1932

Abstract

(the pneumococcus) is a nasopharyngeal commensal and respiratory pathogen. Most isolates express a capsule, the species-wide diversity of which has been immunologically classified into ∼100 serotypes. Capsule polysaccharides have been combined into multivalent vaccines widely used in adults, but the T cell independence of the antibody response means they are not protective in infants. Polysaccharide conjugate vaccines (PCVs) trigger a T cell–dependent response through attaching a carrier protein to capsular polysaccharides. The immune response stimulated by PCVs in infants inhibits carriage of vaccine serotypes (VTs), resulting in population-wide herd immunity. These were replaced in carriage by non-VTs. Nevertheless, PCVs drove reductions in infant pneumococcal disease, due to the lower mean invasiveness of the postvaccination bacterial population; age-varying serotype invasiveness resulted in a smaller reduction in adult disease. Alternative vaccines being tested in trials are designed to provide species-wide protection through stimulating innate and cellular immune responses, alongside antibodies to conserved antigens.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062338
2018-09-08
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062338.html?itemId=/content/journals/10.1146/annurev-micro-090817-062338&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Adegbola RA, DeAntonio R, Hill PC, Roca A, Usuf E et al. 2014. Carriage of Streptococcuspneumoniae and other respiratory bacterial pathogens in low and lower-middle income countries: a systematic review and meta-analysis. PLOS ONE 9:8e103293
    [Google Scholar]
  2. 2.  Andrews NJ, Waight PA, Burbidge P, Pearce E, Roalfe L et al. 2014. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect. Dis. 14:9839–46
    [Google Scholar]
  3. 3.  Andrews NJ, Waight PA, George RC, Slack MPE, Miller E 2012. Impact and effectiveness of 23-valent pneumococcal polysaccharide vaccine against invasive pneumococcal disease in the elderly in England and Wales. Vaccine 30:486802–8
    [Google Scholar]
  4. 4.  Austrian R 1977. Prevention of pneumococcal infection by immunization with capsular polysaccharides of Streptococcuspneumoniae: current status of polyvalent vaccines. J. Infect. Dis. 136:Suppl.S38–42
    [Google Scholar]
  5. 5.  Avery OT, Goebel WF 1931. Chemo-immunological studies on conjugated carbohydrate-proteins. V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J. Exp. Med. 54:3437–47
    [Google Scholar]
  6. 6.  Avila-Aguero ML, Ulloa-Gutierrez R, Falleiros-Arlant LH, Porras O 2017. Pneumococcal conjugate vaccines in Latin America: Are PCV10 and PCV13 similar in terms of protection against serotype 19A?. Expert Rev. Vaccines 16:657–60
    [Google Scholar]
  7. 7.  Balsells E, Guillot L, Nair H, Kyaw MH 2017. Serotype distribution of Streptococcuspneumoniae causing invasive disease in children in the post-PCV era: a systematic review and meta-analysis. PLOS ONE 12:5e0177113
    [Google Scholar]
  8. 8.  Batista FD, Harwood NE 2009. The who, how and where of antigen presentation to B cells. Nat. Rev. Immunol. 9:15–27
    [Google Scholar]
  9. 9.  Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E et al. 2006. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLOS Genet 2:3e31
    [Google Scholar]
  10. 10.  Berglund J, Vink P, Da Silva FT, Lestrate P, Boutriau D 2014. Safety, immunogenicity, and antibody persistence following an investigational Streptococcuspneumoniae and Haemophilusinfluenzae triple-protein vaccine in a phase 1 randomized controlled study in healthy adults. Clin. Vaccine Immunol. 21:156–65
    [Google Scholar]
  11. 11.  Berk SL, Gage KA, Holtsclaw-Berk SA, Smith JK 1985. Type 8 pneumococcal pneumonia: an outbreak on an oncology ward. South Med. J. 78:2159–61
    [Google Scholar]
  12. 12.  Black S, Shinefield H, Fireman B, Lewis E, Ray P et al. 2000. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Pediatr. Infect. Dis. J. 19:3187–95
    [Google Scholar]
  13. 13.  Blanchard-Rohner G, Pollard AJ 2011. Long-term protection after immunization with protein-polysaccharide conjugate vaccines in infancy. Exp. Rev. Vaccines 10:673–84
    [Google Scholar]
  14. 14.  Bogaert D, De Groot R, Hermans PWM 2004. Streptococcuspneumoniae colonisation: the key to pneumococcal disease. Lancet Infect. Dis. 4:144–54
    [Google Scholar]
  15. 15.  Bogaert D, Keijser B, Huse S, Rossen J, Veenhoven R et al. 2011. Variability and diversity of nasopharyngeal microbiota in children: a metagenomic analysis. PLOS ONE 6:2e17035
    [Google Scholar]
  16. 16.  Bogaert D, van Belkum A, Sluijter M, Luijendijk A, de Groot R et al. 2004. Colonisation by Streptococcuspneumoniae and Staphylococcusaureus in healthy children. Lancet 363:94241871–72
    [Google Scholar]
  17. 17.  Bonten MJM, Huijts SM, Bolkenbaas M, Webber C, Patterson S et al. 2015. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N. Engl. J. Med. 372:121114–25
    [Google Scholar]
  18. 18.  Bottomley C, Roca A, Hill PC, Greenwood B, Isham V 2013. A mathematical model of serotype replacement in pneumococcal carriage following vaccination. J. R. Soc. Interface 10:8920130786
    [Google Scholar]
  19. 19.  Brandt J, Wong C, Mihm S, Roberts J, Smith J et al. 2002. Invasive pneumococcal disease and hemolytic uremic syndrome. Pediatrics 110:2 Part 1371–76
    [Google Scholar]
  20. 20.  Bröker M, Berti F, Schneider J, Vojtek I 2017. Polysaccharide conjugate vaccine protein carriers as a “neglected valency”—potential and limitations. Vaccine 35:3286–94
    [Google Scholar]
