1932

Abstract

6S RNA is a small, noncoding RNA that interacts with the primary holoenzyme form of RNA polymerase. 6S RNA is a global regulator that downregulates transcription and is important for modulating stress and optimizing survival during nutrient limitation. Studies in diverse organisms suggest a higher complexity in function than previously appreciated. Some bacteria have multiple 6S RNAs that appear to have independent functions. 6S RNA accumulation profiles also are quite divergent and suggest they integrate into cellular networks in a species-specific manner. Nevertheless, in all tested systems the common theme is a role for 6S RNA in survival. Finally, there has been much excitement about the ability of 6S RNA to be used as a template to synthesize product RNAs (pRNAs). This review highlights the details of 6S RNA in and compares and contrasts 6S RNAs in multiple species.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-092611-150135
2014-09-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/68/1/annurev-micro-092611-150135.html?itemId=/content/journals/10.1146/annurev-micro-092611-150135&mimeType=html&fmt=ahah

Literature Cited

  1. Ando Y, Asari S, Suzuma S, Yamane K, Nakamura K. 1.  2002. Expression of a small RNA, BS203 RNA, from the yocI-yocJ intergenic region of Bacillus subtilis genome. FEMS Microbiol. Lett. 207:29–33 [Google Scholar]
  2. Axmann IM, Holtzendorff J, Voß B, Kensche P, Hess WR. 2.  2007. Two distinct types of 6S RNA in Prochlorococcus. Gene 406:69–78 [Google Scholar]
  3. Barrick JE, Sudarsan N, Weinberg Z, Ruzzo WL, Breaker RR. 3.  2005. 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11:774–84 [Google Scholar]
  4. Battesti A, Majdalani N, Gottesman S. 4.  2011. The RpoS-mediated general stress response in Escherichia coli. Annu. Rev. Microbiol. 65:189–213 [Google Scholar]
  5. Beckmann BM, Burenina OY, Hoch PG, Kubareva EA, Sharma CM, Hartmann RK. 5.  2011. In vivo and in vitro analysis of 6S RNA-templated short transcripts in Bacillus subtilis. RNA Biol. 8:839–49 [Google Scholar]
  6. Beckmann BM, Hoch PG, Marz M, Willkomm DK, Salas M, Hartmann RK. 6.  2012. A pRNA-induced structural rearrangement triggers 6S-1 RNA release from RNA polymerase in Bacillus subtilis. EMBO J. 31:1727–38 [Google Scholar]
  7. Beisel CL, Storz G. 7.  2010. Base pairing small RNAs and their roles in global regulatory networks. FEMS Microbiol. Rev. 34:866–82 [Google Scholar]
  8. Berghoff BA, Glaeser J, Sharma CM, Vogel J, Klug G. 8.  2009. Photooxidative stress-induced and abundant small RNAs in Rhodobacter sphaeroides. Mol. Microbiol. 74:1497–512 [Google Scholar]
  9. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V. 9.  et al. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:1453–62 [Google Scholar]
  10. Burenina OY, Hoch PG, Damm K, Salas M, Zatsephin TS. 10.  et al. 2014. Mechanistic comparison of Bacillus subtilis 6S-1 and 6S-2 RNAs—commonalities and differences. RNA 20348–59
  11. Cabrera-Ostertag IJ, Cavanagh AT, Wassarman KM. 11.  2013. Initiating nucleotide identity determines efficiency of RNA synthesis from 6S RNA templates in Bacillus subtilis but not Escherichia coli. Nucleic Acids Res. 41:7501–11 [Google Scholar]
  12. Cavanagh AT, Chandrangsu P, Wassarman KM. 12.  2010. 6S RNA regulation of relA alters ppGpp levels in early stationary phase. Microbiology 156:3791–800 [Google Scholar]
  13. Cavanagh AT, Klocko AD, Liu X, Wassarman KM. 13.  2008. Promoter specificity for 6S RNA regulation of transcription is determined by core promoter sequences and competition for region 4.2 of σ70. Mol. Microbiol. 67:1242–56 [Google Scholar]
  14. Cavanagh AT, Sperger JM, Wassarman KM. 14.  2012. Regulation of 6S RNA by pRNA synthesis is required for efficient recovery from stationary phase in E. coli and B. subtilis. Nucleic Acids Res. 40:2234–46 [Google Scholar]
  15. Cavanagh AT, Wassarman KM. 15.  2013. 6S-1 RNA function leads to a delay in sporulation in Bacillus subtilis. J. Bacteriol. 195:2079–86 [Google Scholar]
