1932

Abstract

remains one of the most successful bacterial pathogens, claiming over 1.3 million lives worldwide in 2013. The emergence of multidrug-resistant and extensively drug-resistant isolates has prompted the need for new drugs and drug targets. possesses an unusual cell wall dominated by lipids and carbohydrates that provides a permeability barrier against hydrophilic drugs and is crucial for its survival and virulence. This large macromolecular structure, termed the mycolyl-arabinogalactan-peptidoglycan complex, and the phosphatidyl--inositol-based lipoglycans are key features of the mycobacterial cell wall. Assembly of these cell wall components is an attractive target for the development of chemotherapeutics against tuberculosis. Herein, we focus on recent biochemical and molecular insights into these complex molecules of cell wall.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104121
2015-10-15
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104121.html?itemId=/content/journals/10.1146/annurev-micro-091014-104121&mimeType=html&fmt=ahah

Literature Cited

  1. Alderwick LJ, Dover LG, Veerapen N, Gurcha SS, Kremer L. 1.  et al. 2008. Expression, purification and characterisation of soluble GlfT and the identification of a novel galactofuranosyltransferase Rv3782 involved in priming GlfT-mediated galactan polymerisation in Mycobacterium tuberculosis. Protein Expr. Purif. 58:332–41 [Google Scholar]
  2. Alderwick LJ, Lloyd GS, Ghadbane H, May JW, Bhatt A. 2.  et al. 2011. The C-terminal domain of the arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLOS Pathog. 7:e1001299 [Google Scholar]
  3. Alderwick LJ, Lloyd GS, Lloyd AJ, Lovering AL, Eggeling L, Besra GS. 3.  2011. Biochemical characterization of the Mycobacterium tuberculosis phosphoribosyl-1-pyrophosphate synthetase. Glycobiology 21:410–25 [Google Scholar]
  4. Alderwick LJ, Radmacher E, Seidel M, Gande R, Hitchen PG. 4.  et al. 2005. Deletion of Cg-emb in corynebacterianeae leads to a novel truncated cell wall arabinogalactan, whereas inactivation of Cg-ubiA results in an arabinan-deficient mutant with a cell wall galactan core. J. Biol. Chem. 280:32362–71 [Google Scholar]
  5. Alderwick LJ, Seidel M, Sahm H, Besra GS, Eggeling L. 5.  2006. Identification of a novel arabinofuranosyltransferase (AftA) involved in cell wall arabinan biosynthesis in Mycobacterium tuberculosis. J. Biol. Chem. 281:15653–61 [Google Scholar]
  6. Ballou CE, Lee YC. 6.  1964. The structure of a myoinositol mannoside from Mycobacterium tuberculosis glycolipid. Biochemistry 3:682–85 [Google Scholar]
  7. Ballou CE, Vilkas E, Lederer E. 7.  1963. Structural studies on the myo-inositol phospholipids of Mycobacterium tuberculosis (var. bovis, strain BCG). J. Biol. Chem. 238:69–76 [Google Scholar]
  8. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D. 8.  2008. Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol. Rev. 32:168–207 [Google Scholar]
  9. Basavannacharya C, Robertson G, Munshi T, Keep NH, Bhakta S. 9.  2010. ATP-dependent MurE ligase in Mycobacterium tuberculosis: biochemical and structural characterisation. Tuberculosis 90:16–24 [Google Scholar]
  10. Belanova M, Dianiskova P, Brennan PJ, Completo GC, Rose NL. 10.  et al. 2008. Galactosyl transferases in mycobacterial cell wall synthesis. J. Bacteriol. 190:1141–45 [Google Scholar]
  11. Belisle JT, Vissa VD, Sievert T, Takayama K, Brennan PJ, Besra GS. 11.  1997. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 276:1420–22 [Google Scholar]
  12. Benson TE, Walsh CT, Hogle JM. 12.  1996. The structure of the substrate-free form of MurB, an essential enzyme for the synthesis of bacterial cell walls. Structure 4:47–54 [Google Scholar]