  21. 21.  Brueggemann AB, Peto TE, Crook DW, Butler JC, Kristinsson KG, Spratt BG 2004. Temporal and geographic stability of the serogroup-specific invasive disease potential of Streptococcuspneumoniae in children. J. Infect. Dis. 190:71203–11
    [Google Scholar]
  22. 22.  Brugger SD, Frey P, Aebi S, Hinds J, Muhlemann K 2010. Multiple colonization with S.pneumoniae before and after introduction of the seven-valent conjugated pneumococcal polysaccharide vaccine. PLOS ONE 5:7e11638
    [Google Scholar]
  23. 23.  Byington CL, Korgenski K, Daly J, Ampofo K, Pavia A, Mason EO 2006. Impact of the pneumococcal conjugate vaccine on pneumococcal parapneumonic empyema. Pediatr. Infect. Dis. J. 25:3250–54
    [Google Scholar]
  24. 24.  Càmara J, Marimón JM, Cercenado E, Larrosa N, Quesada MD et al. 2017. Decrease of invasive pneumococcal disease (IPD) in adults after introduction of pneumococcal 13-valent conjugate vaccine in Spain. PLOS ONE 12:4e0175224
    [Google Scholar]
  25. 25.  Capdevila O, Pallares R, Grau I, Tubau F, Linares J et al. 2001. Pneumococcal peritonitis in adult patients: report of 64 cases with special reference to emergence of antibiotic resistance. Arch. Intern. Med. 161:141742–48
    [Google Scholar]
  26. 25a. Cent. Dis. Control Prev. 2008. Progress in introduction of pneumococcal conjugate vaccine—worldwide, 2000–2008. Morb. Mortal. Wkly. Rep. 57:421148–51
    [Google Scholar]
  27. 26.  Cernuschi T, Furrer E, Schwalbe N, Jones A, Berndt ER, McAdams S 2011. Advance market commitment for pneumococcal vaccines: putting theory into practice. Bull. World Health Organ. 89:12913–18
    [Google Scholar]
  28. 27.  Cerutti A 2008. The regulation of IgA class switching. Nat. Rev. Immunol. 8:421–34
    [Google Scholar]
  29. 28.  Cerutti A, Chen K, Chorny A 2011. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29:1273–93
    [Google Scholar]
  30. 29.  Chen C, Huang Y-C, Su L-H, Lin T-Y 2007. Nasal carriage of Streptococcuspneumoniae in healthy children and adults in northern Taiwan. Diagn. Microbiol. Infect. Dis 59:3265–69
    [Google Scholar]
  31. 30.  Christenson B, Hedlund J, Lundbergh P, Ortqvist A 2004. Additive preventive effect of influenza and pneumococcal vaccines in elderly persons. Eur. Respir. J. 23:3363–68
    [Google Scholar]
  32. 31.  Christopher P, Murray JL 2015. Global, regional, and national age–sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 385:385117–71
    [Google Scholar]
  33. 32.  Chuck AW, Jacobs P, Tyrrell G, Kellner JD 2010. Pharmacoeconomic evaluation of 10- and 13-valent pneumococcal conjugate vaccines. Vaccine 28:335485–90
    [Google Scholar]
  34. 33.  Cobey S, Lipsitch M 2012. Niche and neutral effects of acquired immunity permit coexistence of pneumococcal serotypes. Science 335:60741376–80
    [Google Scholar]
  35. 34.  Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K et al. 2009. Primary B cell immunodeficiencies: comparisons and contrasts. Annu. Rev. Immunol. 27:1199–227
    [Google Scholar]
  36. 35.  Corander J, Fraser C, Gutmann MU, Arnold B, Hanage WP et al. 2017. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 1:1950–60
    [Google Scholar]
  37. 36.  Croucher NJ, Campo JJ, Le TQ Liang X, Bentley SD et al. 2017. Diverse evolutionary patterns of pneumococcal antigens identified by pangenome-wide immunological screening. PNAS 114:3E357–66
    [Google Scholar]
  38. 37.  Croucher NJ, Chewapreecha C, Hanage WP, Harris SR, McGee L et al. 2014. Evidence for soft selective sweeps in the evolution of pneumococcal multidrug resistance and vaccine escape. Genome Biol. Evol. 6:71589–602
    [Google Scholar]
  39. 38.  Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP 2014. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat. Commun. 5:5471
    [Google Scholar]
  40. 39.  Croucher NJ, Finkelstein JA, Pelton SI, Mitchell PK, Lee GM et al. 2013. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45:6656–63
    [Google Scholar]
  41. 40.  Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J et al. 2011. Rapid pneumococcal evolution in response to clinical interventions. Science 331:6016430–34
    [Google Scholar]
  42. 41.  Cundell DR, Gerard NP, Gerard C, Idanpaan-Heikkila I, Tuomanen EI 1995. Streptococcuspneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:6548435–38
    [Google Scholar]
  43. 42.  Dagan R, Melamed R, Muallem M, Piglansky L, Greenberg D et al. 1996. Reduction of nasopharyngeal carriage of pneumococci during the second year of life by a heptavalent conjugate pneumococcal vaccine. J. Infect. Dis. 174:61271–78
    [Google Scholar]
  44. 43.  Dawid S, Roche AM, Weiser JN 2007. The blp bacteriocins of Streptococcuspneumoniae mediate intraspecies competition both in vitro and in vivo. Infect. Immun. 75:1443–51
    [Google Scholar]
  45. 44.  Douglas RM, Miles HB 1984. Vaccination against Streptococcuspneumoniae in childhood: lack of demonstrable benefit in young Australian children. J. Infect. Dis. 149:6861–69
    [Google Scholar]
  46. 45.  Douglas RM, Paton JC, Duncan SJ, Hansman DJ 1983. Antibody response to pneumococcal vaccination in children younger than five years of age. J. Infect. Dis. 148:1131–37
    [Google Scholar]
  47. 46.  Drijkoningen JJC, Rohde GGU 2014. Pneumococcal infection in adults: burden of disease. Clin. Microbiol. Infect. 20:S545–51
    [Google Scholar]
  48. 47.  Ekwurzel GM, Simmons JS, Dublin LI, Felton LD 1938. Studies on immunizing substances in pneumococci: VIII. Report on field tests to determine the prophylactic value of a pneumococcus antigen. Public Health Rep 53:1877–93
    [Google Scholar]
