, Silhavy TJ. 53.  2015. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos. Trans. R. Soc. Lond. B 370:20150030 [Google Scholar]
  54. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. 54.  2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914–19 [Google Scholar]
  55. Kutik S, Stojanovski D, Becker L, Becker T, Meinecke M. 55.  et al. 2008. Dissecting membrane insertion of mitochondrial beta-barrel proteins. Cell 132:1011–24 [Google Scholar]
  56. Lee J, Xue M, Wzorek JS, Wu T, Grabowicz M. 56.  et al. 2016. Characterization of a stalled complex on the beta-barrel assembly machine. PNAS 113:8717–22 [Google Scholar]
  57. Locher KP, Rees B, Koebnik R, Mitschler A, Moulinier L. 57.  et al. 1998. Transmembrane signaling across the ligand-gated FhuA receptor: crystal structures of free and ferrichrome-bound states reveal allosteric changes. Cell 95:771–78 [Google Scholar]
  58. Mahoney TF, Ricci DP, Silhavy TJ. 58.  2016. Classifying β-barrel assembly substrates by manipulating essential Bam complex members. J. Bacteriol. 198:1984–92 [Google Scholar]
  59. Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D. 59.  et al. 2006. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol. Microbiol. 61:151–64 [Google Scholar]
  60. Malojcic G, Andres D, Grabowicz M, George AH, Ruiz N. 60.  et al. 2014. LptE binds to and alters the physical state of LPS to catalyze its assembly at the cell surface. PNAS 111:9467–72 [Google Scholar]
  61. Matsuyama S, Yokota N, Tokuda H. 61.  1997. A novel outer membrane lipoprotein, LolB (HemM), involved in the LolA (p20)-dependent localization of lipoproteins to the outer membrane of Escherichia coli. EMBO J. 16:6947–55 [Google Scholar]
  62. May JM, Sherman DJ, Simpson BW, Ruiz N, Kahne D. 62.  2015. Lipopolysaccharide transport to the cell surface: periplasmic transport and assembly into the outer membrane. Philos. Trans. R. Soc. Lond. B 370:20150027 [Google Scholar]
  63. Misra R, Stikeleather R, Gabriele R. 63.  2015. In vivo roles of BamA, BamB and BamD in the biogenesis of BamA, a core protein of the beta-barrel assembly machine of Escherichia coli. J. Mol. Biol. 427:1061–74 [Google Scholar]
  64. Narita SI, Tokuda H. 64.  2016. Bacterial lipoproteins: biogenesis, sorting and quality control. Biochim. Biophys. Acta. In press. https://doi.org/10.1016/j.bbalip.2016.11.009 [Crossref]
  65. Ni D, Wang Y, Yang X, Zhou H, Hou X. 65.  et al. 2014. Structural and functional analysis of the beta-barrel domain of BamA from Escherichia coli. FASEB J. 28:2677–85 [Google Scholar]
  66. Nikaido H. 66.  2003. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67:593–656 [Google Scholar]
  67. Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK. 67.  2014. Lateral opening and exit pore formation are required for BamA function. Structure 22:1055–62 [Google Scholar]
  68. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H. 68.  et al. 2013. Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501:385–90 [Google Scholar]
  69. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. 69.  2016. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat. Rev. Microbiol. 14:337–45 [Google Scholar]
  70. Pautsch A, Schulz GE. 70.  1998. Structure of the outer membrane protein A transmembrane domain. Nat. Struct. Biol. 5:1013–17 [Google Scholar]
  71. Pavlova O, Peterson JH, Ieva R, Bernstein HD. 71.  2013. Mechanistic link between beta barrel assembly and the initiation of autotransporter secretion. PNAS 110:E938–47 [Google Scholar]
  72. Plummer AM, Fleming KG. 72.  2015. BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism. Biochemistry 54:6009–11 [Google Scholar]
  73. Plummer AM, Fleming KG. 73.  2016. From chaperones to the membrane with a BAM!. Trends Biochem. Sci. 41:872–82 [Google Scholar]
  74. Qiao S, Luo Q, Zhao Y, Zhang XC, Huang Y. 74.  2014. Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature 511:108–11 [Google Scholar]
  75. Ricci DP, Hagan CL, Kahne D, Silhavy TJ. 75.  2012. Activation of the Escherichia coli beta-barrel assembly machine (Bam) is required for essential components to interact properly with substrate. PNAS 109:3487–91 [Google Scholar]
  76. Rigel NW, Ricci DP, Silhavy TJ. 76.  2013. Conformation-specific labeling of BamA and suppressor analysis suggest a cyclic mechanism for beta-barrel assembly in Escherichia coli. PNAS 110:5151–56 [Google Scholar]
