1932

Abstract

We review the theoretical implications of findings in genomics for evolutionary biology since the Modern Synthesis. We examine the ways in which microbial genomics has influenced our understanding of the last universal common ancestor, the tree of life, species, lineages, and evolutionary transitions. We conclude by advocating a piecemeal toolkit approach to evolutionary biology, in lieu of any grand unified theory updated to include microbial genomics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-102215-095456
2016-09-08
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/70/1/annurev-micro-102215-095456.html?itemId=/content/journals/10.1146/annurev-micro-102215-095456&mimeType=html&fmt=ahah

Literature Cited

  1. Archibald JM. 1.  2014. One Plus One Equals One: Symbiosis and the Evolution of Complex Life Oxford, UK: Oxford Univ. Press
  2. Archibald JM. 2.  2015. Endosymbiosis and eukaryotic cell evolution. Curr. Biol. 25:R911–21 [Google Scholar]
  3. Baker JR. 3.  1953. The cell-theory: a restatement, history and critique; Part IV, the multiplication of cells. J. Cell Sci. S3-94:407–40 [Google Scholar]
  4. Baltrus DA. 4.  2013. Exploring the costs of horizontal gene transfer. Trends Ecol. Evol. 28:489–95 [Google Scholar]
  5. Beccera A, Delaye L, Islas S, Lazcano A. 5.  2007. Annu. Rev. Ecol. Evol. Syst. 38:361–79
  6. Bedau MA, Cleland C. 6.  2010. The Nature of Life: Classical and Contemporary Perspectives from Philosophy and Science Cambridge, UK: Cambridge Univ. Press
  7. Boon E, Meehan C, Whidden C, Wong D, Langille M, Beiko R. 7.  2013. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol. Rev. 38:90–118 [Google Scholar]
  8. Booth A, Doolittle WF. 8.  2015. Eukaryogenesis, how special really?. PNAS 112:10278–85 [Google Scholar]
  9. Breed RS. 9.  1928. The present status of systematic bacteriology. J. Bacteriol. 15:143–63 [Google Scholar]
  10. Brooks DR, Wiley EO. 10.  1988. Evolution as Entropy Chicago: Univ. Chicago Press
  11. Brown C, Hug L, Thomas B, Sharon I, Castelle C. 11.  et al. 2015. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523:9208–11 [Google Scholar]
  12. Brunet TD, Doolittle WF. 12.  2015. Multilevel selection theory and the evolutionary functions of transposable elements. Genome Biol. Evol. 7:82445–57 [Google Scholar]
  13. Castelle C, Wrighton K, Thomas B, Hug L, Brown C. 13.  et al. 2015. Genomic expansion of domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling. Curr. Biol. 25:690–701 [Google Scholar]
  14. Cohan FM. 14.  2001. Bacterial species and speciation. Syst. Biol. 50:513–24 [Google Scholar]
  15. Colston S, Fullmer MS, Beja L, Lamy B, Gogarten JP, Gral J. 15.  2014. Bioinformatic genome comparisons for taxonomic and phylogenetic assignments using Aeromonas as a test case. mBio 5:e20136–14 [Google Scholar]