  16. Chae H, Han K, Kim KS, Park H, Lee J, Lee Y. 16.  2011. Rho-dependent termination of ssrS (6S RNA) transcription in Escherichia coli: implication for 3′ processing of 6S RNA and expression of downstream ygfA (putative 5-formyl-tetrahydrofolate cyclo-ligase). J. Biol. Chem. 286:114–22 [Google Scholar]
  17. Chen Y, Indurthi DC, Jones SW, Papoutsakis ET. 17.  2011. Small RNAs in the genus Clostridium. MBio 2:e00340–10 [Google Scholar]
  18. Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA. 18.  et al. 2012. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 22:2467–77 [Google Scholar]
  19. Faucher SP, Friedlander G, Livny J, Margalit H, Shuman HA. 19.  2010. Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. USA 107:7533–38 [Google Scholar]
  20. Faucher SP, Shuman HA. 20.  2011. Small regulatory RNA and Legionella pneumophila. Front. Microbiol. 2:98 [Google Scholar]
  21. Gildehaus N, Neußer T, Wurm R, Wagner R. 21.  2007. Studies on the function of the riboregulator 6S RNA from E. coli: RNA polymerase binding, inhibition of in vitro transcription and synthesis of RNA-directed de novo transcripts. Nucleic Acids Res. 35:1885–96 [Google Scholar]
  22. Gruber TM, Gross CA. 22.  2003. Multiple σ subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57:441–66 [Google Scholar]
  23. Hengge-Aronis R. 23.  2002. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase. Microbiol. Mol. Biol. Rev. 66:373–95 [Google Scholar]
  24. Higgins D, Dworkin J. 24.  2012. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 36:131–48 [Google Scholar]
  25. Hindley J. 25.  1967. Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J. Mol. Biol. 30:125–36 [Google Scholar]
  26. Hsu LM, Zagorski J, Wang Z, Fournier MJ. 26.  1985. Escherichia coli 6S RNA gene is part of a dual-function transcription unit. J. Bacteriol. 161:1162–70 [Google Scholar]
  27. Ikemura T, Dahlberg JE. 27.  1973. Small ribonucleic acids of Escherichia coli. II. Noncoordinate accumulation during stringent control. J. Biol. Chem. 248:5033–41 [Google Scholar]
  28. Irnov I, Sharma CM, Vogel J, Winkler WC. 28.  2010. Identification of regulatory RNAs in Bacillus subtilis. Nucleic Acids Res. 38:6637–51 [Google Scholar]
  29. Janssen BD, Hayes CS. 29.  2012. The tmRNA ribosome-rescue system. Adv. Protein Chem. Struct. Biol. 86:151–91 [Google Scholar]
  30. Joly N, Engl C, Jovanovic G, Huvet M, Toni T. 30.  et al. 2010. Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol. Rev. 34:797–827 [Google Scholar]
  31. Kim EY, Shin MS, Rhee JH, Choy HE. 31.  2004. Factors influencing preferential utilization of RNA polymerase containing σ38 in stationary-phase gene expression in Escherichia coli. J. Microbiol. 42:103–10 [Google Scholar]
  32. Kim KS, Lee Y. 32.  2004. Regulation of 6S RNA biogenesis by switching utilization of both σ factors and endoribonucleases. Nucleic Acids Res. 32:6057–68 [Google Scholar]
  33. Klauck E, Typas A, Hengge R. 33.  2007. The σS subunit of RNA polymerase as a signal integrator and network master regulator in the general stress response in Escherichia coli. Sci. Prog. 90:103–27 [Google Scholar]
  34. Klocko AD, Wassarman KM. 34.  2009. 6S RNA binding to Eσ70 requires a positively charged surface of σ70 region 4.2. Mol. Microbiol. 73:152–64 [Google Scholar]
  35. Kriel A, Bittner AN, Kim SH, Liu K, Tehranchi AK. 35.  et al. 2012. Direct regulation of GTP homeostasis by (p)ppGpp: a critical component of viability and stress resistance. Mol. Cell 48:231–41 [Google Scholar]
  36. Kuster B, Mann M. 36.  1998. Identifying proteins and post-translational modifications by mass spectrometry. Curr. Opin. Struct. Biol. 8:393–400 [Google Scholar]
  37. Landt SG, Abeliuk E, McGrath PT, Lesley JA, McAdams HH, Shapiro L. 37.  2008. Small non-coding RNAs in Caulobacter crescentus. Mol. Microbiol. 68:600–14 [Google Scholar]