  13. Berg S, Kaur D, Jackson M, Brennan PJ. 13.  2007. The glycosyltransferases of Mycobacterium tuberculosis—roles in the synthesis of arabinogalactan, lipoarabinomannan, and other glycoconjugates. Glycobiology 17:35–56R [Google Scholar]
  14. Besra GS, Khoo KH, McNeil MR, Dell A, Morris HR, Brennan PJ. 14.  1995. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34:4257–66 [Google Scholar]
  15. Bhamidi S, Scherman MS, Jones V, Crick DC, Belisle JT. 15.  et al. 2011. Detailed structural and quantitative analysis reveals the spatial organization of the cell walls of in vivo grown Mycobacterium leprae and in vitro grown Mycobacterium tuberculosis. J. Biol. Chem. 286:23168–77 [Google Scholar]
  16. Bhamidi S, Scherman MS, Rithner CD, Prenni JE, Chatterjee D. 16.  et al. 2008. The identification and location of succinyl residues and the characterization of the interior arabinan region allow for a model of the complete primary structure of Mycobacterium tuberculosis mycolyl arabinogalactan. J. Biol. Chem. 283:12992–3000 [Google Scholar]
  17. Birch HL, Alderwick LJ, Appelmelk BJ, Maaskant J, Bhatt A. 17.  et al. 2010. A truncated lipoglycan from mycobacteria with altered immunological properties. PNAS 107:2634–39 [Google Scholar]
  18. Birch HL, Alderwick LJ, Bhatt A, Rittmann D, Krumbach K. 18.  et al. 2008. Biosynthesis of mycobacterial arabinogalactan: identification of a novel α(1→3) arabinofuranosyltransferase. Mol. Microbiol. 69:1191–206 [Google Scholar]
  19. Bouhss A, Mengin-Lecreulx D, Le Beller D, Van Heijenoort J. 19.  1999. Topological analysis of the MraY protein catalysing the first membrane step of peptidoglycan synthesis. Mol. Microbiol. 34:576–85 [Google Scholar]
  20. Braibant M, Gilot P, Content J. 20.  2000. The ATP binding cassette (ABC) transport systems of Mycobacterium tuberculosis. FEMS Microbiol. Rev. 24:449–67 [Google Scholar]
  21. Brennan PJ, Nikaido H. 21.  1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64:29–63 [Google Scholar]
  22. Calvanese L, Falcigno L, Maglione C, Marasco D, Ruggiero A. 22.  et al. 2014. Structural and binding properties of the PASTA domain of PonA2, a key penicillin binding protein from Mycobacterium tuberculosis. Biopolymers 101:712–19 [Google Scholar]
  23. Chang YH, Labgold MR, Richards JH. 23.  1990. Altering enzymatic activity: Recruitment of carboxypeptidase activity into an RTEM beta-lactamase/penicillin-binding protein 5 chimera. PNAS 87:2823–27 [Google Scholar]
  24. Chatterjee D, Bozic CM, McNeil M, Brennan PJ. 24.  1991. Structural features of the arabinan component of the lipoarabinomannan of Mycobacterium tuberculosis. J. Biol. Chem. 266:9652–60 [Google Scholar]
  25. Chatterjee D, Hunter SW, McNeil M, Brennan PJ. 25.  1992. Lipoarabinomannan: multiglycosylated form of the mycobacterial mannosylphosphatidylinositols. J. Biol. Chem. 267:6228–33 [Google Scholar]
  26. Chatterjee D, Khoo KH, McNeil MR, Dell A, Morris HR, Brennan PJ. 26.  1993. Structural definition of the non-reducing termini of mannose-capped LAM from Mycobacterium tuberculosis through selective enzymatic degradation and fast atom bombardment-mass spectrometry. Glycobiology 3:497–506 [Google Scholar]
  27. Chatterjee D, Lowell K, Rivoire B, McNeil MR, Brennan PJ. 27.  1992. Lipoarabinomannan of Mycobacterium tuberculosis: capping with mannosyl residues in some strains. J. Biol. Chem. 267:6234–39 [Google Scholar]
  28. Cordillot M, Dubee V, Triboulet S, Dubost L, Marie A. 28.  et al. 2013. In vitro cross-linking of Mycobacterium tuberculosis peptidoglycan by l,d-transpeptidases and inactivation of these enzymes by carbapenems. Antimicrob. Agents Chemother. 57:5940–45 [Google Scholar]
  29. Crellin PK, Kovacevic S, Martin KL, Brammananth R, Morita YS. 29.  et al. 2008. Mutations in pimE restore lipoarabinomannan synthesis and growth in a Mycobacterium smegmatis lpqW mutant. J. Bacteriol. 190:3690–99 [Google Scholar]