  16. Darwin C. 16.  1859. On the Origin of Species by Means of Natural Selection London: John Murray, 1st ed..
  17. Dawkins R. 17.  2004. The Ancestor's Tale: A Pilgrimage to the Dawn of Life London: Orion
  18. de Queiroz K. 18.  1988. Systematics and the Darwinian revolution. Philos. Sci. 55:238–59 [Google Scholar]
  19. de Querioz K. 19.  2007. Species concepts and species delimitation. Syst. Biol. 56:879–86 [Google Scholar]
  20. Delaye L, Becerra A. 20.  2012. Cenancestor, the last universal common ancestor. Evol. Educ. Outreach 5:382–88 [Google Scholar]
  21. Depew DJ, Weber BH. 21.  2011. The fate of Darwinism: evolution after the Modern Synthesis. Biol. Theor. 6:89–102 [Google Scholar]
  22. di Giulio M. 22.  2011. The last universal common ancestor and the ancestors of archaea and bacteria were progenotes. J. Mol. Evol. 72:1119–26 [Google Scholar]
  23. Dickins TE, Rahman Q. 23.  2012. The extended evolutionary synthesis and the role of soft inheritance in evolution. Proc. R. Soc. B 279:2913–21 [Google Scholar]
  24. Doolittle WF. 24.  2000. The nature of the universal ancestor and the evolution of the proteome. Curr. Opin. Struct. Biol. 10:3355–58 [Google Scholar]
  25. Doolittle WF. 25.  2009. Eradicating typological thinking in prokaryotic systematics and evolution. Cold Spring Harb. Symp. Quant. Biol. 74:197–204 [Google Scholar]
  26. Doolittle WF. 26.  2013. Microbial neopleomorphism. Biol. Philos. 28:351–78 [Google Scholar]
  27. Doolittle WF, Brown JR. 27.  1994. Tempo, mode, the progenote, and the universal root. PNAS 91:156721–28 [Google Scholar]
  28. Doolittle WF, Zhaxybayeva O. 28.  2009. On the origin of prokaryotic species. Genome Res. 19:744–56 [Google Scholar]
  29. Dupré J. 29.  2010. Postgenomic Darwinism. Darwin W Brown, A Fabian 150–71 Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  30. Dykhuizen DE, Green L. 30.  1991. Recombination in Escherichia coli and the definition of biological species. J. Bacteriol. 173:7257–68 [Google Scholar]
  31. Elena SF, Lenski RE. 31.  2003. Evolution experiments with microorganisms: the dynamics and genetic basis of adaptation. Nat. Rev. Genet. 4:457–69 [Google Scholar]
  32. Elliott P. 32.  2003. Erasmus Darwin, Herbert Spencer, and the origins of the evolutionary worldview in British provincial scientific culture, 1770–1850. Isis 94:11–29 [Google Scholar]
  33. Forterre P. 33.  2013. The common ancestor of Archaea and Eukarya was not an archaeon. Archaea 2013:372396 [Google Scholar]
  34. Forterre P. 34.  2015. The universal tree of life: an update. Front. Microbiol. 6:717 [Google Scholar]
  35. Fournier GP, Andam CP, Gogarten JP. 35.  2015. Ancient horizontal gene transfer and the last common ancestors. BMC Evol. Biol. 15:70 [Google Scholar]
  36. Franklin LR. 36.  2007. Bacteria, sex and systematics. Phil. Sci. 74:69–95 [Google Scholar]
  37. Fraser C, Hanage W, Spratt BG. 37.  2007. Recombination and the nature of bacterial speciation. Science 315:476–80 [Google Scholar]
  38. Fullmer M, Soucy S, Gogarten JP. 38.  2015. The pan-genome as a shared genomic resource: mutual cheating, cooperation and the black queen hypothesis. Front. Microbiol. 6:1–5 [Google Scholar]
  39. Giovannoni SJ, Cameron Thrash J, Temperton B. 39.  2014. Implications of streamlining theory for microbial ecology. ISME J. 8:81553–64 [Google Scholar]
  40. Godfrey-Smith P. 40.  2009. Darwinian Populations and Natural Selection Oxford, UK: Oxford Univ. Press
  41. Godfrey-Smith P. 41.  2015. Reproduction, symbiosis, and the eukaryotic cell. PNAS 112:3310120–25 [Google Scholar]
  42. Golicz AA, Batley J, Edwards D. 42. 2106 Towards plant pangenomics. Plant Biotechnol. J. 14:1099–1105 doi: 10.1111/pbi.12499 [Google Scholar]
  43. Gophna U, Ofran Y. 43.  2011. Lateral acquisition of genes is affected by the friendliness of their products. PNAS 108:343–48 [Google Scholar]
  44. Gould SJ. 44.  1982. Darwinism and the expansion of evolutionary theory. Science 216:4544380–87 [Google Scholar]
  45. Gould SJ, Eldredge N. 45.  1986. Punctuated equilibrium at the third stage. Syst. Zool. 35:143–48 [Google Scholar]
