1932

Abstract

With the realization that bacteria achieve exquisite levels of spatiotemporal organization has come the challenge of discovering the underlying mechanisms. In this review, we describe three classes of such mechanisms, each of which has physical origins: the use of landmarks, the creation of higher-order structures that enable geometric sensing, and the emergence of length scales from systems of chemical reactions coupled to diffusion. We then examine the diversity of geometric cues that exist even in cells with relatively simple geometries, and end by discussing both new technologies that could drive further discovery and the implications of our current knowledge for the behavior, fitness, and evolution of bacteria. The organizational strategies described here are employed in a wide variety of systems and in species across all kingdoms of life; in many ways they provide a general blueprint for organizing the building blocks of life.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091014-104313
2015-10-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/69/1/annurev-micro-091014-104313.html?itemId=/content/journals/10.1146/annurev-micro-091014-104313&mimeType=html&fmt=ahah

Literature Cited

  1. Alyahya SA, Alexander R, Costa T, Henriques AO, Emonet T, Jacobs-Wagner C. 1.  2009. RodZ, a component of the bacterial core morphogenic apparatus. PNAS 106:1239–44 [Google Scholar]
  2. Amir A, Babaeipour F, McIntosh DB, Nelson DR, Jun S. 2.  2014. Bending forces plastically deform growing bacterial cell walls. PNAS 111:5778–83 [Google Scholar]
  3. Angelastro PS, Sliusarenko O, Jacobs-Wagner C. 3.  2010. Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. J. Bacteriol. 192:539–52 [Google Scholar]
  4. Arjunan SN, Tomita M. 4.  2010. A new multicompartmental reaction-diffusion modeling method links transient membrane attachment of E. coli MinE to E-ring formation. Syst. Synth. Biol. 4:35–53 [Google Scholar]
  5. Bacia K, Scherfeld D, Kahya N, Schwille P. 5.  2004. Fluorescence correlation spectroscopy relates rafts in model and native membranes. Biophys. J. 87:1034–43 [Google Scholar]
  6. Bakshi S, Siryaporn A, Goulian M, Weisshaar JC. 6.  2012. Superresolution imaging of ribosomes and RNA polymerase in live Escherichia coli cells. Mol. Microbiol. 85:21–38 [Google Scholar]
  7. Bean GJ, Flickinger ST, Westler WM, McCully ME, Sept D. 7.  et al. 2009. A22 disrupts the bacterial actin cytoskeleton by directly binding and inducing a low-affinity state in MreB. Biochemistry 48:4852–57 [Google Scholar]
  8. Bendezu FO, Hale CA, Bernhardt TG, de Boer PA. 8.  2009. RodZ (YfgA) is required for proper assembly of the MreB actin cytoskeleton and cell shape in E. coli. EMBO J. 28:193–204 [Google Scholar]
  9. Bernhardt TG, de Boer PA. 9.  2005. SlmA, a nucleoid-associated, FtsZ binding protein required for blocking septal ring assembly over chromosomes in E. coli. Mol. Cell 18:555–64 [Google Scholar]
  10. Bi E, Lutkenhaus J. 10.  1993. Cell division inhibitors SulA and MinCD prevent formation of the FtsZ ring. J. Bacteriol. 175:1118–25 [Google Scholar]
  11. Billings G, Ouzounov N, Ursell T, Desmarais SM, Shaevitz J. 11.  et al. 2014. De novo morphogenesis in L-forms via geometric control of cell growth. Mol. Microbiol. 93:883–96 [Google Scholar]
  12. Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS. 12.  et al. 2006. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444:899–904 [Google Scholar]
  13. Boal DH. 13.  2012. Mechanics of the Cell Cambridge, NY: Cambridge Univ. Press
  14. Briegel A, Ding HJ, Li Z, Werner J, Gitai Z. 14.  et al. 2008. Location and architecture of the Caulobacter crescentus chemoreceptor array. Mol. Microbiol. 69:30–41 [Google Scholar]
