1932

Abstract

Developmental biology is among the many subdisciplines of the life sciences being transformed by our increasing awareness of the role of coevolved microbial symbionts in health and disease. Most symbioses are horizontally acquired, i.e., they begin anew each generation. In such associations, the embryonic period prepares the animal to engage with the coevolved partner(s) with fidelity following birth or hatching. Once interactions are underway, the microbial partners drive maturation of tissues that are either directly associated with or distant from the symbiont populations. Animal alliances often involve complex microbial communities, such as those in the vertebrate gastrointestinal tract. A series of simpler-model systems is providing insight into the basic rules and principles that govern the establishment and maintenance of stable animal-microbe partnerships. This review focuses on what biologists have learned about the developmental trajectory of horizontally acquired symbioses through the study of the binary squid-vibrio model.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-091313-103654
2014-09-08
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-091313-103654.html?itemId=/content/journals/10.1146/annurev-micro-091313-103654&mimeType=html&fmt=ahah

Literature Cited

  1. Adin DM, Engle JT, Goldman WE, McFall-Ngai MJ, Stabb EV. 1.  2009. Mutations in ampG and lytic transglycosylase genes affect the net release of peptidoglycan monomers from Vibrio fischeri. J. Bacteriol. 191:2012–22 [Google Scholar]
  2. Altura MA, Heath-Heckman EA, Gillette A, Kremer N, Krachler AM. 2.  et al. 2013. The first engagement of partners in the Euprymna scolopesVibrio fischeri symbiosis is a two-step process initiated by a few environmental symbiont cells. Environ. Microbiol. 15:2937–50 [Google Scholar]
  3. Altura MA, Stabb E, Goldman W, Apicella M, McFall-Ngai MJ. 3.  2011. Attenuation of host NO production by MAMPs potentiates development of the host in the squid–vibrio symbiosis. Cell Microbiol. 13:527–37 [Google Scholar]
  4. Bass J, Takahashi JS. 4.  2011. Circadian rhythms: redox redux. Nature 469:476–78 [Google Scholar]
  5. Boettcher KJ, Ruby EG, McFall-Ngai MJ. 5.  1996. Bioluminescence in the symbiotic squid Euprymna scolopes is controlled by a daily biological rhythm. J. Comp. Physiol. 179:65–73 [Google Scholar]
  6. Bosch TC, McFall-Ngai MJ. 6.  2011. Metaorganisms as the new frontier. Zoology (JENA) 114:185–90 [Google Scholar]
  7. Bosch TCG. 7.  2013. Cnidarian-microbe interactions and the origin of innate immunity in metazoans. Annu. Rev. Microbiol. 67:499–518 [Google Scholar]
  8. Brennan CA, Mandel MJ, Gyllborg MC, Thomasgard KA, Ruby EG. 8.  2013. Genetic determinants of swimming motility in the squid light-organ symbiont Vibrio fischeri. MicrobiologyOpen 2:576–94 [Google Scholar]
  9. Bright M, Bulgheresi S. 9.  2010. A complex journey: transmission of microbial symbionts. Nat. Rev. Microbiol. 8:218–30 [Google Scholar]
  10. Bron R, Furness JB. 10.  2009. Rhythm of digestion: keeping time in the gastrointestinal tract. Clin. Exp. Pharmacol. Physiol. 36:1041–48 [Google Scholar]
  11. Chun CK, Troll JV, Koroleva I, Brown B, Manzella L. 11.  et al. 2008. Effects of colonization, luminescence, and autoinducer on host transcription during development of the squid-vibrio association. Proc. Natl. Acad. Sci. USA 105:11323–28 [Google Scholar]
  12. Crookes WJ, Ding LL, Huang QL, Kimbell JR, Horwitz J, McFall-Ngai MJ. 12.  2004. Reflectins: the unusual proteins of squid reflective tissues. Science 303:235–38 [Google Scholar]
  13. Davidson SK, Koropatnick TA, Kossmehl R, Sycuro L, McFall-Ngai MJ. 13.  2004. NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell Microbiol. 6:1139–51 [Google Scholar]
  14. de Bary HA. 14.  1879. Die Erscheinung der Symbiose Strassburg, Fr: K.J. Trübner
  15. Deloney-Marino CR, Visick KL. 15.  2012. Role for cheR of Vibrio fischeri in the Vibrio-squid symbiosis. Can. J. Microbiol. 58:29–38 [Google Scholar]