  30. Daffe M, Brennan PJ, McNeil M. 30.  1990. Predominant structural features of the cell wall arabinogalactan of Mycobacterium tuberculosis as revealed through characterization of oligoglycosyl alditol fragments by gas chromatography/mass spectrometry and by 1H and 13C NMR analyses. J. Biol. Chem. 265:6734–43 [Google Scholar]
  31. Delmas C, Gilleron M, Brando T, Vercellone A, Gheorghui M. 31.  et al. 1997. Comparative structural study of the mannosylated-lipoarabinomannans from Mycobacterium bovis BCG vaccine strains: characterization and localization of succinates. Glycobiology 7:811–17 [Google Scholar]
  32. Dianiskova P, Kordulakova J, Skovierova H, Kaur D, Jackson M. 32.  et al. 2011. Investigation of ABC transporter from mycobacterial arabinogalactan biosynthetic cluster. Gen. Physiol. Biophys. 30:239–50 [Google Scholar]
  33. Dinadayala P, Kaur D, Berg S, Amin AG, Vissa VD. 33.  et al. 2006. Genetic basis for the synthesis of the immunomodulatory mannose caps of lipoarabinomannan in Mycobacterium tuberculosis.. J. Biol. Chem. 281:20027–35 [Google Scholar]
  34. Draper P, Khoo KH, Chatterjee D, Dell A, Morris HR. 34.  1997. Galactosamine in walls of slow-growing mycobacteria. Biochem. J. 327:Part 2519–25 [Google Scholar]
  35. Dubnau E, Chan J, Raynaud C, Mohan VP, Laneelle MA. 35.  et al. 2000. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol. Microbiol. 36:630–37 [Google Scholar]
  36. El Zoeiby A, Sanschagrin F, Levesque RC. 36.  2003. Structure and function of the Mur enzymes: development of novel inhibitors. Mol. Microbiol. 47:1–12 [Google Scholar]
  37. Escuyer VE, Lety MA, Torrelles JB, Khoo KH, Tang JB. 37.  et al. 2001. The role of the embA and embB gene products in the biosynthesis of the terminal hexaarabinofuranosyl motif of Mycobacterium smegmatis arabinogalactan. J. Biol. Chem. 276:48854–62 [Google Scholar]
  38. Galandrin S, Guillet V, Rane RS, Leger M, Radha N. 38.  et al. 2013. Assay development for identifying inhibitors of the mycobacterial FadD32 activity. J. Biomol. Screen. 18:576–87 [Google Scholar]
  39. Gilleron M, Jackson M, Nigou J, Puzo G. 39.  2008. Structure, biosynthesis, and activities of the phosphatidyl-myo-inositol-based lipoglycans. The Mycobacterial Cell Envelope J Daffé, J-M Reyrat, chap. 6 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  40. Gilleron M, Quesniaux VF, Puzo G. 40.  2003. Acylation state of the phosphatidylinositol hexamannosides from Mycobacterium bovis bacillus Calmette Guerin and Mycobacterium tuberculosis H37Rv and its implication in Toll-like receptor response. J. Biol. Chem. 278:29880–89 [Google Scholar]
  41. Glickman MS. 41.  2003. The mmaA2 gene of Mycobacterium tuberculosis encodes the distal cyclopropane synthase of the α-mycolic acid. J. Biol. Chem. 278:7844–49 [Google Scholar]
  42. Glickman MS, Cox JS, Jacobs WR Jr. 42.  2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell 5:717–27 [Google Scholar]
  43. Guerardel Y, Maes E, Briken V, Chirat F, Leroy Y. 43.  et al. 2003. Lipomannan and lipoarabinomannan from a clinical isolate of Mycobacterium kansasii: novel structural features and apoptosis-inducing properties. J. Biol. Chem. 278:36637–51 [Google Scholar]
  44. Guerardel Y, Maes E, Elass E, Leroy Y, Timmerman P. 44.  et al. 2002. Structural study of lipomannan and lipoarabinomannan from Mycobacterium chelonae: presence of unusual components with α-1,3-mannopyranose side chains. J. Biol. Chem. 277:30635–48 [Google Scholar]
  45. Guerin ME, Kaur D, Somashekar BS, Gibbs S, Gest P. 45.  et al. 2009. New insights into the early steps of phosphatidylinositol mannoside biosynthesis in mycobacteria: PimB′ is an essential enzyme of Mycobacterium smegmatis. J. Biol. Chem. 284:25687–96 [Google Scholar]