  49. 48.  Entwisle C, Hill S, Pang Y, Joachim M, McIlgorm A et al. 2017. Safety and immunogenicity of a novel multiple antigen pneumococcal vaccine in adults: a phase 1 randomised clinical trial. Vaccine 35:517181–86
    [Google Scholar]
  50. 49.  Fedson DS, Liss C 2004. Precise answers to the wrong question: prospective clinical trials and the meta-analyses of pneumococcal vaccine in elderly and high-risk adults. Vaccine 22:8927–46
    [Google Scholar]
  51. 50.  Feikin DR, Kagucia EW, Loo JD, Link-Gelles R, Puhan MA et al. 2013. Serotype-specific changes in invasive pneumococcal disease after pneumococcal conjugate vaccine introduction: a pooled analysis of multiple surveillance sites. PLOS Med 10:9e1001517
    [Google Scholar]
  52. 51.  Feikin DR, Klugman KP 2002. Historical changes in pneumococcal serogroup distribution: implications for the era of pneumococcal conjugate vaccines. Clin. Infect. Dis. 35:5547–55
    [Google Scholar]
  53. 52.  Ferreira DM, Neill DR, Bangert M, Gritzfeld JF, Green N et al. 2013. Controlled human infection and rechallenge with Streptococcuspneumoniae reveals the protective efficacy of carriage in healthy adults. Am. J. Respir. Crit. Care Med. 187:8855–64
    [Google Scholar]
  54. 53.  Flasche S, Edmunds WJ, Miller E, Goldblatt D, Robertson C, Choi YH 2013. The impact of specific and non-specific immunity on the ecology of Streptococcuspneumoniae and the implications for vaccination. Proc. Biol. Sci. 280:177120131939
    [Google Scholar]
  55. 54.  Flasche S, Le Polain de Waroux O, O'Brien KL, Edmunds WJ 2015. The serotype distribution among healthy carriers before vaccination is essential for predicting the impact of pneumococcal conjugate vaccine on invasive disease. PLOS Comput. Biol. 11:4e1004173
    [Google Scholar]
  56. 55.  Flasche S, Van Hoek AJ, Goldblatt D, Edmunds WJ, O'Brien KL et al. 2015. The potential for reducing the number of pneumococcal conjugate vaccine doses while sustaining herd immunity in high-income countries. PLOS Med 12:6e1001839
    [Google Scholar]
  57. 56.  Flasche S, van Hoek AJ, Sheasby E, Waight P, Andrews N et al. 2011. Effect of pneumococcal conjugate vaccination on serotype-specific carriage and invasive disease in England: A cross-sectional study. PLOS Med 8:4e1001017
    [Google Scholar]
  58. 57.  Fortanier AC, Venekamp RP, Boonacker CWB, Hak E, Schilder AGM et al. 2014. Pneumococcal conjugate vaccines for preventing otitis media. Cochrane Database Syst. Rev. 2:CD001480
    [Google Scholar]
  59. 58.  French N, Nakiyingi J, Carpenter LM, Lugada E, Watera C et al. 2000. 23-Valent pneumococcal polysaccharide vaccine in HIV-1-infected Ugandan adults: double-blind, randomised and placebo controlled trial. Lancet 355:92212106–11
    [Google Scholar]
  60. 59.  Geno KA, Gilbert GL, Song JY, Skovsted IC, Klugman KP et al. 2015. Pneumococcal capsules and their types: past, present, and future. Clin. Microbiol. Rev. 28:3871–99
    [Google Scholar]
  61. 60.  Geno KA, Saad JS, Nahm MH 2017. Discovery of novel pneumococcal serotype 35D, a natural WciG-deficient variant of serotype 35B. J. Clin. Microbiol. 55:51416–25
    [Google Scholar]
  62. 61.  Gessner BD, Mueller JE, Yaro S 2010. African meningitis belt pneumococcal disease epidemiology indicates a need for an effective serotype 1 containing vaccine, including for older children and adults. BMC Infect. Dis. 10:22
    [Google Scholar]
  63. 62.  Ghaffar F, Friedland IR, McCracken GHJ 1999. Dynamics of nasopharyngeal colonization by Streptococcuspneumoniae. Pediatr. Infect. Dis. J 18:7638–46
    [Google Scholar]
  64. 63.  Gjini E, Gomes MGM 2016. Expanding vaccine efficacy estimation with dynamic models fitted to cross-sectional prevalence data post-licensure. Epidemics 14:71–82
    [Google Scholar]
  65. 64. GlaxoSmithKline. 2013. Safety and immunogenicity study of GSK (GlaxoSmithKline) Biologicals’ pneumococcal vaccine 2830930A when administered as a single dose in healthy toddlers aged 12–23 months GSK Clin. Study Regist., Study ID 115373, GlaxoSmithKline, Langen, Germ.
  66. 65.  Gonzales R, Malone DC, Maselli JH, Sande MA 2001. Excessive antibiotic use for acute respiratory infections in the United States. Clin. Infect. Dis. 33:6757–62
    [Google Scholar]
  67. 66.  Gray C, Ahmed MS, Mubarak A, Kasbekar AV, Derbyshire S et al. 2014. Activation of memory Th17 cells by domain 4 pneumolysin in human nasopharynx-associated lymphoid tissue and its association with pneumococcal carriage. Mucosal Immunol 7:3705–17
    [Google Scholar]
  68. 67.  Griffin MR, Zhu Y, Moore MR, Whitney CG, Grijalva CG 2013. U.S. hospitalizations for pneumonia after a decade of pneumococcal vaccination. N. Engl. J. Med. 369:2155–63
    [Google Scholar]
  69. 68.  Griffith F 1928. The significance of pneumococcal types. J. Hyg. 27:113–59
    [Google Scholar]
  70. 69.  Hanage WP, Finkelstein JA, Huang SS, Pelton SI, Stevenson AE et al. 2010. Evidence that pneumococcal serotype replacement in Massachusetts following conjugate vaccination is now complete. Epidemics 2:280–84
    [Google Scholar]
  71. 70.  Hausdorff WP, Bryant J, Paradiso PR, Siber GR 2000. Which pneumococcal serogroups cause the most invasive disease: implications for conjugate vaccine formulation and use, part I. Clin. Infect. Dis. 30:1100–121
    [Google Scholar]
  72. 71.  Hausdorff WP, Feikin DR, Klugman KP 2005. Epidemiological differences among pneumococcal serotypes. Lancet 5:83–93
    [Google Scholar]
  73. 72.  Hausdorff WP, Hoet B, Adegbola RA 2015. Predicting the impact of new pneumococcal conjugate vaccines: Serotype composition is not enough. Expert Rev. Vaccines 14:413–28
    [Google Scholar]