  16. Denton EJ, Herring PJ, Widder EA, Latz MF, Case JF. 16.  1985. The roles of filters in the photophores of oceanic animals and their relation to vision in the oceanic environment. Proc. R. Soc. Lond. B 225:63–97 [Google Scholar]
  17. Doino JA, McFall-Ngai MJ. 17.  1995. A transient exposure to symbiosis competent bacteria induces light organ morphogenesis in the host squid. Biol. Bull. 189:347–55 [Google Scholar]
  18. Douglas AE. 18.  1989. Mycetocyte symbiosis in insects. Biol. Rev. Camb. Philos. Soc. 64:409–34 [Google Scholar]
  19. Douglas AE. 19.  2010. The Symbiotic Habit Princeton, NJ: Princeton Univ. Press
  20. Duperthuy M, Binesse J, Le Roux F, Romestand B, Caro A. 20.  et al. 2010. The major outer membrane protein OmpU of Vibrio splendidus contributes to host antimicrobial peptide resistance and is required for virulence in the oyster Crassostrea gigas. Environ. Microbiol. 12:951–63 [Google Scholar]
  21. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M. 21.  et al. 2012. Peroxiredoxins are conserved markers of circadian rhythms. Nature 485:459–64 [Google Scholar]
  22. Engel P, Moran NA. 22.  2013. The gut microbiota of insects—diversity in structure and function. FEMS Microbiol. Rev. 37:699–735 [Google Scholar]
  23. Fidopiastis PM, Rader BA, Gerling DG, Gutierrez NA, Watkins KH. 23.  et al. 2012. Characterization of a Vibrio fischeri aminopeptidase and evidence for its influence on an early stage of squid colonization. J. Bacteriol. 194:3995–4002 [Google Scholar]
  24. Flak TA, Heiss LN, Engle JT, Goldman WE. 24.  2000. Synergistic epithelial responses to endotoxin and a naturally occurring muramyl peptide. Infect. Immun. 68:1235–42 [Google Scholar]
  25. Gilbert SF, Sapp J, Tauber AI. 25.  2012. A symbiotic view of life: We have never been individuals. Q. Rev. Biol. 87:325–41 [Google Scholar]
  26. Gordon JI. 26.  2012. Honor thy gut symbionts redux. Science 336:1251–53 [Google Scholar]
  27. Graf J, Dunlap PV, Ruby EG. 27.  1994. Effect of transposon-induced motility mutations on colonization of the host light organ by Vibrio fischeri. J. Bacteriol. 176:6986–91 [Google Scholar]
  28. Graf J, Ruby EG. 28.  1998. Host-derived amino acids support the proliferation of symbiotic bacteria. Proc. Natl. Acad. Sci. USA 95:1818–22 [Google Scholar]
  29. Grice EA, Segre JA. 29.  2011. The skin microbiome. Nat. Rev. Microbiol. 9:244–53 [Google Scholar]
  30. Hadfield MG. 30.  2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3:453–70 [Google Scholar]
  31. Hanlon RT, Claes MF, Ashcraft SE, Dunlap PV. 31.  1997. Laboratory culture of the sepiolid squid Euprymna scolopes: a model system for bacteria-animal symbiosis. Biol. Bull. 192:364–74 [Google Scholar]
  32. Heath-Heckman EA, Peyer SM, Whistler CA, Apicella MA, Goldman WE, McFall-Ngai MJ. 32.  2013. Bacterial bioluminescence regulates expression of a host cryptochrome gene in the squid-vibrio symbiosis. mBio 4:e00167–13 [Google Scholar]
  33. Hooper LV, Littman DR, Macpherson AJ. 33.  2012. Interactions between the microbiota and the immune system. Science 336:1268–73 [Google Scholar]
  34. Hungate RE. 34.  1966. The Rumen and Its Microbes. New York: Academic
  35. Jones BW, Nishiguchi MK. 35.  2004. Counterillumination in the bobtail squid, Euprymna scolopes (Mollusca: Cephalopoda). Mar. Biol. 144:1151–55 [Google Scholar]
  36. Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GC. 36.  2007. How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat. Rev. Microbiol. 5:619–33 [Google Scholar]
  37. Kimbell JR, McFall-Ngai MJ. 37.  2004. Symbiont-induced changes in host actin during the onset of a beneficial animal-bacterial association. Appl. Environ. Microbiol. 70:1434–41 [Google Scholar]
  38. Kleinert H, Schwarz PM, Forstermann U. 38.  2003. Regulation of the expression of inducible nitric oxide synthase. Biol. Chem. 384:1343–64 [Google Scholar]