  15. Briegel A, Ortega DR, Tocheva EI, Wuichet K, Li Z. 15.  et al. 2009. Universal architecture of bacterial chemoreceptor arrays. PNAS 106:17181–86 [Google Scholar]
  16. Brown PJ, de Pedro MA, Kysela DT, Van der Henst C, Kim J. 16.  et al. 2012. Polar growth in the alphaproteobacterial order Rhizobiales. PNAS 109:1697–701 [Google Scholar]
  17. Chen S, Beeby M, Murphy GE, Leadbetter JR, Hendrixson DR. 17.  et al. 2011. Structural diversity of bacterial flagellar motors. EMBO J. 30:2972–81 [Google Scholar]
  18. Chen YE, Tropini C, Jonas K, Tsokos CG, Huang KC, Laub MT. 18.  2011. Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. PNAS 108:1052–57 [Google Scholar]
  19. Chen YE, Tsokos CG, Biondi EG, Perchuk BS, Laub MT. 19.  2009. Dynamics of two Phosphorelays controlling cell cycle progression in Caulobacter crescentus. J. Bacteriol. 191:7417–29 [Google Scholar]
  20. Christen M, Kulasekara HD, Christen B, Kulasekara BR, Hoffman LR, Miller SI. 20.  2010. Asymmetrical distribution of the second messenger c-di-GMP upon bacterial cell division. Science 328:1295–97 [Google Scholar]
  21. Colavin A, Hsin J, Huang KC. 21.  2014. Effects of polymerization and nucleotide identity on the conformational dynamics of the bacterial actin homolog MreB. PNAS 111:3585–90 [Google Scholar]
  22. Coquel AS, Jacob JP, Primet M, Demarez A, Dimiccoli M. 22.  et al. 2013. Localization of protein aggregation in Escherichia coli is governed by diffusion and nucleoid macromolecular crowding effect. PLOS Comput. Biol. 9:e1003038 [Google Scholar]
  23. Corbin BD, Yu XC, Margolin W. 23.  2002. Exploring intracellular space: function of the Min system in round-shaped Escherichia coli. EMBO J. 21:1998–2008 [Google Scholar]
  24. de Boer PA, Crossley RE, Rothfield LI. 24.  1989. A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli. Cell 56:641–49 [Google Scholar]
  25. de Pedro MA, Schwarz H, Koch AL. 25.  2003. Patchiness of murein insertion into the sidewall of Escherichia coli. Microbiology 149:1753–61 [Google Scholar]
  26. de Pedro MA, Young KD, Holtje JV, Schwarz H. 26.  2003. Branching of Escherichia coli cells arises from multiple sites of inert peptidoglycan. J. Bacteriol. 185:1147–52 [Google Scholar]
  27. Defeu Soufo HJ, Reimold C, Linne U, Knust T, Gescher J, Graumann PL. 27.  2010. Bacterial translation elongation factor EF-Tu interacts and colocalizes with actin-like MreB protein. PNAS 107:3163–68 [Google Scholar]
  28. Deng Y, Sun M, Shaevitz JW. 28.  2011. Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys. Rev. Lett. 107:158101 [Google Scholar]
  29. Di Ventura B, Sourjik V. 29.  2011. Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol. Syst. Biol. 7:457 [Google Scholar]
  30. Dominguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Soldner R, Carballido-Lopez R. 30.  2011. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333:225–28 [Google Scholar]
  31. Dowhan W, Mileykovskaya E, Bogdanov M. 31.  2004. Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim. Biophys. Acta 1666:19–39 [Google Scholar]
  32. Fange D, Elf J. 32.  2006. Noise-induced Min phenotypes in E. coli. PLOS Comput. Biol. 2:e80 [Google Scholar]
  33. Fisher JK, Bourniquel A, Witz G, Weiner B, Prentiss M, Kleckner N. 33.  2013. Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells. Cell 153:882–95 [Google Scholar]
  34. Fletcher DA, Mullins RD. 34.  2010. Cell mechanics and the cytoskeleton. Nature 463:485–92 [Google Scholar]
  35. Fu X, Shih YL, Zhang Y, Rothfield LI. 35.  2001. The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. PNAS 98:980–85 [Google Scholar]
  36. Gahlmann A, Moerner WE. 36.  2014. Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat. Rev. Microbiol. 12:9–22 [Google Scholar]