  74. 73.  Hendley JO, Sande MA, Stewart PM, Gwaltney JM Jr 1975. Spread of Streptococcuspneumoniae in families. I. Carriage rates and distribution of types. J. Infect. Dis. 132:155–61
    [Google Scholar]
  75. 74.  Henrichsen J 1995. Six newly recognized types of Streptococcuspneumoniae. J.Clin. . Microbiol 33:102759–62
    [Google Scholar]
  76. 75.  Hill PC, Akisanya A, Sankareh K, Cheung YB, Saaka M et al. 2006. Nasopharyngeal carriage of Streptococcuspneumoniae in Gambian villagers. Clin. Infect. Dis. 43:6673–79
    [Google Scholar]
  77. 76.  Hilty M, Wüthrich D, Salter SJ, Engel H, Campbell S et al. 2014. Global phylogenomic analysis of nonencapsulated Streptococcuspneumoniae reveals a deep-branching classic lineage that is distinct from multiple sporadic lineages. Genome Biol. Evol. 6:123281–94
    [Google Scholar]
  78. 77.  Hjuler T, Wohlfahrt J, Staum Kaltoft M, Koch A, Biggar RJ, Melbye M 2008. Risks of invasive pneumococcal disease in children with underlying chronic diseases. Pediatrics 122:1e26–32
    [Google Scholar]
  79. 78.  Hoge CW, Reichler MR, Dominguez EA, Bremer JC, Mastro TD et al. 1994. An epidemic of pneumococcal disease in an overcrowded, inadequately ventilated jail. N. Engl. J. Med. 331:10643–48
    [Google Scholar]
  80. 79.  Huang SS, Finkelstein JA, Rifas-Shiman SL, Kleinman K, Platt R 2004. Community-level predictors of pneumococcal carriage and resistance in young children. Am. J. Epidemiol. 159:7645–54
    [Google Scholar]
  81. 80.  Huebner RE, Dagan R, Porath N, Wasas AD, Klugman KP 2000. Lack of utility of serotyping multiple colonies for detection of simultaneous nasopharyngeal carriage of different pneumococcal serotypes. Pediatr. Infect. Dis. J. 19:101017–20
    [Google Scholar]
  82. 81.  Hung C-C, Chen M-Y, Hsieh S-M, Hsiao C-F, Sheng W-H Chang S-C 2004. Clinical experience of the 23-valent capsular polysaccharide pneumococcal vaccination in HIV-1-infected patients receiving highly active antiretroviral therapy: a prospective observational study. Vaccine 22:15–162006–12
    [Google Scholar]
  83. 82.  Hyams C, Camberlein E, Cohen JM, Bax K, Brown JS 2010. The Streptococcuspneumoniae capsule inhibits complement activity and neutrophil phagocytosis by multiple mechanisms. Infect. Immun. 78:2704–15
    [Google Scholar]
  84. 83. Int. Vaccine Access Cent. 2017. VIEW-Hub Report: Global Vaccine Introduction and Implementation Baltimore, MD: Int. Vaccine Access Cent
  85. 84.  Isaacman DJ, McIntosh ED, Reinert RR 2010. Burden of invasive pneumococcal disease and serotype distribution among Streptococcuspneumoniae isolates in young children in Europe: impact of the 7-valent pneumococcal conjugate vaccine and considerations for future conjugate vaccines. Int. J. Infect. Dis. 14:e197–209
    [Google Scholar]
  86. 85.  Jackson LA, Neuzil KM, Yu O, Benson P, Barlow WE et al. 2003. Effectiveness of pneumococcal polysaccharide vaccine in older adults. N. Engl. J. Med. 348:181747–55
    [Google Scholar]
  87. 86.  Jacobs NM 1991. Pneumococcal osteomyelitis and arthritis in children: a hospital series and literature review. Am. J. Dis. Child. 145:170–74
    [Google Scholar]
  88. 87.  Janeway CJ, Travers P, Walport M, Schlomchik MJ 2001. Immunobiology: The Immune System in Health and Disease Burlington, MA: Taylor Francis. , 5th ed..
  89. 88.  Janoff EN, Douglas JM Jr, Gabriel M, Blaser MJ, Davidson AJ et al. 1988. Class-specific antibody response to pneumococcal capsular polysaccharides in men infected with human immunodeficiency virus type 1. J. Infect. Dis. 158:5983–90
    [Google Scholar]
  90. 89.  Jansen AGSC, Rodenburg GD, van der Ende A, van Alphen L, Veenhoven RH et al. 2009. Invasive pneumococcal disease among adults: associations among serotypes, disease characteristics, and outcome. Clin. Infect. Dis. 49:2e23–29
    [Google Scholar]
  91. 90.  Jochems SP, Weiser JN, Malley R, Ferreira DM 2017. The immunological mechanisms that control pneumococcal carriage. PLOS Pathog 13:121–14
    [Google Scholar]
  92. 91.  Johnson HL, Deloria-Knoll M, Levine OS, Stoszek SK, Hance LF et al. 2010. Systematic evaluation of serotypes causing invasive pneumococcal disease among children under five: the pneumococcal global serotype project. PLOS Med 7:10e1000348
    [Google Scholar]
  93. 92.  Khan MN, Pichichero ME 2014. The host immune dynamics of pneumococcal colonization: implications for novel vaccine development. Hum. Vaccine Immunother. 10:3688–99
    [Google Scholar]
  94. 93.  Khatun F, Stephenson RJ, Toth I 2017. An overview of structural features of antibacterial glycoconjugate vaccines that influence their immunogenicity. Chemistry 23:184233–54 Corrigendum. 2017. Chemistry 23:6458
    [Google Scholar]
  95. 94.  Klein Klouwenberg P, Bont L 2008. Neonatal and infantile immune responses to encapsulated bacteria and conjugate vaccines. Clin. Dev. Immunol. 2008:628963
    [Google Scholar]
  96. 95.  Klemets P, Lyytikäinen O, Ruutu P, Ollgren J, Nuorti JP 2008. Invasive pneumococcal infections among persons with and without underlying medical conditions: implications for prevention strategies. BMC Infect. Dis. 8:196
    [Google Scholar]
  97. 96.  Klugman KP, Madhi SA, Huebner RE, Kohberger R, Mbelle N, Pierce N 2003. A trial of a 9-valent pneumococcal conjugate vaccine in children with and those without HIV infection. N. Engl. J. Med. 349:141341–48
    [Google Scholar]
  98. 97.  Klugman KP, Rodgers GL 2017. PERCH in perspective: What can it teach us about pneumonia etiology in children?. Clin. Infect. Dis. 64:Suppl. 3S185–87
    [Google Scholar]
  99. 98.  Kronman MP, Hersh AL, Feng R, Huang Y-S, Lee GE, Shah SS 2011. Ambulatory visit rates and antibiotic prescribing for children with pneumonia, 1994–2007. Pediatrics 127:3411–18