  39. Koch EJ, Miyashiro T, McFall-Ngai MJ, Ruby EG. 39.  2013. Features governing symbiont persistence in the squid-vibrio association. Mol. Ecol. 23:1624–34 [Google Scholar]
  40. Koropatnick T, Goodson MS, Heath-Heckman EAC, McFall-Ngai M. 40.  2014. Identifying the cellular mechanisms of symbiont-induced epithelial morphogenesis in the squid-vibrio association. Biol. Bull. 226:56–68 [Google Scholar]
  41. Koropatnick TA, Engle JT, Apicella MA, Stabb EV, Goldman WE, McFall-Ngai MJ. 41.  2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306:1186–88 [Google Scholar]
  42. Kostic AD, Howitt MR, Garrett WS. 42.  2013. Exploring host-microbiota interactions in animal models and humans. Genes Dev. 27:701–18 [Google Scholar]
  43. Kremer N, Philipp EE, Carpentier MC, Brennan CA, Kraemer L. 43.  et al. 2013. Initial symbiont contact orchestrates host-organ-wide transcriptional changes that prime tissue colonization. Cell Host Microbe 14:183–94 [Google Scholar]
  44. Lamarcq LH, McFall-Ngai MJ. 44.  1998. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri. Infect. Immun. 66:777–85 [Google Scholar]
  45. Lathrop SK, Bloom SM, Rao SM, Nutsch K, Lio CW. 45.  et al. 2011. Peripheral education of the immune system by colonic commensal microbiota. Nature 478:250–54 [Google Scholar]
  46. Lee K, Ruby EG. 46.  1995. Symbiotic role of the viable but nonculturable state of Vibrio fischeri in Hawaiian coastal seawater. Appl. Environ. Microbiol. 61:278–83 [Google Scholar]
  47. Liu CX, Yin QQ, Zhou HC, Wu YL, Pu JX. 47.  et al. 2012. Adenanthin targets peroxiredoxin I and II to induce differentiation of leukemic cells. Nat. Chem. Biol. 8:486–93 [Google Scholar]
  48. Mandel MJ, Schaefer AL, Brennan CA, Heath-Heckman EA, Deloney-Marino CR. 48.  et al. 2012. Squid-derived chitin oligosaccharides are a chemotactic signal during colonization by Vibrio fischeri. Appl. Environ. Microbiol. 78:4620–26 [Google Scholar]
  49. Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG. 49.  2009. A single regulatory gene is sufficient to alter bacterial host range. Nature 458:215–18 [Google Scholar]
  50. Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere M-F. 50.  2013. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21:167–73 [Google Scholar]
  51. Mathur J, Davis BM, Waldor MK. 51.  2007. Antimicrobial peptides activate the Vibrio cholerae σE regulon through an OmpU-dependent signalling pathway. Mol. Microbiol. 63:848–58 [Google Scholar]
  52. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T. 52.  et al. 2013. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. USA 110:3229–36 [Google Scholar]
  53. McFall-Ngai M, Heath-Heckman EA, Gillette AA, Peyer SM, Harvie EA. 53.  2012. The secret languages of coevolved symbioses: insights from the Euprymna scolopesVibrio fischeri symbiosis. Semin. Immunol. 24:3–8 [Google Scholar]
  54. McFall-Ngai M, Montgomery MK. 54.  1990. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes (Cephalopoda: Sepiolidae). Biol. Bull. 179:332–39 [Google Scholar]
  55. McFall-Ngai M, Nyholm SV, Castillo MG. 55.  2010. The role of the immune system in the initiation and persistence of the Euprymna scolopesVibrio fischeri symbiosis. Semin. Immunol. 22:48–53 [Google Scholar]
  56. McFall-Ngai MJ. 56.  2002. Unseen forces: the influence of bacteria on animal development. Dev. Biol. 242:1–14 [Google Scholar]
  57. Milligan-Myhre K, Charette JR, Phennicie RT, Stephens WZ, Rawls JF. 57.  et al. 2011. Study of host-microbe interactions in zebrafish. Methods Cell Biol. 105:87–116 [Google Scholar]
  58. Montgomery MK, McFall-Ngai M. 58.  1994. Bacterial symbionts induce host organ morphogenesis during early postembryonic development of the squid Euprymna scolopes. Development 120:1719–29 [Google Scholar]
  59. Montgomery MK, McFall-Ngai MJ. 59.  1992. The muscle-derived lens of a squid bioluminescent organ is biochemically convergent with the ocular lens: evidence for recruitment of aldehyde dehydrogenase as a predominant structural protein. J. Biol. Chem. 267:20999–1003 [Google Scholar]