  37. Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T. 37.  2011. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333:222–25 [Google Scholar]
  38. Garner EC, Campbell CS, Mullins RD. 38.  2004. Dynamic instability in a DNA-segregating prokaryotic actin homolog. Science 306:1021–25 [Google Scholar]
  39. Gennis RB. 39.  1989. Biomembranes: Molecular Structure and Function New York: Springer-Verlag
  40. Gierer A, Meinhardt H. 40.  1972. A theory of biological pattern formation. Kybernetik 12:30–39 [Google Scholar]
  41. Gitai Z, Dye N, Shapiro L. 41.  2004. An actin-like gene can determine cell polarity in bacteria. PNAS 101:8643–48 [Google Scholar]
  42. Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L. 42.  2005. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120:329–41 [Google Scholar]
  43. Goley ED, Dye NA, Werner JN, Gitai Z, Shapiro L. 43.  2010. Imaging-based identification of a critical regulator of FtsZ protofilament curvature in Caulobacter. Mol. Cell 39:975–87 [Google Scholar]
  44. Goley ED, Yeh YC, Hong SH, Fero MJ, Abeliuk E. 44.  et al. 2011. Assembly of the Caulobacter cell division machine. Mol. Microbiol. 80:1680–98 [Google Scholar]
  45. Guberman JM, Fay A, Dworkin J, Wingreen NS, Gitai Z. 45.  2008. PSICIC: noise and asymmetry in bacterial division revealed by computational image analysis at sub-pixel resolution. PLOS Comput. Biol. 4:e1000233 [Google Scholar]
  46. Hale CA, Meinhardt H, de Boer PA. 46.  2001. Dynamic localization cycle of the cell division regulator MinE in Escherichia coli. EMBO J. 20:1563–72 [Google Scholar]
  47. Haselwandter CA, Wingreen NS. 47.  2014. The role of membrane-mediated interactions in the assembly and architecture of chemoreceptor lattices. PLOS Comput. Biol. 10:e1003932 [Google Scholar]
  48. Helfrich W. 48.  1973. Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforschung C 28:693–703 [Google Scholar]
  49. Holtje JV. 49.  1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:181–203 [Google Scholar]
  50. Horvath J, Szalai I, De Kepper P. 50.  2009. An experimental design method leading to chemical Turing patterns. Science 324:772–75 [Google Scholar]
  51. Howard M, Rutenberg AD, de Vet S. 51.  2001. Dynamic compartmentalization of bacteria: accurate division in E. coli. Phys. Rev. Lett. 87:278102 [Google Scholar]
  52. Hsieh CW, Lin TY, Lai HM, Lin CC, Hsieh TS, Shih YL. 52.  2010. Direct MinE-membrane interaction contributes to the proper localization of MinDE in E. coli. Mol. Microbiol. 75:499–512 [Google Scholar]
  53. Hu Z, Gogol EP, Lutkenhaus J. 53.  2002. Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. PNAS 99:6761–66 [Google Scholar]
  54. Hu Z, Lutkenhaus J. 54.  1999. Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol. Microbiol. 34:82–90 [Google Scholar]
  55. Huang J, Cao C, Lutkenhaus J. 55.  1996. Interaction between FtsZ and inhibitors of cell division. J. Bacteriol. 178:5080–85 [Google Scholar]
  56. Huang KC, Meir Y, Wingreen NS. 56.  2003. Dynamic structures in Escherichia coli: spontaneous formation of MinE rings and MinD polar zones. PNAS 100:12724–28 [Google Scholar]
  57. Huang KC, Mukhopadhyay R, Wingreen NS. 57.  2006. A curvature-mediated mechanism for localization of lipids to bacterial poles. PLOS Comput. Biol. 2:e151 [Google Scholar]
  58. Huang KC, Wingreen NS. 58.  2004. Min-protein oscillations in round bacteria. Phys. Biol. 1:229–35 [Google Scholar]
  59. Juarez JR, Margolin W. 59.  2010. Changes in the Min oscillation pattern before and after cell birth. J. Bacteriol. 192:4134–42 [Google Scholar]
  60. Kawai F, Shoda M, Harashima R, Sadaie Y, Hara H, Matsumoto K. 60.  2004. Cardiolipin domains in Bacillus subtilis Marburg membranes. J. Bacteriol. 186:1475–83 [Google Scholar]