    [Google Scholar]
  100. 99.  Kuhlmann A, von der Schulenburg JMG 2017. Modeling the cost-effectiveness of infant vaccination with pneumococcal conjugate vaccines in Germany. Eur. J. Health Econ. 18:3273–92
    [Google Scholar]
  101. 100.  Kurosaki T, Kometani K, Ise W 2015. Memory B cells. Nat. Rev. Immunol. 15:3149–59
    [Google Scholar]
  102. 101.  Kyaw MH, Lynfield R, Schaffner W, Craig AS, Hadler J et al. 2006. Effect of introduction of the pneumococcal conjugate vaccine on drug-resistant Streptococcuspneumoniae. N. Engl. J. Med 354:141455–63
    [Google Scholar]
  103. 102.  Labout JAM, Duijts L, Arends LR, Jaddoe VWV, Hofman A et al. 2008. Factors associated with pneumococcal carriage in healthy Dutch infants: the generation R study. J. Pediatr. 153:6771–76.e1
    [Google Scholar]
  104. 103.  Leach A, Ceesay SJ, Banya WAS, Greenwood BM 1996. Pilot trial of a pentavalent pneumococcal polysaccharide/protein conjugate vaccine in Gambian infants. Pediatr. Infect. Dis. J. 15:4333–39
    [Google Scholar]
  105. 104.  Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J et al. 2017. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. eLife 6:e26255
    [Google Scholar]
  106. 105.  Lehtinen S, Blanquart F, Croucher NJ, Turner P, Lipsitch M, Fraser C 2017. Evolution of antibiotic resistance is linked to any genetic mechanism affecting bacterial duration of carriage. PNAS 114:51075–80
    [Google Scholar]
  107. 106.  Li Y, Gierahn T, Thompson CM, Trzciński K, Ford CB et al. 2012. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcuspneumoniae. . PLOS Pathog 8:11e1002989
    [Google Scholar]
  108. 107.  Lipsitch M 1999. Bacterial vaccines and serotype replacement: lessons from Haemophilusinfluenzae and prospects for Streptococcuspneumoniae.Emerg.Infect. . Dis 5:3336–45
    [Google Scholar]
  109. 108.  Lipsitch M, Abdullahi O, D′Amour A, Xie W, Weinberger DM et al. 2012. Estimating rates of carriage acquisition and clearance and competitive ability for pneumococcal serotypes in Kenya with a Markov transition model. Epidemiology 23:4510–19
    [Google Scholar]
  110. 109.  Lipsitch M, Whitney CG, Zell E, Kaijalainen T, Dagan R, Malley R 2005. Are anticapsular antibodies the primary mechanism of protection against invasive pneumococcal disease?. PLOS Med 2:1e15
    [Google Scholar]
  111. 110.  Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K et al. 2012. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:98592095–128
    [Google Scholar]
  112. 111.  Lucero MG, Dulalia VE, Nillos LT, Williams G, Parreño RAN et al. 2009. Pneumococcal conjugate vaccines for preventing vaccine-type invasive pneumococcal disease and X-ray defined pneumonia in children less than two years of age. Cochrane Database Syst. Rev. 7:CD004977
    [Google Scholar]
  113. 112.  Mackenzie GA, Hill PC, Jeffries DJ, Hossain I, Uchendu U et al. 2016. Effect of the introduction of pneumococcal conjugate vaccination on invasive pneumococcal disease in the Gambia: a population-based surveillance study. Lancet Infect. Dis. 16:6703–11
    [Google Scholar]
  114. 113.  Mackenzie GA, Leach AJ, Carapetis JR, Fisher J, Morris PS 2010. Epidemiology of nasopharyngeal carriage of respiratory bacterial pathogens in children and adults: cross-sectional surveys in a population with high rates of pneumococcal disease. BMC Infect. Dis. 10:1304
    [Google Scholar]
  115. 114.  Macleod CM, Hodges RG, Heidelberger M, Bernhard WG 1945. Prevention of pneumococcal pneumonia by immunization with specific capsular polysaccharides. J. Exp. Med. 82:6445–65
    [Google Scholar]
  116. 115.  Man WH, De Steenhuijsen Piters WAA, Bogaert D 2017. The microbiota of the respiratory tract: gatekeeper to respiratory health. 15259–70
  117. 116.  Marom T, Tan A, Wilkinson GS, Pierson KS, Freeman JL, Chonmaitree T 2014. Trends in otitis media-related health care use in the United States, 2001–2011. JAMA Pediatr 168:168–75
    [Google Scholar]
  118. 117.  Marsh R, Smith-Vaughan H, Hare KM, Binks M, Kong F et al. 2010. The nonserotypeable pneumococcus: Phenotypic dynamics in the era of anticapsular vaccines. J. Clin. Microbiol. 48:3831–35
    [Google Scholar]
  119. 118.  Martin M, Turco JH, Zegans ME, Facklam RR, Sodha S et al. 2003. An outbreak of conjunctivitis due to atypical Streptococcuspneumoniae. N. Engl. J. . Med 348:121112–21
    [Google Scholar]
  120. 119.  Masala GL, Lipsitch M, Bottomley C, Flasche S 2017. Exploring the role of competition induced by non-vaccine serotypes for herd protection following pneumococcal vaccination. J. R. Soc. Interface 14:13620170620
    [Google Scholar]
  121. 120.  Mavroidi A, Aanensen DM, Godoy D, Skovsted IC, Kaltoft MS et al. 2007. Genetic relatedness of the Streptococcuspneumoniae capsular biosynthetic loci. J. Bacteriol. 189:217841–55
    [Google Scholar]
  122. 121.  Maynard GD 1913. An enquiry into the etiology, manifestations and prevention of pneumonia amongst natives on the Rand recruited from tropical areas. Public South Afr. Inst. Med. Res. 1:1–101
    [Google Scholar]
  123. 122.  Mbelle N, Huebner RE, Wasas AD, Kimura A, Chang I, Klugman KP 1999. Immunogenicity and impact on nasopharyngeal carriage of a nonavalent pneumococcal conjugate vaccine. J. Infect. Dis. 180:41171–76
    [Google Scholar]
  124. 123.  McFetridge R, Meulen AS, Folkerth SD, Hoekstra JA, Dallas M et al. 2015. Safety, tolerability, and immunogenicity of 15-valent pneumococcal conjugate vaccine in healthy adults. Vaccine 33:242793–99
    [Google Scholar]
