1932

Abstract

Plant biomass degradation by fungi requires a diverse set of secreted enzymes and significantly contributes to the global carbon cycle. Recent advances in genomic and systems-level studies have begun to reveal how filamentous ascomycete species exploit carbon sources in different habitats. These studies have laid the groundwork for unraveling new enzymatic strategies for deconstructing the plant cell wall, including the discovery of polysaccharide monooxygenases that enhance the activity of cellulases. The identification of genes encoding proteins lacking functional annotation, but that are coregulated with cellulolytic genes, suggests functions associated with plant biomass degradation remain to be elucidated. Recent research shows that signaling cascades mediating cellulolytic responses often act in a light-dependent manner and show crosstalk with other metabolic pathways. In this review, we cover plant biomass degradation, from sensing, to transmission and modulation of signals, to activation of transcription factors and gene induction, to enzyme complement and function.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-092611-150044
2013-09-08
2024-04-19
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-micro-092611-150044
Loading
/content/journals/10.1146/annurev-micro-092611-150044
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error