  77. Rigel NW, Schwalm J, Ricci DP, Silhavy TJ. 77.  2012. BamE modulates the Escherichia coli beta-barrel assembly machine component BamA. J. Bacteriol. 194:1002–8 [Google Scholar]
  78. Rossiter AE, Leyton DL, Tveen-Jensen K, Browning DF, Sevastsyanovich Y. 78.  et al. 2011. The essential beta-barrel assembly machinery complex components BamD and BamA are required for autotransporter biogenesis. J. Bacteriol. 193:4250–53 [Google Scholar]
  79. Ruiz N, Chng SS, Hiniker A, Kahne D, Silhavy TJ. 79.  2010. Nonconsecutive disulfide bond formation in an essential integral outer membrane protein. PNAS 107:12245–50 [Google Scholar]
  80. Ruiz N, Falcone B, Kahne D, Silhavy TJ. 80.  2005. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 121:307–17 [Google Scholar]
  81. Ruiz N, Wu T, Kahne D, Silhavy TJ. 81.  2006. Probing the barrier function of the outer membrane with chemical conditionality. ACS Chem. Biol. 1:385–95 [Google Scholar]
  82. Sandoval CM, Baker SL, Jansen K, Metzner SI, Sousa MC. 82.  2011. Crystal structure of BamD: an essential component of the β-Barrel assembly machinery of gram-negative bacteria. J. Mol. Biol. 409:348–57 [Google Scholar]
  83. Schirmer T, Keller TA, Wang YF, Rosenbusch JP. 83.  1995. Structural basis for sugar translocation through maltoporin channels at 3.1 A resolution. Science 267:512–14 [Google Scholar]
  84. Schwalm J, Mahoney TF, Soltes GR, Silhavy TJ. 84.  2013. Role for Skp in LptD assembly in Escherichia coli. J. Bacteriol. 195:3734–42 [Google Scholar]
  85. Simpson BW, May JM, Sherman DJ, Kahne D, Ruiz N. 85.  2015. Lipopolysaccharide transport to the cell surface: biosynthesis and extraction from the inner membrane. Philos. Trans. R. Soc. Lond. B 370:20150029 [Google Scholar]
  86. Sinnige T, Weingarth M, Renault M, Baker L, Tommassen J, Baldus M. 86.  2014. Solid-state NMR studies of full-length BamA in lipid bilayers suggest limited overall POTRA mobility. J. Mol. Biol. 426:2009–21 [Google Scholar]
  87. Sklar JG, Wu T, Gronenberg LS, Malinverni JC, Kahne D, Silhavy TJ. 87.  2007. Lipoprotein SmpA is a component of the YaeT complex that assembles outer membrane proteins in Escherichia coli. PNAS 104:6400–5 [Google Scholar]
  88. Sklar JG, Wu T, Kahne D, Silhavy TJ. 88.  2007. Defining the roles of the periplasmic chaperones SurA, Skp, and DegP in Escherichia coli. Genes Dev 21:2473–84 [Google Scholar]
  89. Snijder HJ, Ubarretxena-Belandia I, Blaauw M, Kalk KH, Verheij HM. 89.  et al. 1999. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401:717–21 [Google Scholar]
  90. Tellez R Jr., Misra R. 90.  2012. Substitutions in the BamA beta-barrel domain overcome the conditional lethal phenotype of a DeltabamB DeltabamE strain of Escherichia coli. J. Bacteriol. 194:317–24 [Google Scholar]
  91. Vertommen D, Ruiz N, Leverrier P, Silhavy TJ, Collet JF. 91.  2009. Characterization of the role of the Escherichia coli periplasmic chaperone SurA using differential proteomics. Proteomics 9:2432–43 [Google Scholar]
  92. Vogt J, Schulz GE. 92.  1999. The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7:1301–9 [Google Scholar]
  93. Vuong P, Bennion D, Mantei J, Frost D, Misra R. 93.  2008. Analysis of YfgL and YaeT interactions through bioinformatics, mutagenesis, and biochemistry. J. Bacteriol. 190:1507–17 [Google Scholar]
  94. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D. 94.  2005. Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–45 [Google Scholar]
  95. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D. 95.  2006. Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. PNAS 103:11754–59 [Google Scholar]
  96. Wzorek JSJL, David T, Christine LH, Daniel EK. 96.  2017. Membrane integration of an essential β-barrel protein prerequires burial of an extracellular loop. PNAS 114:2598–603 [Google Scholar]
  97. Yakushi T, Yokota N, Matsuyama S, Tokuda H. 97.  1998. LolA-dependent release of a lipid-modified protein from the inner membrane of Escherichia coli requires nucleoside triphosphate. J. Biol. Chem. 273:32576–81 [Google Scholar]
  98. Yamashita E, Zhalnina MV, Zakharov SD, Sharma O, Cramer WA. 98.  2008. Crystal structures of the OmpF porin: function in a colicin translocon. EMBO J 27:2171–80 [Google Scholar]
/content/journals/10.1146/annurev-micro-090816-093754
Loading
/content/journals/10.1146/annurev-micro-090816-093754
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error