  60. Montgomery MK, McFall-Ngai MJ. 60.  1993. Embryonic development of the light organ of the sepiolid squid Euprymna scolopes Berry. Biol. Bull. 184:296–308 [Google Scholar]
  61. Morris AR, Visick KL. 61.  2013. Inhibition of SypG-induced biofilms and host colonization by the negative regulator SypE in Vibrio fischeri. PLoS ONE 8:e60076 [Google Scholar]
  62. Mukherji A, Kobiita A, Ye T, Chambon P. 62.  2013. Homeostasis in intestinal epithelium is orchestrated by the circadian clock and microbiota cues transduced by TLRs. Cell 153:812–27 [Google Scholar]
  63. Norsworthy AN, Visick KL. 63.  2013. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments. Front. Microbiol. 4:356 [Google Scholar]
  64. Nyholm SV, Deplancke B, Gaskins HR, Apicella MA, McFall-Ngai MJ. 64.  2002. Roles of Vibrio fischeri and nonsymbiotic bacteria in the dynamics of mucus secretion during symbiont colonization of the Euprymna scolopes light organ. Appl. Environ. Microbiol. 68:5113–22 [Google Scholar]
  65. Nyholm SV, McFall-Ngai MJ. 65.  1998. Sampling the light-organ microenvironment of Euprymna scolopes: description of a population of host cells in association with the bacterial symbiont Vibrio fischeri. Biol. Bull. 195:89–97 [Google Scholar]
  66. Nyholm SV, Stabb EV, Ruby EG, McFall-Ngai MJ. 66.  2000. Establishment of an animal-bacterial association: recruiting symbiotic vibrios from the environment. Proc. Natl. Acad. Sci. USA 97:10231–35 [Google Scholar]
  67. Nyholm SV, Stewart JJ, Ruby EG, McFall-Ngai MJ. 67.  2009. Recognition between symbiotic Vibrio fischeri and the haemocytes of Euprymna scolopes. Environ. Microbiol. 11:483–93 [Google Scholar]
  68. Oldroyd GE, Downie JA. 68.  2008. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu. Rev. Plant Biol. 59:519–46 [Google Scholar]
  69. Ozturk N, Song SH, Ozgur S, Selby CP, Morrison L. 69.  et al. 2007. Structure and function of animal cryptochromes. Cold Spring Harb. Symp. Quant. Biol. 72:119–31 [Google Scholar]
  70. Parfrey LW, Knight R. 70.  2012. Spatial and temporal variability of the human microbiota. Clin. Microbiol. Infection 18:Suppl. 48–11 [Google Scholar]
  71. Peyer SM, Pankey MS, Oakley TH, McFall-Ngai MJ. 71.  2013. Eye-specification genes in the bacterial light organ of the bobtail squid Euprymna scolopes, and their expression in response to symbiont cues. Mech. Dev. 131:111–26 [Google Scholar]
  72. Pirofski LA, Casadevall A. 72.  2008. The damage-response framework of microbial pathogenesis and infectious diseases. Adv. Exp. Med. Biol. 635:135–46 [Google Scholar]
  73. Reid DE, Ferguson BJ, Hayashi S, Lin YH, Gresshoff PM. 73.  2011. Molecular mechanisms controlling legume autoregulation of nodulation. Ann. Bot. 108:789–95 [Google Scholar]
  74. Round JL, Lee SM, Li J, Tran G, Jabri B. 74.  et al. 2011. The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 332:974–77 [Google Scholar]
  75. Ruby EG. 75.  2008. Symbiotic conversations are revealed under genetic interrogation. Nat. Rev. Microbiol. 6:752–62 [Google Scholar]
  76. Ruby EG, Asato LM. 76.  1993. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis. Arch. Microbiol. 159:160–67 [Google Scholar]
  77. Sage PT, Carman CV. 77.  2009. Settings and mechanisms for trans-cellular diapedesis. Front. Biosci. 14:5066–83 [Google Scholar]
  78. Sawa S, Lochner M, Satoh-Takayama N, Dulauroy S, Berard M. 78.  et al. 2011. RORγt+ innate lymphoid cells regulate intestinal homeostasis by integrating negative signals from the symbiotic microbiota. Nat. Immunol. 12:320–26 [Google Scholar]
  79. Schleicher TR, Nyholm SV. 79.  2011. Characterizing the host and symbiont proteomes in the association between the bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri. PLoS ONE 6:e25649 [Google Scholar]
  80. Schmidt MA. 80.  2010. LEEways: tales of EPEC, ATEC and EHEC. Cell Microbiol. 12:1544–52 [Google Scholar]