  46. Guerin ME, Kordulakova J, Schaeffer F, Svetlikova Z, Buschiazzo A. 46.  et al. 2007. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J. Biol. Chem. 282:20705–14 [Google Scholar]
  47. Hett EC, Chao MC, Rubin EJ. 47.  2010. Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLOS Pathog. 6e1001020
  48. Jackson M, Raynaud C, Laneelle MA, Guilhot C, Laurent-Winter C. 48.  et al. 1999. Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol. Microbiol. 31:1573–87 [Google Scholar]
  49. Jankute M, Byng CV, Alderwick LJ, Besra GS. 49.  2014. Elucidation of a protein-protein interaction network involved in Corynebacterium glutamicum cell wall biosynthesis as determined by bacterial two-hybrid analysis. Glycoconj. J. 31:475–83 [Google Scholar]
  50. Jankute M, Grover S, Birch HL, Besra GS. 50.  2014. Genetics of mycobacterial arabinogalactan and lipoarabinomannan assembly. Molecular Genetics of Mycobacteria GF Hatfull, WR Jacobs Jr 535–57 Washington, DC: Am. Soc. Microbiol. [Google Scholar]
  51. Jankute M, Grover S, Rana AK, Besra GS. 51.  2012. Arabinogalactan and lipoarabinomannan biosynthesis: structure, biogenesis and their potential as drug targets. Future Microbiol. 7:129–47 [Google Scholar]
  52. Jiang T, He L, Zhan Y, Zang S, Ma Y. 52.  et al. 2011. The effect of MSMEG_6402 gene disruption on the cell wall structure of Mycobacterium smegmatis. Microb. Pathog. 51:156–60 [Google Scholar]
  53. Jin Y, Xin Y, Zhang W, Ma Y. 53.  2010. Mycobacterium tuberculosis Rv1302 and Mycobacterium smegmatis MSMEG_4947 have WecA function and MSMEG_4947 is required for the growth of M. smegmatis. FEMS Microbiol. Lett. 310:54–61 [Google Scholar]
  54. Joe M, Sun D, Taha H, Completo GC, Croudace JE. 54.  et al. 2006. The 5-deoxy-5-methylthio-xylofuranose residue in mycobacterial lipoarabinomannan: absolute stereochemistry, linkage position, conformation, and immunomodulatory activity. J. Am. Chem. Soc. 128:5059–72 [Google Scholar]
  55. Kaur D, McNeil MR, Khoo KH, Chatterjee D, Crick DC. 55.  et al. 2007. New insights into the biosynthesis of mycobacterial lipomannan arising from deletion of a conserved gene. J. Biol. Chem. 282:27133–40 [Google Scholar]
  56. Kaur D, Obregon-Henao A, Pham H, Chatterjee D, Brennan PJ, Jackson M. 56.  2008. Lipoarabinomannan of Mycobacterium: mannose capping by a multifunctional terminal mannosyltransferase. PNAS 105:17973–77 [Google Scholar]
  57. Khoo KH, Dell A, Morris HR, Brennan PJ, Chatterjee D. 57.  1995. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J. Biol. Chem. 270:12380–89 [Google Scholar]
  58. Khoo KH, Dell A, Morris HR, Brennan PJ, Chatterjee D. 58.  1995. Structural definition of acylated phosphatidylinositol mannosides from Mycobacterium tuberculosis: definition of a common anchor for lipomannan and lipoarabinomannan. Glycobiology 5:117–27 [Google Scholar]
  59. Kim DH, Lees WJ, Kempsell KE, Lane WS, Duncan K, Walsh CT. 59.  1996. Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry 35:4923–28 [Google Scholar]
  60. Kordulakova J, Gilleron M, Mikusova K, Puzo G, Brennan PJ. 60.  et al. 2002. Definition of the first mannosylation step in phosphatidylinositol mannoside synthesis: PimA is essential for growth of mycobacteria. J. Biol. Chem. 277:31335–44 [Google Scholar]
  61. Kordulakova J, Gilleron M, Puzo G, Brennan PJ, Gicquel B. 61.  et al. 2003. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of Mycobacterium species. J. Biol. Chem. 278:36285–95 [Google Scholar]
  62. Kovacevic S, Anderson D, Morita YS, Patterson J, Haites R. 62.  et al. 2006. Identification of a novel protein with a role in lipoarabinomannan biosynthesis in mycobacteria. J. Biol. Chem. 281:9011–17 [Google Scholar]
  63. Kremer L, Dover LG, Morehouse C, Hitchin P, Everett M. 63.  et al. 2001. Galactan biosynthesis in Mycobacterium tuberculosis: identification of a bifunctional UDP-galactofuranosyltransferase. J. Biol. Chem. 276:26430–40 [Google Scholar]