  125. 124.  Melegaro A, Choi Y, George R, Edmunds W, Miller E, Gay N 2010. Dynamic models of pneumococcal carriage and the impact of the Heptavalent Pneumococcal Conjugate Vaccine on invasive pneumococcal disease. BMC Infect. Dis. 10:190
    [Google Scholar]
  126. 125.  Mercat A, Nguyen J, Dautzenberg B 1991. An outbreak of pneumococcal pneumonia in two men's shelters. Chest 99:1147–51
    [Google Scholar]
  127. 126.  Moberley S, Holden J, Tatham DP, Andrews RM 2013. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst. Rev. 31:CD000422
    [Google Scholar]
  128. 127.  Moffitt K, Malley R 2016. Rationale and prospects for novel pneumococcal vaccines. Hum. Vaccines Immunother. 12:2383–92
    [Google Scholar]
  129. 128.  Mohale T, Wolter N, Allam M, Ndlangisa K, Crowther-Gibson P et al. 2016. Genomic analysis of nontypeable pneumococci causing invasive pneumococcal disease in South Africa, 2003–2013. BMC Genom 17:1470
    [Google Scholar]
  130. 129.  Mohanty L 2014. A multicenter, open label, comparative study to evaluate and compare safety, tolerability and immunogenicity of 10-valent pneumococcal polysaccharide conjugate vaccine in healthy infant CTRI Number 2014/04/004543 Clin. Trials Regist India, New Delhi:
  131. 130.  Monasta L, Ronfani L, Marchetti F, Montico M, Brumatti L et al. 2012. Burden of disease caused by otitis media: systematic review and global estimates. PLOS ONE 7:e36226
    [Google Scholar]
  132. 131.  Mook-Kanamori BB, Geldhoff M, van der Poll T, van de Beek D 2011. Pathogenesis and pathophysiology of pneumococcal meningitis. Clin. Microbiol. Rev. 24:3557–91
    [Google Scholar]
  133. 132.  Moore MR, Link-Gelles R, Schaffner W, Lynfield R, Holtzman C et al. 2016. Effectiveness of 13-valent pneumococcal conjugate vaccine for prevention of invasive pneumococcal disease in children in the USA: a matched case-control study. Lancet Respir. Med. 4:5399–406
    [Google Scholar]
  134. 133.  Moreira M, Cintra O, Harriague J, Hausdorff WP, Hoet B 2016. Impact of the introduction of the pneumococcal conjugate vaccine in the Brazilian routine childhood national immunization program. Vaccine 34:2766–78
    [Google Scholar]
  135. 134.  Morris SK, Moss WJ, Halsey N 2008. Haemophilusinfluenzae type b conjugate vaccine use and effectiveness. Lancet Infect. Dis. 8:7435–43
    [Google Scholar]
  136. 135.  Mostowy RJ, Croucher NJ, De Maio N, Chewapreecha C, Salter SJ et al. 2017. Pneumococcal capsule synthesis locus cps as evolutionary hotspot with potential to generate novel serotypes by recombination. Mol. Biol. Evol. 34:2537–54
    [Google Scholar]
  137. 136.  Muhammad RD, Oza-Frank R, Zell E, Link-Gelles R, Narayan KMV et al. 2013. Epidemiology of invasive pneumococcal disease among high-risk adults since the introduction of pneumococcal conjugate vaccine for children. Clin. Infect. Dis. 56:5e59–67
    [Google Scholar]
  138. 137.  Musher DM, Manoff SB, Liss C, McFetridge RD, Marchese RD et al. 2010. Safety and antibody response, including antibody persistence for 5 years, after primary vaccination or revaccination with pneumococcal polysaccharide vaccine in middle‐aged and older adults. J. Infect. Dis. 201:4516–24
    [Google Scholar]
  139. 138.  Naghavi M, Abajobir AA, Abbafati C, Abbas KM, Abd-Allah F et al. 2017. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 390:1151–210
    [Google Scholar]
  140. 139.  Naucler P, Galanis I, Morfeldt E, Darenberg J, Örtqvist Å, Henriques-Normark B 2017. Comparison of the impact of pneumococcal conjugate vaccine 10 or pneumococcal conjugate vaccine 13 on invasive pneumococcal disease in equivalent populations. Clin. Infect. Dis. 65:111780–89
    [Google Scholar]
  141. 140.  Numminen E, Cheng L, Gyllenberg M, Corander J 2013. Estimating the transmission dynamics of Streptococcuspneumoniae from strain prevalence data. Biometrics 69:3748–57
    [Google Scholar]
  142. 141.  Nuorti JP, Butler JC, Crutcher JM, Guevara R, Welch D et al. 1998. An outbreak of multidrug-resistant pneumococcal pneumonia and bacteremia among unvaccinated nursing home residents. N. Engl. J. Med. 338:261861–68
    [Google Scholar]
  143. 142.  Nuorti JP, Butler JC, Farley MM, Harrison LH, McGeer A et al. 2000. Cigarette smoking and invasive pneumococcal disease. N. Engl. J. Med. 342:10681–89
    [Google Scholar]
  144. 143.  Nurhonen M, Auranen K 2014. Optimal serotype compositions for pneumococcal conjugate vaccination under serotype replacement. PLOS Comput. Biol. 10:2e1003477
    [Google Scholar]
  145. 144.  Obaro SK, Adegbola RA, Banya WAS, Greenwood BM 1996. Carriage of pneumococci after pneumococcal vaccination. Lancet 348:9022271–72
    [Google Scholar]
  146. 145.  O'Brien KL, Hochman M, Goldblatt D 2007. Combined schedules of pneumococcal conjugate and polysaccharide vaccines: Is hyporesponsiveness an issue?. Lancet Infect. Dis. 7:597–606
    [Google Scholar]
  147. 146.  Ochoa-Gondar O, Vila-Corcoles A, Rodriguez-Blanco T, Gomez-Bertomeu F, Figuerola-Massana E et al. 2014. Effectiveness of the 23-valent pneumococcal polysaccharide vaccine against community-acquired pneumonia in the general population aged ≥ 60 years: 3 years of follow-up in the CAPAMIS study. Clin. Infect. Dis. 58:7909–17
    [Google Scholar]
  148. 147.  Odutola A, Ota MOC, Antonio M, Ogundare EO, Saidu Y et al. 2017. Efficacy of a novel, protein-based pneumococcal vaccine against nasopharyngeal carriage of Streptococcuspneumoniae in infants: a phase 2, randomized, controlled, observer-blind study. Vaccine 35:192531–42
    [Google Scholar]
  149. 148. Off. Technol. Assess. 1979. A Review of Selected Federal Vaccine and Immunization Policies, Based on Case Studies of Pneumococcal Vaccine Washington, DC: Gov. Print. Off.