  81. Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC. 81.  et al. 2012. Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51 [Google Scholar]
  82. Shikuma NJ, Pilhofer M, Weiss GL, Hadfield MG, Jensen GJ, Newman DK. 82.  2014. Marine tubeworm metamorphosis induced by arrays of bacterial phage tail-like structures. Science 343:529–33 [Google Scholar]
  83. Stabb EV, Visick KL. 83.  2013. Vibrio fischeri: a bioluminescent light-organ symbiont of the bobtail squid Euprymna scolopes. The Prokaryotes E Rosenberg, EF DeLong, E Stackebrandt, S Lory, F Thompson 497–532 Berlin: Springer-Verlag [Google Scholar]
  84. Stangherlin A, Reddy AB. 84.  2013. Regulation of circadian clocks by redox homeostasis. J. Biol. Chem. 288:26505–11 [Google Scholar]
  85. Sycuro LK, Ruby EG, McFall-Ngai M. 85.  2006. Confocal microscopy of the light organ crypts in juvenile Euprymna scolopes reveals their morphological complexity and dynamic function in symbiosis. J. Morphol. 267:555–68 [Google Scholar]
  86. Tong D, Rozas NS, Oakley TH, Mitchell J, Colley NJ, McFall-Ngai MJ. 86.  2009. Evidence for light perception in a bioluminescent organ. Proc. Natl. Acad. Sci. USA 106:9836–41 [Google Scholar]
  87. Troll JV, Adin DM, Wier AM, Paquette N, Silverman N. 87.  et al. 2009. Peptidoglycan induces loss of a nuclear peptidoglycan recognition protein during host tissue development in a beneficial animal-bacterial symbiosis. Cell Microbiol. 11:1114–27 [Google Scholar]
  88. Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X. 88.  et al. 2011. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334:255–58 [Google Scholar]
  89. Vedam V, Haynes JG, Kannenberg EL, Carlson RW, Sherrier DJ. 89.  2004. A Rhizobium leguminosarum lipopolysaccharide lipid—A mutant induces nitrogen-fixing nodules with delayed and defective bacteroid formation. Mol. Plant-Microbe Interact. 17:283–91 [Google Scholar]
  90. Visick KL. 90.  2009. An intricate network of regulators controls biofilm formation and colonization by Vibrio fischeri. Mol. Microbiol. 74:782–89 [Google Scholar]
  91. Visick KL, Foster J, Doino J, McFall-Ngai M, Ruby EG. 91.  2000. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. J. Bacteriol. 182:4578–86 [Google Scholar]
  92. Wang Y, Dunn AK, Wilneff J, McFall-Ngai MJ, Spiro S, Ruby EG. 92.  2010. Vibrio fischeri flavohaemoglobin protects against nitric oxide during initiation of the squid–Vibrio symbiosis. Mol. Microbiol. 78:903–15 [Google Scholar]
  93. Wang Y, Ruby EG. 93.  2011. The roles of NO in microbial symbioses. Cell Microbiol. 13:518–26 [Google Scholar]
  94. Wier AM, Nyholm SV, Mandel MJ, Massengo-Tiasse RP, Schaefer AL. 94.  et al. 2010. Transcriptional patterns in both host and bacterium underlie a daily rhythm of anatomical and metabolic change in a beneficial symbiosis. Proc. Natl. Acad. Sci. USA 107:2259–64 [Google Scholar]
  95. Wollenberg MS, Preheim SP, Polz MF, Ruby EG. 95.  2012. Polyphyly of non-bioluminescent Vibrio fischeri sharing a lux-locus deletion. Environ. Microbiol. 14:655–68 [Google Scholar]
  96. Wollenberg MS, Ruby EG. 96.  2009. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from two Oahu (Hawaii) populations. Appl. Environ. Microbiol. 75:193–202 [Google Scholar]
  97. Yip ES, Geszvain K, DeLoney-Marino CR, Visick KL. 97.  2006. The symbiosis regulator RscS controls the syp gene locus, biofilm formation and symbiotic aggregation by Vibrio fischeri. Mol. Microbiol. 62:1586–600 [Google Scholar]
  98. Young RE, Roper CF. 98.  1976. Bioluminescent countershading in midwater animals: evidence from living squid. Science 191:1046–48 [Google Scholar]
  99. Zilber-Rosenberg I, Rosenberg E. 99.  2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32:723–35 [Google Scholar]
/content/journals/10.1146/annurev-micro-091313-103654
Loading
/content/journals/10.1146/annurev-micro-091313-103654
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error