  64. Kremer L, Gurcha SS, Bifani P, Hitchen PG, Baulard A. 64.  et al. 2002. Characterization of a putative α-mannosyltransferase involved in phosphatidylinositol trimannoside biosynthesis in Mycobacterium tuberculosis. Biochem. J. 363:437–47 [Google Scholar]
  65. Kurosu M, Mahapatra S, Narayanasamy P, Crick DC. 65.  2007. Chemoenzymatic synthesis of Park's nucleotide: toward the development of high-throughput screening for MraY inhibitors. Tetrahedron Lett. 48:799–803 [Google Scholar]
  66. Larrouy-Maumus G, Škovierová H, Dhouib R, Angala SK, Zuberogoitia S. 66.  et al. 2012. A small multidrug resistance-like transporter involved in the arabinosylation of arabinogalactan and lipoarabinomannan in mycobacteria. J. Biol. Chem. 287:39933–41 [Google Scholar]
  67. Lavollay M, Arthur M, Fourgeaud M, Dubost L, Marie A. 67.  et al. 2008. The peptidoglycan of stationary-phase Mycobacterium tuberculosis predominantly contains cross-links generated by l,d-transpeptidation. J. Bacteriol. 190:4360–66 [Google Scholar]
  68. Lea-Smith DJ, Martin KL, Pyke JS, Tull D, McConville MJ. 68.  et al. 2008. Analysis of a new mannosyltransferase required for the synthesis of phosphatidylinositol mannosides and lipoarbinomannan reveals two lipomannan pools in corynebacterineae. J. Biol. Chem. 283:6773–82 [Google Scholar]
  69. Lee A, Wu SW, Scherman MS, Torrelles JB, Chatterjee D. 69.  et al. 2006. Sequencing of oligoarabinosyl units released from mycobacterial arabinogalactan by endogenous arabinanase: identification of distinctive and novel structural motifs. Biochemistry 45:15817–28 [Google Scholar]
  70. Lee YC, Ballou CE. 70.  1964. Structural studies on the myo-inositol mannosides from the glycolipids of Mycobacterium tuberculosis and Mycobacterium phlei. J. Biol. Chem. 239:1316–27 [Google Scholar]
  71. Levengood MR, Splain RA, Kiessling LL. 71.  2011. Monitoring processivity and length control of a carbohydrate polymerase. J. Am. Chem. Soc. 133:12758–66 [Google Scholar]
  72. Liu J, Barry CE 3rd, Besra GS, Nikaido H. 72.  1996. Mycolic acid structure determines the fluidity of the mycobacterial cell wall. J. Biol. Chem. 271:29545–51 [Google Scholar]
  73. Liu J, Mushegian A. 73.  2003. Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Protein Sci. 12:1418–31 [Google Scholar]
  74. Maeda N, Nigou J, Herrmann JL, Jackson M, Amara A. 74.  et al. 2003. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278:5513–16 [Google Scholar]
  75. Mahapatra S, Crick DC, Brennan PJ. 75.  2000. Comparison of the UDP-N-acetylmuramate:l-alanine ligase enzymes from Mycobacterium tuberculosis and Mycobacterium leprae. J. Bacteriol. 182:6827–30 [Google Scholar]
  76. Mahapatra S, Scherman H, Brennan PJ, Crick DC. 76.  2005. N glycolylation of the nucleotide precursors of peptidoglycan biosynthesis of Mycobacterium spp. is altered by drug treatment. J. Bacteriol. 187:2341–47 [Google Scholar]
  77. May JF, Splain RA, Brotschi C, Kiessling LL. 77.  2009. A tethering mechanism for length control in a processive carbohydrate polymerization. PNAS 106:11851–56 [Google Scholar]
  78. McNeil M, Daffe M, Brennan PJ. 78.  1990. Evidence for the nature of the link between the arabinogalactan and peptidoglycan of mycobacterial cell walls. J. Biol. Chem. 265:18200–6 [Google Scholar]
  79. McNeil M, Daffe M, Brennan PJ. 79.  1991. Location of the mycolyl ester substituents in the cell walls of mycobacteria. J. Biol. Chem. 266:13217–23 [Google Scholar]
  80. McNeil M, Wallner SJ, Hunter SW, Brennan PJ. 80.  1987. Demonstration that the galactosyl and arabinosyl residues in the cell-wall arabinogalactan of Mycobacterium leprae and Mycobacterium tuberculosis are furanoid. Carbohydr. Res. 166:299–308 [Google Scholar]