  38. Lee CA, Fournier MJ, Beckwith J. 38.  1985. Escherichia coli 6S RNA is not essential for growth or protein secretion. J. Bacteriol. 161:1156–61 [Google Scholar]
  39. Lee JY, Park H, Bak G, Kim KS, Lee Y. 39.  2013. Regulation of transcription from two ssrS promoters in 6S RNA biogenesis. Mol. Cells 36:227–34 [Google Scholar]
  40. Lee SY, Bailey SC, Apirion D. 40.  1978. Small stable RNAs from Escherichia coli: evidence for the existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J. Bacteriol. 133:1015–23 [Google Scholar]
  41. Li Z, Pandit S, Deutscher MP. 41.  1998. 3′ exoribonucleolytic trimming is a common feature of the maturation of small, stable RNAs in Escherichia coli. Proc. Natl. Acad. Sci. USA 95:2856–61 [Google Scholar]
  42. Madhugiri R, Pessi G, Voss B, Hahn J, Sharma CM. 42.  et al. 2012. Small RNAs of the Bradyrhizobium/Rhodopseudomonas lineage and their analysis. RNA Biol. 9:47–58 [Google Scholar]
  43. Magnusson LU, Farewell A, Nystrom T. 43.  2005. ppGpp: a global regulator in Escherichia coli. Trends Microbiol. 13:236–42 [Google Scholar]
  44. Murakami KS. 44.  2013. X-ray crystal structure of Escherichia coli RNA polymerase σ70 holoenzyme. J. Biol. Chem. 288:9126–34 [Google Scholar]
  45. Murray HD, Schneider DA, Gourse RL. 45.  2003. Control of rRNA expression by small molecules is dynamic and nonredundant. Mol. Cell 12:125–34 [Google Scholar]
  46. Neußer T, Gildehaus N, Wurm R, Wagner R. 46.  2008. Studies on the expression of 6S RNA from E. coli: involvement of regulators important for stress and growth adaptation. Biol. Chem. 389:285–97 [Google Scholar]
  47. Neußer T, Polen T, Geißen R, Wagner R. 47.  2010. Depletion of the non-coding regulatory 6S RNA in E. coli causes a surprising reduction in the expression of the translation machinery. BMC Genomics 11:165 [Google Scholar]
  48. Nitzan M, Wassarman KM, Biham O, Margalit H. 48.  2014. Global regulation of transcription by a small RNA: a quantitative view. Biophys. J. 1061205–14
  49. Panchapakesan SS, Unrau PJ. 49.  2012. E. coli 6S RNA release from RNA polymerase requires σ70 ejection by scrunching and is orchestrated by a conserved RNA hairpin. RNA 18:2251–59 [Google Scholar]
  50. Pánek J, Bobek J, Mikulik K, Basler M, Vohradský J. 50.  2008. Biocomputational prediction of small non-coding RNAs in Streptomyces. BMC Genomics 9:217 [Google Scholar]
  51. Pánek J, Krásný L, Bobek J, Ježkova E, Korelusová J, Vohradský J. 51.  2011. The suboptimal structures find the optimal RNAs: homology search for bacterial non-coding RNAs using suboptimal RNA structures. Nucleic Acids Res. 39:3418–26 [Google Scholar]
  52. Peeters E, Sass A, Mahenthiralingam E, Nelis H, Coenye T. 52.  2010. Transcriptional response of Burkholderia cenocepacia J2315 sessile cells to treatments with high doses of hydrogen peroxide and sodium hypochlorite. BMC Genomics 11:90 [Google Scholar]
  53. Potrykus K, Cashel M. 53.  2008. (p)ppGpp: still magical?. Annu. Rev. Microbiol. 62:35–51 [Google Scholar]
  54. Rediger A, Geißen R, Steuten B, Heilmann B, Wagner R, Axmann IM. 54.  2012. 6S RNA—An old issue became blue-green. Microbiology 158:2480–91 [Google Scholar]
  55. Romeo T, Vakulskas CA, Babitzke P. 55.  2013. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ. Microbiol. 15:313–24 [Google Scholar]
  56. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S. 56.  et al. 2010. The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464:250–55 [Google Scholar]
  57. Shephard L, Dobson N, Unrau PJ. 57.  2010. Binding and release of the 6S transcriptional control RNA. RNA 16:885–92 [Google Scholar]
  58. Soutourina OA, Monot M, Boudry P, Saujet L, Pichon C. 58.  et al. 2013. Genome-wide identification of regulatory RNAs in the human pathogen Clostridium difficile. PLoS Genet. 9:e1003493 [Google Scholar]
  59. Srivatsan A, Wang JD. 59.  2008. Control of bacterial transcription, translation and replication by (p)ppGpp. Curr. Opin. Microbiol. 11:100–5 [Google Scholar]
  60. Steuten B, Schneider S, Wagner R. 60.  2014. 6S RNA: recent answers—future questions. Mol. Microbiol. 91641–48