  61. Kawai Y, Mercier R, Errington J. 61.  2014. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 24:863–67 [Google Scholar]
  62. Kerr RA, Levine H, Sejnowski TJ, Rappel WJ. 62.  2006. Division accuracy in a stochastic model of Min oscillations in Escherichia coli. PNAS 103:347–52 [Google Scholar]
  63. Kojima H, Ishijima A, Yanagida T. 63.  1994. Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation. PNAS 91:12962–66 [Google Scholar]
  64. Komeili A, Li Z, Newman DK, Jensen GJ. 64.  2006. Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 311:242–45 [Google Scholar]
  65. Koppelman CM, Den Blaauwen T, Duursma MC, Heeren RM, Nanninga N. 65.  2001. Escherichia coli minicell membranes are enriched in cardiolipin. J. Bacteriol. 183:6144–47 [Google Scholar]
  66. Lederberg J. 66.  1956. Bacterial protoplasts induced by penicillin. PNAS 42:574–77 [Google Scholar]
  67. Lederberg J. 67. St. Clair J 1958. Protoplasts and L-Type Growth of Escherichia coli. J. Bacteriol. 75:143–60 [Google Scholar]
  68. Lee TK, Tropini C, Hsin J, Desmarais SM, Ursell TS. 68.  et al. 2014. A dynamically assembled cell wall synthesis machinery buffers cell growth. PNAS 111:4554–59 [Google Scholar]
  69. Lenarcic R, Halbedel S, Visser L, Shaw M, Wu LJ. 69.  et al. 2009. Localisation of DivIVA by targeting to negatively curved membranes. EMBO J. 28:2272–82 [Google Scholar]
  70. Levine H, Rappel WJ. 70.  2005. Membrane-bound Turing patterns. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 72:061912 [Google Scholar]
  71. Little JW, Mount DW. 71.  1982. The SOS regulatory system of Escherichia coli. Cell 29:11–22 [Google Scholar]
  72. Loose M, Fischer-Friedrich E, Ries J, Kruse K, Schwille P. 72.  2008. Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–92 [Google Scholar]
  73. Lopez D, Kolter R. 73.  2010. Functional microdomains in bacterial membranes. Genes Dev. 24:1893–902 [Google Scholar]
  74. Lowe J, Amos LA. 74.  1998. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391:203–206 [Google Scholar]
  75. Maini PK. 75.  2004. Using mathematical models to help understand biological pattern formation. C. R. Biol. 327:225–34 [Google Scholar]
  76. Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J. 76.  1998. Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev. 12:3419–30 [Google Scholar]
  77. Meacci G, Kruse K. 77.  2005. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys. Biol. 2:89–97 [Google Scholar]
  78. Mileykovskaya E, Dowhan W. 78.  2000. Visualization of phospholipid domains in Escherichia coli by using the cardiolipin-specific fluorescent dye 10-N-nonyl acridine orange. J. Bacteriol. 182:1172–75 [Google Scholar]
  79. Mukhopadhyay R, Huang KC, Wingreen NS. 79.  2008. Lipid localization in bacterial cells through curvature-mediated microphase separation. Biophys. J. 95:1034–49 [Google Scholar]
  80. Munro S. 80.  2003. Lipid rafts: elusive or illusive?. Cell 115:377–88 [Google Scholar]
  81. Pomerening JR, Kim SY, Ferrell JE Jr. 81.  2005. Systems-level dissection of the cell-cycle oscillator: bypassing positive feedback produces damped oscillations. Cell 122:565–78 [Google Scholar]
  82. Pomerening JR, Sontag ED, Ferrell JE Jr. 82.  2003. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nat. Cell Biol. 5:346–51 [Google Scholar]
  83. Quint DA, Gopinathan A, Grason GM. 83.  2012. Conformational collapse of surface-bound helical filaments. Soft Matter 8:9460–68 [Google Scholar]
  84. Quon KC, Yang B, Domian IJ, Shapiro L, Marczynski GT. 84.  1998. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. PNAS 95:120–25 [Google Scholar]
  85. Ramamurthi KS, Lecuyer S, Stone HA, Losick R. 85.  2009. Geometric cue for protein localization in a bacterium. Science 323:1354–57 [Google Scholar]