  81. McNeil MR, Robuck KG, Harter M, Brennan PJ. 81.  1994. Enzymatic evidence for the presence of a critical terminal hexa-arabinoside in the cell walls of Mycobacterium tuberculosis. Glycobiology 4:165–73 [Google Scholar]
  82. Meniche X, de Sousa-d'Auria C, Van-der-Rest B, Bhamidi S, Huc E. 82.  et al. 2008. Partial redundancy in the synthesis of the d-arabinose incorporated in the cell wall arabinan of Corynebacterineae. Microbiology 154:2315–26 [Google Scholar]
  83. Mikusova K, Belanova M, Kordulakova J, Honda K, McNeil MR. 83.  et al. 2006. Identification of a novel galactosyl transferase involved in biosynthesis of the mycobacterial cell wall. J. Bacteriol. 188:6592–98 [Google Scholar]
  84. Mikusova K, Huang H, Yagi T, Holsters M, Vereecke D. 84.  et al. 2005. Decaprenylphosphoryl arabinofuranose, the donor of the d-arabinofuranosyl residues of mycobacterial arabinan, is formed via a two-step epimerization of decaprenylphosphoryl ribose. J. Bacteriol. 187:8020–25 [Google Scholar]
  85. Mikusova K, Mikus M, Besra GS, Hancock I, Brennan PJ. 85.  1996. Biosynthesis of the linkage region of the mycobacterial cell wall. J. Biol. Chem. 271:7820–28 [Google Scholar]
  86. Mills JA, Motichka K, Jucker M, Wu HP, Uhlik BC. 86.  et al. 2004. Inactivation of the mycobacterial rhamnosyltransferase, which is needed for the formation of the arabinogalactan-peptidoglycan linker, leads to irreversible loss of viability. J. Biol. Chem. 279:43540–46 [Google Scholar]
  87. Minnikin DE. 87.  1982. Lipids: complex lipids, their chemistry, biosynthesis and roles. The Biology of the Mycobacteria CS Ratledge, J Stanford 95–184 London: Academic [Google Scholar]
  88. Minnikin DE, Kremer L, Dover LG, Besra GS. 88.  2002. The methyl-branched fortifications of Mycobacterium tuberculosis. Chem. Biol. 9:545–53 [Google Scholar]
  89. Minnikin DE, Lee OY, Wu HH, Nataraj V, Donoghue HD. 89.  et al. 2015. Pathophysiological implications of cell envelope structure in Mycobacterium tuberculosis and related taxa. Tuberculosis W Ribón, chap 7, Rijeka, Croatia: Intech [Google Scholar]
  90. Mishra AK, Alderwick LJ, Rittmann D, Tatituri RV, Nigou J. 90.  et al. 2007. Identification of an α(1→6) mannopyranosyltransferase (MptA), involved in Corynebacterium glutamicum lipomanann biosynthesis, and identification of its orthologue in Mycobacterium tuberculosis. Mol. Microbiol. 65:1503–17 [Google Scholar]
  91. Mishra AK, Alderwick LJ, Rittmann D, Wang C, Bhatt A. 91.  et al. 2008. Identification of a novel α(1→6) mannopyranosyltransferase MptB from Corynebacterium glutamicum by deletion of a conserved gene, NCgl1505, affords a lipomannan- and lipoarabinomannan-deficient mutant. Mol. Microbiol. 68:1595–613 [Google Scholar]
  92. Mishra AK, Driessen NN, Appelmelk BJ, Besra GS. 92.  2011. Lipoarabinomannan and related glycoconjugates: Structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction. FEMS Microbiol. Rev. 35:1126–57 [Google Scholar]
  93. Mishra AK, Krumbach K, Rittmann D, Appelmelk B, Pathak V. 93.  et al. 2011. Lipoarabinomannan biosynthesis in Corynebacterineae: The interplay of two α(1→2)-mannopyranosyltransferases MptC and MptD in mannan branching. Mol. Microbiol. 80:1241–59 [Google Scholar]
  94. Mohammadi T, van Dam V, Sijbrandi R, Vernet T, Zapun A. 94.  et al. 2011. Identification of FtsW as a transporter of lipid-linked cell wall precursors across the membrane. EMBO J. 30:1425–32 [Google Scholar]
  95. Morita YS, Patterson JH, Billman-Jacobe H, McConville MJ. 95.  2004. Biosynthesis of mycobacterial phosphatidylinositol mannosides. Biochem. J. 378:589–97 [Google Scholar]
  96. Morita YS, Sena CB, Waller RF, Kurokawa K, Sernee MF. 96.  et al. 2006. PimE is a polyprenol-phosphate-mannose-dependent mannosyltransferase that transfers the fifth mannose of phosphatidylinositol mannoside in mycobacteria. J. Biol. Chem. 281:25143–55 [Google Scholar]