  61. Steuten B, Setny P, Zacharias M, Wagner R. 61.  2013. Mapping the spatial neighborhood of the regulatory 6S RNA bound to Escherichia coli RNA polymerase holoenzyme. J. Mol. Biol. 425:3649–61 [Google Scholar]
  62. Steuten B, Wagner R. 62.  2012. A conformational switch is responsible for the reversal of the 6S RNA-dependent RNA polymerase inhibition in Escherichia coli. Biol. Chem. 393:1513–22 [Google Scholar]
  63. Storz G, Vogel J, Wassarman KM. 63.  2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43:880–91 [Google Scholar]
  64. Suzuma S, Asari S, Bunai K, Yoshino K, Ando Y. 64.  et al. 2002. Identification and characterization of novel small RNAs in the aspS-yrvM intergenic region of the Bacillus subtilis genome. Microbiology 148:2591–98 [Google Scholar]
  65. Trotochaud AE, Wassarman KM. 65.  2004. 6S RNA function enhances long-term cell survival. J. Bacteriol. 186:4978–85 [Google Scholar]
  66. Trotochaud AE, Wassarman KM. 66.  2005. A highly conserved 6S RNA structure is required for regulation of transcription. Nat. Struct. Mol. Biol. 12:313–19 [Google Scholar]
  67. Trotochaud AE, Wassarman KM. 67.  2006. 6S RNA regulation of pspF transcription leads to altered cell survival at high pH. J. Bacteriol. 188:3936–43 [Google Scholar]
  68. Venkataramanan KP, Jones SW, McCormick KP, Kunjeti SG, Ralston MT. 68.  et al. 2013. The Clostridium small RNome that responds to stress: the paradigm and importance of toxic metabolite stress in C. acetobutylicum. BMC Genomics 14:849 [Google Scholar]
  69. Vogel DW, Hartmann RK, Struck JC, Ulbrich N, Erdmann VA. 69.  1987. The sequence of the 6S RNA gene of Pseudomonas aeruginosa. Nucleic Acids Res. 15:4583–91 [Google Scholar]
  70. Voss B, Holscher M, Baumgarth B, Kalbfleisch A, Kaya C. 70.  et al. 2009. Expression of small RNAs in Rhizobiales and protection of a small RNA and its degradation products by Hfq in Sinorhizobium meliloti. Biochem. Biophys. Res. Commun. 390:331–36 [Google Scholar]
  71. Wassarman KM. 71.  2011. 6S RNA: a regulator of transcription. Regulatory RNA in Prokaryotes WR Hess, A Marchfelder 109–129 New York: SpringerWein [Google Scholar]
  72. Wassarman KM, Saecker RM. 72.  2006. Synthesis-mediated release of a small RNA inhibitor of RNA polymerase. Science 314:1601–3 [Google Scholar]
  73. Wassarman KM, Storz G. 73.  2000. 6S RNA regulates E. coli RNA polymerase activity. Cell 101:613–23 [Google Scholar]
  74. Watanabe T, Sugiura M, Sugita M. 74.  1997. A novel small stable RNA, 6Sa RNA, from the cyanobacterium Synechococcus sp. strain PCC6301. FEBS Lett. 416:302–6 [Google Scholar]
  75. Weissenmayer BA, Prendergast JG, Lohan AJ, Loftus BJ. 75.  2011. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS ONE 6:e17570 [Google Scholar]
  76. Willkomm DK, Hartmann RK. 76.  2005. 6S RNA—an ancient regulator of bacterial RNA polymerase rediscovered. Biol. Chem. 386:1273–77 [Google Scholar]
  77. Willkomm DK, Minnerup J, Hüttenhofer A, Hartmann RK. 77.  2005. Experimental RNomics in Aquifex aeolicus: identification of small non-coding RNAs and the putative 6S RNA homolog. Nucleic Acids Res. 33:1949–60 [Google Scholar]
  78. Windbichler N, von Pelchrzim F, Mayer O, Csaszar E, Schroeder R. 78.  2008. Isolation of small RNA-binding proteins from E. coli: evidence for frequent interaction of RNAs with RNA polymerase. RNA Biol. 5:30–40 [Google Scholar]
  79. Wurm R, Neußer T, Wagner R. 79.  2010. 6S RNA-dependent inhibition of RNA polymerase is released by RNA-dependent synthesis of small de novo products. Biol. Chem. 391:187–96 [Google Scholar]
  80. Yan Y, Su S, Meng X, Ji X, Qu Y. 80.  et al. 2013. Determination of sRNA expressions by RNA-seq in Yersinia pestis grown in vitro and during infection. PLoS ONE 8:e74495 [Google Scholar]
/content/journals/10.1146/annurev-micro-092611-150135
Loading
/content/journals/10.1146/annurev-micro-092611-150135
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error