  86. Ramamurthi KS, Losick R. 86.  2009. Negative membrane curvature as a cue for subcellular localization of a bacterial protein. PNAS 106:13541–45 [Google Scholar]
  87. Ramirez-Arcos S, Szeto J, Dillon JA, Margolin W. 87.  2002. Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli. Mol. Microbiol. 46:493–504 [Google Scholar]
  88. Raskin DM, de Boer PA. 88.  1999. Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli. PNAS 96:4971–76 [Google Scholar]
  89. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E. 89.  2000. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys. J. 79:328–39 [Google Scholar]
  90. Renner LD, Eswaramoorthy P, Ramamurthi KS, Weibel DB. 90.  2013. Studying biomolecule localization by engineering bacterial cell wall curvature. PLOS ONE 8:e84143 [Google Scholar]
  91. Renner LD, Weibel DB. 91.  2011. Cardiolipin microdomains localize to negatively curved regions of Escherichia coli membranes. PNAS 108:6264–69 [Google Scholar]
  92. Robbins JR, Monack D, McCallum SJ, Vegas A, Pham E. 92.  et al. 2001. The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol. Microbiol. 41:861–72 [Google Scholar]
  93. Robinow C, Kellenberger E. 93.  1994. The bacterial nucleoid revisited. Microbiol. Rev. 58:211 [Google Scholar]
  94. Romantsov T, Battle AR, Hendel JL, Martinac B, Wood JM. 94.  2010. Protein localization in Escherichia coli cells: comparison of the cytoplasmic membrane proteins ProP, LacY, ProW, AqpZ, MscS, and MscL. J. Bacteriol. 192:912–24 [Google Scholar]
  95. Romantsov T, Helbig S, Culham DE, Gill C, Stalker L, Wood JM. 95.  2007. Cardiolipin promotes polar localization of osmosensory transporter ProP in Escherichia coli. Mol. Microbiol. 64:1455–65 [Google Scholar]
  96. Salje J, van den Ent F, de Boer P, Lowe J. 96.  2011. Direct membrane binding by bacterial actin MreB. Mol. Cell 43:478–87 [Google Scholar]
  97. Sanamrad A, Persson F, Lundius EG, Fange D, Gynna AH, Elf J. 97.  2014. Single-particle tracking reveals that free ribosomal subunits are not excluded from the Escherichia coli nucleoid. PNAS 111:11413–18 [Google Scholar]
  98. Savage DF, Afonso B, Chen AH, Silver PA. 98.  2010. Spatially ordered dynamics of the bacterial carbon fixation machinery. Science 327:1258–61 [Google Scholar]
  99. Scheffers DJ, Pinho MG. 99.  2005. Bacterial cell wall synthesis: new insights from localization studies. Microbiol. Mol. Biol. Rev. 69:585–607 [Google Scholar]
  100. Shiomi D, Sakai M, Niki H. 100.  2008. Determination of bacterial rod shape by a novel cytoskeletal membrane protein. EMBO J. 27:3081–91 [Google Scholar]
  101. Shiomi D, Toyoda A, Aizu T, Ejima F, Fujiyama A. 101.  et al. 2013. Mutations in cell elongation genes mreB, mrdA and mrdB suppress the shape defect of RodZ-deficient cells. Mol. Microbiol. 87:1029–44 [Google Scholar]
  102. Steinhauer J, Agha R, Pham T, Varga AW, Goldberg MB. 102.  1999. The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol. Microbiol. 32:367–77 [Google Scholar]
  103. Suefuji K, Valluzzi R, RayChaudhuri D. 103.  2002. Dynamic assembly of MinD into filament bundles modulated by ATP, phospholipids, and MinE. PNAS 99:16776–81 [Google Scholar]
  104. Szeto J, Ramirez-Arcos S, Raymond C, Hicks LD, Kay CM, Dillon JA. 104.  2001. Gonococcal MinD affects cell division in Neisseria gonorrhoeae and Escherichia coli and exhibits a novel self-interaction. J. Bacteriol. 183:6253–64 [Google Scholar]
  105. Takeuchi S, DiLuzio WR, Weibel DB, Whitesides GM. 105.  2005. Controlling the shape of filamentous cells of Escherichia coli. Nano Lett. 5:1819–23 [Google Scholar]
  106. Thanedar S, Margolin W. 106.  2004. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr. Biol. 14:1167–73 [Google Scholar]