  97. Munshi T, Gupta A, Evangelopoulos D, Guzman JD, Gibbons S. 97.  et al. 2013. Characterisation of ATP-dependent Mur ligases involved in the biogenesis of cell wall peptidoglycan in Mycobacterium tuberculosis. PLOS ONE 8:e60143 [Google Scholar]
  98. Nigou J, Gilleron M, Brando T, Puzo G. 98.  2004. Structural analysis of mycobacterial lipoglycans. Appl. Biochem. Biotechnol. 118:253–67 [Google Scholar]
  99. Nigou J, Gilleron M, Puzo G. 99.  2003. Lipoarabinomannans: From structure to biosynthesis. Biochimie 85:153–66 [Google Scholar]
  100. Nigou J, Gilleron M, Rojas M, Garcia LF, Thurnher M, Puzo G. 100.  2002. Mycobacterial lipoarabinomannans: Modulators of dendritic cell function and the apoptotic response. Microbes Infect. 4:945–53 [Google Scholar]
  101. Ortalo-Magne A, Lemassu A, Laneelle MA, Bardou F, Silve G. 101.  et al. 1996. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J. Bacteriol. 178:456–61 [Google Scholar]
  102. Peng W, Zou L, Bhamidi S, McNeil MR, Lowary TL. 102.  2012. The galactosamine residue in mycobacterial arabinogalactan is α-linked. J. Org. Chem. 77:9826–32 [Google Scholar]
  103. Pitarque S, Larrouy-Maumus G, Payre B, Jackson M, Puzo G, Nigou J. 103.  2008. The immunomodulatory lipoglycans, lipoarabinomannan and lipomannan, are exposed at the mycobacterial cell surface. Tuberculosis (Edinb) 88:560–65 [Google Scholar]
  104. Raymond JB, Mahapatra S, Crick DC, Pavelka MS Jr. 104.  2005. Identification of the namH gene, encoding the hydroxylase responsible for the N-glycolylation of the mycobacterial peptidoglycan. J. Biol. Chem. 280:326–33 [Google Scholar]
  105. Rose NL, Completo GC, Lin SJ, McNeil M, Palcic MM, Lowary TL. 105.  2006. Expression, purification, and characterization of a galactofuranosyltransferase involved in Mycobacterium tuberculosis arabinogalactan biosynthesis. J. Am. Chem. Soc. 128:6721–29 [Google Scholar]
  106. Ruiz N. 106.  2008. Bioinformatics identification of MurJ (MviN) as the peptidoglycan lipid II flippase in Escherichia coli. PNAS 105:15553–57 [Google Scholar]
  107. Sacco E, Hugonnet JE, Josseaume N, Cremniter J, Dubost L. 107.  et al. 2010. Activation of the L,D-transpeptidation peptidoglycan cross-linking pathway by a metallo-D,D-carboxypeptidase in Enterococcus faecium. Mol. Microbiol. 75:874–85 [Google Scholar]
  108. Schleifer KH, Kandler O. 108.  1972. Peptidoglycan types of bacterial cell walls and their taxonomic implications.. Bacteriol. Rev. 36:407–77 [Google Scholar]
  109. Schlesinger LS, Hull SR, Kaufman TM. 109.  1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152:4070–79 [Google Scholar]
  110. Schoonmaker MK, Bishai WR, Lamichhane G. 110.  2014. Nonclassical transpeptidases of Mycobacterium tuberculosis alter cell size, morphology, the cytosolic matrix, protein localization, virulence, and resistance to β-lactams. J. Bacteriol 196:1394–402 [Google Scholar]
  111. Seidel M, Alderwick LJ, Birch HL, Sahm H, Eggeling L, Besra GS. 111.  2007. Identification of a novel arabinofuranosyltransferase AftB involved in a terminal step of cell wall arabinan biosynthesis in Corynebacterianeae, such as Corynebacterium glutamicum and Mycobacterium tuberculosis. J. Biol. Chem 282:14729–40 [Google Scholar]
  112. Severn WB, Furneaux RH, Falshaw R, Atkinson PH. 112.  1998. Chemical and spectroscopic characterisation of the phosphatidylinositol manno-oligosaccharides from Mycobacterium bovis AN5 and WAg201 and Mycobacterium smegmatis mc2155. Carbohydr. Res 308:397–408 [Google Scholar]
  113. Sham LT, Butler EK, Lebar MD, Kahne D, Bernhardt TG, Ruiz N. 113.  2014. Bacterial cell wall. MurJ is the flippase of lipid-linked precursors for peptidoglycan biogenesis. Science 345:220–22 [Google Scholar]