  150. 149.  Paireau J, Chen A, Broutin H, Grenfell B, Basta NE 2016. Seasonal dynamics of bacterial meningitis: a time-series analysis. Lancet Glob. Health 4:6e370–77
    [Google Scholar]
  151. 150.  Park IH, Moore MR, Treanor JJ, Pelton SI, Pilishvili T et al. 2008. Differential effects of pneumococcal vaccines against serotypes 6A and 6C. J. Infect. Dis. 198:121818–22
    [Google Scholar]
  152. 151.  Pebody RG, Morgan O, Choi Y, George R, Hussain M, Andrews N 2009. Use of antibiotics and risk factors for carriage of Streptococcuspneumoniae: a longitudinal household study in the United Kingdom. Epidemiol. Infect. 137:555–61
    [Google Scholar]
  153. 152.  Petit G, De Wals P, Law B, Tam T, Erickson LJ et al. 2003. Epidemiological and economic burden of pneumococcal diseases in Canadian children. Can. J. Infect. Dis. 14:4215–20
    [Google Scholar]
  154. 153.  Picard C, Casanova JL, Puel A 2011. Infectious diseases in patients with IRAK-4, MyD88, NEMO, or IκBα deficiency. Clin. Microbiol. Rev. 24:3490–97
    [Google Scholar]
  155. 154.  Pichichero ME 2017. Pneumococcal whole-cell and protein-based vaccines: changing the paradigm. Exp. Rev. Vaccines 16:1181–90
    [Google Scholar]
  156. 155.  Pilishvili T, Zell ER, Farley MM, Schaffner W, Lynfield R et al. 2010. Risk factors for invasive pneumococcal disease in children in the era of conjugate vaccine use. Pediatrics 126:1e9–17
    [Google Scholar]
  157. 156.  Principi N, Marchisio P, Schito GC, Mannelli S 1999. Risk factors for carriage of respiratory pathogens in the nasopharynx of healthy children: Ascanius Project Collaborative Group. Pediatr. Infect. Dis. J. 18:6517–23
    [Google Scholar]
  158. 157.  Prymula R, Hanovcova I, Splino M, Kriz P, Motlova J et al. 2011. Impact of the 10-valent pneumococcal non-typeable Haemophilusinfluenzae protein D conjugate vaccine (PHiD-CV) on bacterial nasopharyngeal carriage. Vaccine 29:101959–67
    [Google Scholar]
  159. 158.  Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E et al. 2006. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcuspneumoniae and non-typable Haemophilusinfluenzae: a randomised double-blind efficacy study. Lancet 367:9512740–48
    [Google Scholar]
  160. 159.  Ramakrishnan M, Moïsi JC, Klugman KP, Iglesias JMF, Grant LR et al. 2010. Increased risk of invasive bacterial infections in African people with sickle-cell disease: a systematic review and meta-analysis. Lancet Infect. Dis. 10:329–37
    [Google Scholar]
  161. 160.  Regev-Yochay G, Raz M, Dagan R, Porat N, Shainberg B et al. 2004. Nasopharyngeal carriage of Streptococcuspneumoniae by adults and children in community and family settings. Clin. Infect. Dis. 38:5632–39
    [Google Scholar]
  162. 161.  Reis JN, Palma T, Ribeiro GS, Pinheiro RM, Ribeiro CT et al. 2008. Transmission of Streptococcuspneumoniae in an urban slum community. J. Infect. 57:3204–13
    [Google Scholar]
  163. 162.  Rennels MB, Edwards KM, Keyserling HL, Reisinger KS, Hogerman DA et al. 1998. Safety and immunogenicity of heptavalent pneumococcal vaccine conjugated to CRM197 in United States infants. Pediatrics 101:4 Part 1604–11
    [Google Scholar]
  164. 163.  Deleted in proof
  165. 164.  Robbins JB, Austrian R, Lee CJ, Rastogi SC, Schiffman G et al. 1983. Considerations for formulating the second-generation pneumococcal capsular polysaccharide vaccine with emphasis on the cross-reactive types within groups. J. Infect. Dis. 148:61136–59
    [Google Scholar]
  166. 165.  Robinson KA, Baughman W, Rothrock G, Barrett NL, Pass M et al. 2001. Epidemiology of invasive Streptococcuspneumoniae infections in the United States, 1995–1998: opportunities for prevention in the conjugate vaccine era. JAMA 285:131729–35
    [Google Scholar]
  167. 166.  Rodgers GL, Klugman KP 2011. The future of pneumococcal disease prevention. Vaccine 29:Suppl. 3C43–48
    [Google Scholar]
  168. 167.  Rodrigo C, Bewick T, Sheppard C, Greenwood S, Mckeever TM et al. 2015. Impact of infant 13-valent pneumococcal conjugate vaccine on serotypes in adult pneumonia. Eur. Respir. J. 45:61632–41
    [Google Scholar]
  169. 168.  Rovers MM, Schilder AGM, Zielhuis GA, Rosenfeld RM 2004. Otitis media. Lancet 363:9407465–73
    [Google Scholar]
  170. 169.  Rudan I, O'Brien KL, Nair H, Liu L, Theodoratou E et al. 2013. Epidemiology and etiology of childhood pneumonia in 2010: estimates of incidence, severe morbidity, mortality, underlying risk factors and causative pathogens for 192 countries. J. Glob. Health 3:110401
    [Google Scholar]
  171. 170.  Salter SJ, Turner C, Watthanaworawit W, de Goffau MC, Wagner J et al. 2017. A longitudinal study of the infant nasopharyngeal microbiota: the effects of age, illness and antibiotic use in a cohort of South East Asian children. PLOS Negl. Trop. Dis. 11:10e0005975
    [Google Scholar]
  172. 171.  Satzke C, Dunne EM, Porter BD, Klugman KP, Mulholland EK et al. 2015. The PneuCarriage Project: a multi-centre comparative study to identify the best serotyping methods for examining pneumococcal carriage in vaccine evaluation studies. PLOS Med 12:11e1001903
    [Google Scholar]
  173. 172.  Schneerson R, Barrera O, Sutton A, Robbins JB 1980. Preparation, characterization, and immunogenicity of Haemophilusinfluenzae type B polysaccharide-protein conjugates. J. Exp. Med. 152:2361–76
    [Google Scholar]
  174. 173.  Scott JA, Hall AJ, Dagan R, Dixon JM, Eykyn SJ et al. 1996. Serogroup-specific epidemiology of Streptococcuspneumoniae: associations with age, sex, and geography in 7,000 episodes of invasive disease. Clin. Infect. Dis. 22:6973–81
    [Google Scholar]
  175. 174.  Scott JAG 2007. The preventable burden of pneumococcal disease in the developing world. Vaccine 25:132398–405
    [Google Scholar]
  176. 175.  Selwyn BJ 1990. The epidemiology of acute respiratory tract infection in young children: comparison of findings from several developing countries. Rev. Infect. Dis. 12:Suppl. 8S870–88
    [Google Scholar]
  177. 176.  Shapiro ED, Aaron NH, Wald ER, Chiponis D 1986. Risk factors for development of bacterial meningitis among children with occult bacteremia. J. Pediatr. 109:115–19
    [Google Scholar]
  178. 177.  Shapiro ED, Berg AT, Austrian R, Schroeder D, Parcells V et al. 1991. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N. Engl. J. Med. 325:211453–60
    [Google Scholar]
  179. 178.  Shiri T, Datta S, Madan J, Tsertsvadze A, Royle P et al. 2017. Indirect effects of childhood pneumococcal conjugate vaccination on invasive pneumococcal disease: a systematic review and meta-analysis. Lancet Glob. Heal. 5:1e51–59
    [Google Scholar]
  180. 179.  Simonsen L, Taylor RJ, Schuck-Paim C, Lustig R, Haber M, Klugman KP 2014. Effect of 13-valent pneumococcal conjugate vaccine on admissions to hospital 2 years after its introduction in the USA: a time series analysis. Lancet Respir. Med. 2:5387–94