  46. Gray MW, Doolittle WF. 46.  1982. Has the endosymbiont hypothesis been proven?. Microbiol. Rev. 46:1–42 [Google Scholar]
  47. Guttman DS, Dykhuizen DE. 47.  1994. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 266:1380–83 [Google Scholar]
  48. Haig D. 48.  2007. Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biol. Phil. 22:415–28 [Google Scholar]
  49. Hey J. 49.  2006. On the failure of modern species concepts. Trends Ecol. Evol. 21:447–50 [Google Scholar]
  50. Hull D. 50.  1988. Science as a Process: An Evolutionary Account of the Social and Conceptual Development of Science Chicago: Univ. Chicago Press
  51. Husnik F, Nikoh N, Koga R, Ross L, Cuncan RP. 51.  et al. 2013. Horizontal gene transfer from diverse bacteria to an insect genome enables a tripartite nested mealybug symbiosis. Cell 153:1567–78 [Google Scholar]
  52. Huxley J. 52.  1942. Evolution: The Modern Synthesis London: George Allen and Unwin
  53. Jablonka E, Lamb MJ. 53.  2005. Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral and Symbolic Variation in the History of Life Cambridge, MA: MIT Press
  54. Jain R, Rivera MC, Lake JA. 54.  1999. Horizontal gene transfer among genomes: the complexity hypothesis. PNAS 96:3801–6 [Google Scholar]
  55. Judson HF. 55.  1996. The Eighth Day of Creation: The Makers of the Revolution in Biology (Commemorative Edition) Cold Spring Harbor, NY: Cold Spring Harb. Press
  56. Katz LA. 56.  2015. Recent events dominate interdomain lateral gene transfers between prokaryotes and eukaryotes and, with the exception of endosymbiotic gene transfers, few ancient events persist. Phil. Trans. R. Soc. B 370:167820140324 [Google Scholar]
  57. Kauffman SA. 57.  2000. Investigations Oxford, UK: Oxford Univ. Press
  58. Kim KM, Caetano-Anollés G. 58.  2011. The proteomic complexity and rise of the primordial ancestor of diversified life. Evol. Biol. 11:140 [Google Scholar]
  59. Koonin E. 59.  2009. Darwinian evolution in the light of genomics. Nucleic Acids Res. 37:41011–34 [Google Scholar]
  60. Koonin EV. 60.  2009. The Origin at 150: Is a new evolutionary synthesis in sight?. Trends Genet. 11:473–75 [Google Scholar]
  61. Koonin EV. 61.  2015. The turbulent network dynamics of microbial evolution and the statistical tree of life. J. Mol. Evol. 80:244–50 [Google Scholar]
  62. Koonin EV, Wolf YI. 62.  2009. Is evolution Darwinian and/or Lamarckian?. Biol. Direct 4:42 [Google Scholar]
  63. Ku C, Nelson-Sathi S, Roettger M, Sousa FL, Lockhart PJ. 63.  et al. 2015. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524:427–32 [Google Scholar]
  64. Kuo CH, Ochman H. 64.  2009. Deletional bias across the three domains of life. Genome Biol. Evol. 1:145–52 [Google Scholar]
  65. Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB. 65.  et al. 2015. The extended evolutionary synthesis: its structure, assumptions and predictions. Proc. R. Soc. B 282:20151019 [Google Scholar]
  66. Land M, Hauser L, Jun SR, Nookaew I, Leuze MR. 66.  et al. 2015. Insights from 20 years of bacterial genome sequencing. Funct. Integr. Genomics 15:141–61 [Google Scholar]
  67. Langton CG. 67.  Artificial Life Redwood City, CA: Addison-Wesley
  68. Lawrence JG. 68.  2002. Gene transfer in bacteria: speciation without species. Theor. Pop. Biol. 61:449–60 [Google Scholar]
  69. Lewontin RC. 69.  1970. The units of selection. Annu. Rev. Ecol. Syst. 1:1–18 [Google Scholar]
  70. Luria SE, Delbrück M. 70.  1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511 [Google Scholar]
  71. Maddison WP, Knowles LL. 71.  2006. Inferring phylogeny despite incomplete lineage sorting. Syst. Biol. 55:21–30 [Google Scholar]
  72. Majewski J, Cohan FM. 72.  1999. DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153:1525–33 [Google Scholar]
  73. Mallet J. 73.  2008. Hybridization, ecological races, and the nature of species: Empirical evidence for the ease of speciation. Phil. Trans. R. Soc. Lond. B. 363:2971–86 [Google Scholar]