  114. Shi L, Berg S, Lee A, Spencer JS, Zhang J. 114.  et al. 2006. The carboxy terminus of EmbC from Mycobacterium smegmatis mediates chain length extension of the arabinan in lipoarabinomannan. J. Biol. Chem 281:19512–26 [Google Scholar]
  115. Skovierova H, Larrouy-Maumus G, Pham H, Belanova M, Barilone N. 115.  et al. 2010. Biosynthetic origin of the galactosamine substituent of arabinogalactan in Mycobacterium tuberculosis. J. Biol. Chem 285:41348–55 [Google Scholar]
  116. Skovierova H, Larrouy-Maumus G, Zhang J, Kaur D, Barilone N. 116.  et al. 2009. AftD, a novel essential arabinofuranosyltransferase from mycobacteria. Glycobiology 19:1235–47 [Google Scholar]
  117. Smith CA. 117.  2006. Structure, function and dynamics in the mur family of bacterial cell wall ligases. J. Mol. Biol 362:640–55 [Google Scholar]
  118. Takayama K, Wang C, Besra GS. 118.  2005. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18:81–101 [Google Scholar]
  119. Treumann A, Xidong F, McDonnell L, Derrick PJ, Ashcroft AE. 119.  et al. 2002. 5-Methylthiopentose: A new substituent on lipoarabinomannan in Mycobacterium tuberculosis. J. Mol. Biol 316:89–100 [Google Scholar]
  120. Trivedi OA, Arora P, Sridharan V, Tickoo R, Mohanty D, Gokhale RS. 120.  2004. Enzymic activation and transfer of fatty acids as acyl-adenylates in mycobacteria. Nature 428:441–45 [Google Scholar]
  121. Trunkfield AE, Gurcha SS, Besra GS, Bugg TD. 121.  2010. Inhibition of Escherichia coli glycosyltransferase MurG and Mycobacterium tuberculosis Gal transferase by uridine-linked transition state mimics. Bioorg. Med. Chem. 18:2651–63 [Google Scholar]
  122. Turnbull WB, Shimizu KH, Chatterjee D, Homans SW, Treumann A. 122.  2004. Identification of the 5-methylthiopentosyl substituent in Mycobacterium tuberculosis lipoarabinomannan. Angew. Chem. Int. Ed. Engl 43:3918–22 [Google Scholar]
  123. Turnbull WB, Stalford SA. 123.  2012. Methylthioxylose—a jewel in the mycobacterial crown?. Org. Biomol. Chem 10:5698–706 [Google Scholar]
  124. van Heijenoort J. 124.  2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25R–36R [Google Scholar]
  125. Veyron-Churlet R, Bigot S, Guerrini O, Verdoux S, Malaga W. 125.  et al. 2005. The biosynthesis of mycolic acids in Mycobacterium tuberculosis relies on multiple specialized elongation complexes interconnected by specific protein-protein interactions. J. Mol. Biol 353:847–58 [Google Scholar]
  126. Veyron-Churlet R, Guerrini O, Mourey L, Daffe M, Zerbib D. 126.  2004. Protein-protein interactions within the Fatty Acid Synthase-II system of Mycobacterium tuberculosis are essential for mycobacterial viability. Mol. Microbiol. 54:1161–72 [Google Scholar]
  127. Watanabe M, Aoyagi Y, Mitome H, Fujita T, Naoki H. 127.  et al. 2002. Location of functional groups in mycobacterial meromycolate chains; the recognition of new structural principles in mycolic acids. Microbiology 148:1881–902 [Google Scholar]
  128. Watanabe M, Aoyagi Y, Ridell M, Minnikin DE. 128.  2001. Separation and characterization of individual mycolic acids in representative mycobacteria. Microbiology 147:1825–37 [Google Scholar]
  129. Wheatley RW, Zheng RB, Richards MR, Lowary TL, Ng KK. 129.  2012. Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial arabinogalactan. J. Biol. Chem. 287:28132–43 [Google Scholar]
  130. Wolucka BA, McNeil MR, de Hoffmann E, Chojnacki T, Brennan PJ. 130.  1994. Recognition of the lipid intermediate for arabinogalactan/arabinomannan biosynthesis and its relation to the mode of action of ethambutol on mycobacteria. J. Biol. Chem. 269:23328–35 [Google Scholar]
  131. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE 3rd. 131.  1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. PNAS 92:6630–34 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104121
Loading
/content/journals/10.1146/annurev-micro-091014-104121
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error