    [Google Scholar]
  181. 180.  Snedecor SJ, Strutton DR, Ciuryla V, Schwartz EJ, Botteman MF 2009. Transmission-dynamic model to capture the indirect effects of infant vaccination with Prevnar (7-valent pneumococcal conjugate vaccine (PCV7)) in older populations. Vaccine 27:344694–703
    [Google Scholar]
  182. 181.  Sokol W 2001. Epidemiology of sinusitis in the primary care setting: results from the 1999–2000 Respiratory Surveillance Program. Am. J. Med. 111:9 Suppl. 119S–24S
    [Google Scholar]
  183. 182.  Spratt BG, Greenwood BM 2000. Prevention of pneumococcal disease by vaccination: Does serotype replacement matter?. Lancet 356:92371210–11
    [Google Scholar]
  184. 183.  Taylor S, Marchisio P, Vergison A, Harriague J, Hausdorff WP, Haggard M 2012. Impact of pneumococcal conjugate vaccination on otitis media: a systematic review. Clin. Infect. Dis. 54:121765–73
    [Google Scholar]
  185. 184.  Tomlinson G, Chimalapati S, Pollard T, Lapp T, Cohen J et al. 2014. TLR-mediated inflammatory responses to Streptococcuspneumoniae are highly dependent on surface expression of bacterial lipoproteins. J. Immunol. 193:73736–45
    [Google Scholar]
  186. 185.  Turner P, Hinds J, Turner C, Jankhot A, Gould K et al. 2011. Improved detection of nasopharyngeal cocolonization by multiple pneumococcal serotypes by use of latex agglutination or molecular serotyping by microarray. J. Clin. Microbiol. 49:1784–89
    [Google Scholar]
  187. 186.  Turner P, Turner C, Green N, Ashton L, Lwe E et al. 2013. Serum antibody responses to pneumococcal colonization in the first 2 years of life: results from an SE Asian longitudinal cohort study. Clin. Microbiol. Infect. 19:12E551–58
    [Google Scholar]
  188. 187.  Turner P, Turner C, Jankhot A, Helen N, Lee SJ et al. 2012. A longitudinal study of Streptococcuspneumoniae carriage in a cohort of infants and their mothers on the Thailand-Myanmar border. PLOS ONE 7:5e38271
    [Google Scholar]
  189. 188.  Turner P, Turner C, Jankhot A, Phakaudom K, Nosten F, Goldblatt D 2013. Field evaluation of culture plus latex sweep serotyping for detection of multiple pneumococcal serotype colonisation in infants and young children. PLOS ONE 8:7e67933
    [Google Scholar]
  190. 189.  Valentino MD, McGuire AM, Rosch JW, Bispo PJM, Burnham C et al. 2014. Unencapsulated Streptococcuspneumoniae from conjunctivitis encode variant traits and belong to a distinct phylogenetic cluster. Nat. Commun. 5:5411
    [Google Scholar]
  191. 190.  van Deursen AMM, van Houten MA, Webber C, Patton M, Scott D et al. 2018. The impact of the 13-valent pneumococcal conjugate vaccine on pneumococcal carriage in the Community Acquired Pneumonia Immunization Trial in Adults (CAPiTA) study. Clin. Infect. Dis. 67:42–49
    [Google Scholar]
  192. 191.  van Hoek AJ, Andrews N, Waight PA, Stowe J, Gates P et al. 2012. The effect of underlying clinical conditions on the risk of developing invasive pneumococcal disease in England. J. Infect. 65:117–24
    [Google Scholar]
  193. 192.  van Tonder AJ, Bray JE, Quirk SJ, Haraldsson G, Jolley KA et al. 2016. Putatively novel serotypes and the potential for reduced vaccine effectiveness: capsular locus diversity revealed among 5405 pneumococcal genomes. Microb. Genom. 2:10000090
    [Google Scholar]
  194. 193.  van Weert HCPM, Tellegen E, ter Riet G 2014. A new diagnostic index for bacterial conjunctivitis in primary care: a re-derivation study. Eur. J. Gen. Pract. 20:3202–8
    [Google Scholar]
  195. 194.  Vesikari T, Forsten A, Seppä I, Kaijalainen T, Puumalainen T et al. 2016. Effectiveness of the 10-valent pneumococcal nontypeable Haemophilusinfluenzae protein D-conjugated vaccine (PHiD-CV) against carriage and acute otitis media—a double-blind randomized clinical trial in Finland. J. Pediatr. Infect. Dis. Soc. 5:3237–48
    [Google Scholar]
  196. 195.  Waight PA, Andrews NJ, Ladhani SN, Sheppard CL, Slack MPE, Miller E 2015. Effect of the 13-valent pneumococcal conjugate vaccine on invasive pneumococcal disease in England and Wales 4 years after its introduction: an observational cohort study. Lancet Infect. Dis. 15:5535–43
    [Google Scholar]
  197. 196.  Watson L, Wilson BJ, Waugh N 2002. Pneumococcal polysaccharide vaccine: a systematic review of clinical effectiveness in adults. Vaccine 20:2166–73
    [Google Scholar]
  198. 197.  Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, Lipsitch M 2008. Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J. Infect. Dis. 197:111511–18
    [Google Scholar]
  199. 198.  Weinberger DM, Grant LR, Weatherholtz RC, Warren JL, O'Brien KL, Hammitt LL 2016. Relating pneumococcal carriage among children to disease rates among adults before and after the introduction of conjugate vaccines. Am. J. Epidemiol. 183:111055–62
    [Google Scholar]
  200. 199.  Weinberger DM, Harboe ZB, Sanders EA, Ndiritu M, Klugman KP et al. 2010. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin. Infect. Dis. 51:6692–99
    [Google Scholar]
  201. 200.  Weinberger DM, Malley R, Lipsitch M 2011. Serotype replacement in disease after pneumococcal vaccination. Lancet 378:1962–73
    [Google Scholar]
  202. 201.  Weinberger R, von Kries R, van der Linden M, Rieck T, Siedler A, Falkenhorst G 2018. Invasive pneumococcal disease in children under 16 years of age: incomplete rebound in incidence after the maximum effect of PCV13 in 2012/13 in Germany. Vaccine 36:4572–77
    [Google Scholar]
  203. 202.  Whitney CG, Farley MM, Hadler J, Harrison LH, Bennett NM et al. 2003. Decline in invasive pneumococcal disease after the introduction of protein-polysaccharide conjugate vaccine. N. Engl. J. Med. 348:181737–46
    [Google Scholar]
  204. 203.  Wilson R, Cohen JM, Reglinski M, Jose RJ, Chan WY et al. 2017. Naturally acquired human immunity to pneumococcus is dependent on antibody to protein antigens. PLOS Pathog 13:1e1006137 Correction. 2017. PLOSPathog 13:e1006259
    [Google Scholar]
  205. 204.  Wotton CJ, Goldacre MJ 2012. Risk of invasive pneumococcal disease in people admitted to hospital with selected immune-mediated diseases: record linkage cohort analyses. J. Epidemiol. Community Health. 66:121177–81
    [Google Scholar]
  206. 205.  Wright AE, Morgan WP, Colebrook L, Dodgson RW 1914. Observations on prophylactic inoculation against pneumococcus infections, and on the results which have been achieved by it. Lancet 183:47141–10
    [Google Scholar]
  207. 206.  Wright PF, Sell SH, Vaughn WK, Andrews C, McConnell KB, Schiffman G 1981. Clinical studies of pneumococcal vaccines in infants. II. Efficacy and effect on nasopharyngeal carriage. Rev. Infect. Dis. 3:S108–12
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062338
Loading
/content/journals/10.1146/annurev-micro-090817-062338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error