  74. Margulis L. 74.  1991. Symbiogenesis and symbionticism. Symbiosis as a Source of Evolutionary Innovation: Speciation and Morphogenesis L Margulis, R Fester 17–36 Cambridge, MA: MIT Press [Google Scholar]
  75. Martiny AC, Treseder K, Pusch G. 75.  2012. Phylogenetic conservation of functional traits in microorganisms. ISME J. 7:830–38 [Google Scholar]
  76. Maynard Smith J, Szathmary E. 76.  1995. The Major Transitions in Evolution Oxford, UK: Oxford Univ. Press
  77. Mayr E. 77.  1942. Systematics and the Origin of Species New York: Columbia Univ. Press
  78. Mayr E. 78.  1996. What is a species and what is not?. Phil. Sci. 63:262–77 [Google Scholar]
  79. Mayr E. 79.  2000. The biological species concept. Species Concepts and Phylogenetic Theory Q Wheeler, R Meier 17–29 New York: Columbia Univ. Press [Google Scholar]
  80. McCutcheon JP, Keeling PJ. 80.  2014. Endosymbiosis: protein targeting further erodes the organelle/symbiont distinction. Curr. Biol. 24:R654–55 [Google Scholar]
  81. McCutcheon JP, Moran NA. 81.  2011. Extreme genome reduction in symbiotic bacteria. Nat. Rev. Microbiol. 10:13–26 [Google Scholar]
  82. McInerney JO, Pisani D, Bapteste E, O'Connell MJ. 82.  2011. The public goods hypothesis for the evolution of life on Earth. Biol. Direct 6:41 [Google Scholar]
  83. Moore R. 83.  1997. The persuasive Mr. Darwin. BioScience 47:2107–14 [Google Scholar]
  84. Morris JJ, Lenski RE, Zinser ER. 84.  2012. The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:2e00036–12 [Google Scholar]
  85. Mushegian AR, Koonin EV. 85.  1996. A minimal genes set for cellular life derived by comparison of complete bacterial genomes. PNAS 93:1910268–73 [Google Scholar]
  86. Nakabachi A, Ishida K, Hongoh Y, Ohkuma M, Miyagishima S. 86.  2014. Aphid gene of bacterial origin encodes a protein transported to an obligate endosymbiont. Curr. Biol. 24:R640–41 [Google Scholar]
  87. Naor A, Lapierre P, Mevarech M, Papke RT, Gophna U. 87.  2012. Low species barriers in halophilic archaea and the formation of recombinant hybrids. Curr. Biol. 22:R601–2 [Google Scholar]
  88. Nowack EC, Grossman AR. 88.  2012. Trafficking of protein into the recently established photosynthetic organelles of Paulinella chromatophora. PNAS 109:5340–45 [Google Scholar]
  89. Okasha S. 89.  2006. Evolution and the Levels of Selection Oxford, UK: Clarendon Press
  90. O'Malley MA. 90.  2014. Philosophy of Microbiology Cambridge, UK: Cambridge Univ. Press
  91. O'Malley MA. 91.  2015. Endosymbiosis and its implications for evolutionary theory. PNAS 112:10270–77 [Google Scholar]
  92. O'Malley MA, Dupré J. 92.  2007. Size doesn't matter: towards a more inclusive philosophy of biology. Biol. Phil. 22:155–91 [Google Scholar]
  93. O'Malley MA, Koonin EV. 93.  2011. How stands the Tree of Life a century and a half after The Origin?. Biol. Direct 6:32 [Google Scholar]
  94. Ouzounis C, Kyrpides N. 94.  1996. The emergence of major cellular processes in evolution. FEBS Lett. 390:2119–23 [Google Scholar]
  95. Papke RT, Corral P, Ram-Mohan N, de la Haba RR, Sánchez-Porro C. 95.  et al. 2015. Horizontal gene transfer, dispersal and haloarchaeal speciation. Life 5:1405–26 [Google Scholar]
  96. Provine W. 96.  1971. The Origins of Theoretical Population Genetics Chicago: Univ. Chicago Press
  97. Puigbò P, Wolf YI, Koonin EV. 97.  2013. Seeing the Tree of Life behind the phylogenetic forest. BMC Biol. 11:46 [Google Scholar]
  98. Queller D, Strassmann J. 98.  2009. Beyond society: the evolution of organismality. Phil. Trans. R. Soc. B 364:15333143–55 [Google Scholar]
  99. Ranea JA, Sillero A, Thornton JM, Orengo CA. 99.  2006. Protein superfamily evolution and the last universal common ancestor (LUCA). J. Mol. Evol. 63:4513–25 [Google Scholar]
  100. Read BA, Kegel J, Klute MJ, Kuo A, Lefebvre SC. 100.  et al. 2013. Pan genome of the phytoplankton Emiliania underpins its global distribution. Nature 499:209–13 [Google Scholar]
  101. Richerson PJ, Boyd R. 101.  2005. Not by Genes Alone: How Culture Transformed Human Evolution Chicago: Univ. Chicago Press