  107. Thiem S, Kentner D, Sourjik V. 107.  2007. Positioning of chemosensory clusters in E. coli and its relation to cell division. EMBO J. 26:1615–23 [Google Scholar]
  108. Thiem S, Sourjik V. 108.  2008. Stochastic assembly of chemoreceptor clusters in Escherichia coli. Mol. Microbiol. 68:1228–36 [Google Scholar]
  109. Touhami A, Jericho M, Rutenberg AD. 109.  2006. Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J. Bacteriol. 188:7661–67 [Google Scholar]
  110. Turing AM. 110.  1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237:37–72 [Google Scholar]
  111. Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C. 111.  et al. 2012. Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol. Microbiol. 84:874–91 [Google Scholar]
  112. Ursell TS, Nguyen J, Monds RD, Colavin A, Billings G. 112.  et al. 2014. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. PNAS 111:E1025–34 [Google Scholar]
  113. Ursell TS, Trepagnier EH, Huang KC, Theriot JA. 113.  2012. Analysis of surface protein expression reveals the growth pattern of the gram-negative outer membrane. PLOS Comput. Biol. 8:e1002680 [Google Scholar]
  114. van den Ent F, Amos LA, Lowe J. 114.  2001. Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44 [Google Scholar]
  115. van den Ent F, Izore T, Bharat TA, Johnson CM, Lowe J. 115.  2014. Bacterial actin MreB forms antiparallel double filaments. eLife 3:e02634 [Google Scholar]
  116. van Teeffelen S, Wang S, Furchtgott L, Huang KC, Wingreen NS. 116.  et al. 2011. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. PNAS 108:15822–27 [Google Scholar]
  117. Vora T, Hottes AK, Tavazoie S. 117.  2009. Protein occupancy landscape of a bacterial genome. Mol. Cell 35:247–53 [Google Scholar]
  118. Wang H, Wingreen NS, Mukhopadhyay R. 118.  2008. Self-organized periodicity of protein clusters in growing bacteria. Phys. Rev. Lett. 101:218101 [Google Scholar]
  119. Wang S, Furchtgott L, Huang KC, Shaevitz JW. 119.  2012. Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. PNAS 109:E595–604 [Google Scholar]
  120. Wang S, Wingreen NS. 120.  2013. Cell shape can mediate the spatial organization of the bacterial cytoskeleton. Biophys. J. 104:541–52 [Google Scholar]
  121. Wang W, Li GW, Chen C, Xie XS, Zhuang X. 121.  2011. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 333:1445–49 [Google Scholar]
  122. Werner JN, Chen EY, Guberman JM, Zippilli AR, Irgon JJ, Gitai Z. 122.  2009. Quantitative genome-scale analysis of protein localization in an asymmetric bacterium. PNAS 106:7858–63 [Google Scholar]
  123. Wiggins P, Phillips R. 123.  2005. Membrane-protein interactions in mechanosensitive channels. Biophys. J. 88:880–902 [Google Scholar]
  124. Yao X, Jericho M, Pink D, Beveridge T. 124.  1999. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181:6865–75 [Google Scholar]
  125. Young KD. 125.  2006. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70:660–703 [Google Scholar]
  126. Zhang P, Khursigara CM, Hartnell LM, Subramaniam S. 126.  2007. Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microscopy. PNAS 104:3777–81 [Google Scholar]
  127. Zieske K, Schweizer J, Schwille P. 127.  2014. Surface topology assisted alignment of Min protein waves. FEBS Lett. 588:2545–49 [Google Scholar]
  128. Zieske K, Schwille P. 128.  2013. Reconstitution of pole-to-pole oscillations of Min proteins in microengineered polydimethylsiloxane compartments. Angew. Chem. 52:459–62 [Google Scholar]
  129. Zieske K, Schwille P. 129.  2014. Reconstitution of self-organizing protein gradients as spatial cues in cell-free systems. eLife 3:e03949 [Google Scholar]
/content/journals/10.1146/annurev-micro-091014-104313
Loading
/content/journals/10.1146/annurev-micro-091014-104313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error