  102. Rose MR, Oakley TH. 102.  2007. The new biology: beyond the Modern Synthesis. Biol. Direct 2:30 [Google Scholar]
  103. Sachs JL, Hallowell AC. 103.  2012. The origins of cooperative bacterial communities. mBio 3:3e00099–12 [Google Scholar]
  104. Sagan L. 104.  1967. On the origin of mitosing cells. J. Theor. Biol. 14:255–77 [Google Scholar]
  105. Savory F, Leonard G, Richards TA. 105.  2015. The role of horizontal gene transfer in the evolution of oomycetes. PLOS Pathog. 11:e1004805 [Google Scholar]
  106. Schönknecht G, Weber APM, Lercher MJ. 106.  2015. Horizontal gene acquisitions by eukaryotes as drivers of adaptive evolution. BioEssays 36:9–20 [Google Scholar]
  107. Shapiro BJ, Polz MF. 107.  2015. Microbial speciation. Cold Spring Harb. Perspect. Biol. 7:a018143 [Google Scholar]
  108. Simpson GG. 108.  1961. Principles of Animal Taxonomy New York: Columbia Univ. Press
  109. Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC. 109.  et al. 2014. Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol. Biol. Evol. 31:857–71 [Google Scholar]
  110. Smith JM, Smith NH, O'Rourke M, Spratt BG. 110.  1993. How clonal are bacteria?. PNAS 90:4384–88 [Google Scholar]
  111. Sniegowski PD, Gerrish PJ, Lenski RE. 111.  1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387:6634703–5 [Google Scholar]
  112. Sober E, Wilson DS. 112.  1998. Unto Others: The Evolution and Psychology of Unselfish Behavior Cambridge, MA: Harvard Univ. Press
  113. Soucy SM, Huang J, Gogarten JP. 113.  2015. Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16:472–82 [Google Scholar]
  114. Stackebrandt E, Goebel BM. 114.  1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition of bacteriology. Int. J. Syst. Bacteriol. 44:846–49 [Google Scholar]
  115. Szathmáry E. 115.  2015. Toward major evolutionary transitions theory 2.0. PNAS 112:3310104–11 [Google Scholar]
  116. Szöllosi GJ, Davin AA, Tannier E, Daubin V, Boussau B. 116.  2015. Genome-scale phylogenetic analysis finds extensive gene transfer among Fungi. Phil. Trans. R. Soc. B 370:20140335 [Google Scholar]
  117. Taylor JS, Raes J. 117.  2004. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38:615–43 [Google Scholar]
  118. Timmis J, Ayliffe M, Huang C, Martin W. 118.  2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5:123–35 [Google Scholar]
  119. Treangen TJ, Rocha EPC. 119.  2011. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. PLOS Genet. 7:1e1001284 [Google Scholar]
  120. Vos M, Didelot X. 120.  2009. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3:199–208 [Google Scholar]
  121. Vos M, Hesselman MC, te Beek TA, van Passel MWJ, Eyre-Walker A. 121.  2015. Rates of lateral gene transfer in prokaryotes: high but why?. Trends Microbiol. 23:598–605 [Google Scholar]
  122. Wells J. 122.  Icons of Evolution: Science or Myth? Why Much of What We Teach About Evolution Is Wrong Washington, DC: Regnery
  123. Wernegreen J. 123.  2012. Endosymbiosis. Curr. Biol. 22:14R555–61 [Google Scholar]
  124. Wilkins JS. 124.  2009. Species: A History of the Idea Berkeley, CA: Univ. Calif. Press
  125. Woese CR. 125.  1982. Archaebacteria and cellular origins: an overview. Zent. Bakteriol. Mikrobiol. Hyg. 3:11–7 [Google Scholar]
  126. Woese CR. 126.  1998. The universal ancestor. PNAS 95:126854–59 [Google Scholar]
  127. Woese CR. 127.  2000. Interpreting the universal phylogenetic tree. PNAS 97:158392–96 [Google Scholar]
  128. Woese CR. 128.  2002. On the evolution of cells. PNAS 99:138742–47 [Google Scholar]
  129. Woese CR, Fox GE. 129.  1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. PNAS 74:115088–90 [Google Scholar]
  130. Wolf YI, Koonin EV. 130.  2013. Genome reduction as the dominant mode of evolution. BioEssays 35:829–37 [Google Scholar]
  131. Zuckerkandl E, Pauling L. 131.  1965. Evolutionary divergence and convergence in proteins. Evolving Genes and Proteins V Bryson, HJ Vogel 97–166 New York: Academic [Google Scholar]
/content/journals/10.1146/annurev-micro-102215-095456
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error