1932

Abstract

One goal of systems neuroscience is a structure-function model of nervous system organization that would allow mechanistic linking of mind, brain, and behavior. A necessary but not sufficient foundation is a connectome, a complete matrix of structural connections between the nodes of a nervous system. Connections between two nodes can be described at four nested levels of analysis: macroconnections between gray matter regions, mesoconnections between neuron types, microconnections between individual neurons, and nanoconnections at synapses. A long history of attempts to understand how the brain operates as a system began at the macrolevel in the fifth century, was revolutionized at the meso- and microlevels by Cajal and others in the late nineteenth century, and reached the nanolevel in the mid-twentieth century with the advent of electron microscopy. The greatest challenge today is extracting knowledge and understanding of nervous system structure-function architecture from vast amounts of data.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-033954
2016-07-08
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/neuro/39/1/annurev-neuro-071714-033954.html?itemId=/content/journals/10.1146/annurev-neuro-071714-033954&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Awami AK, Beyer J, Strobelt H, Kasthuri N, Lichtman JW. et al. 2014. NeuroLines: a subway map metaphor for visualizing nanoscale neuronal connectivity. IEEE Trans. Vis. Comput. Graph. 20:2369–78 [Google Scholar]
  2. Alvarez-Bolado G, Swanson LW. 1996. Developmental Brain Maps: Structure of the Embryonic Rat Brain Amsterdam: Elsevier
  3. Barabási AL, Bonabeau E. 2003. Scale-free networks. Sci. Am. 288:60–69 [Google Scholar]
  4. Birnbaum R, Weinberger DR. 2013. Functional neuroimaging and schizophrenia: a view towards effective connectivity modeling and polygenic risk. Dialogues Clin. Neurosci. 15:279–89 [Google Scholar]
  5. Bohland JW, Wu C, Barbas H, Bokil H, Bota M. et al. 2009. A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLOS Comput. Biol. 5:e1000334 [Google Scholar]
  6. Bota M, Dong H-W, Swanson LW. 2003. From gene networks to brain networks. Nat. Neurosci. 6:795–99 [Google Scholar]
  7. Bota M, Dong H-W, Swanson LW. 2012. Combining collation and annotation efforts toward completion of the rat and mouse connectomes in BAMS. Front. Neuroinformatics 6:2 [Google Scholar]
  8. Bota M, Sporns O, Swanson LW. 2015. Architecture of the cerebral cortical association connectome underlying cognition. PNAS 112:E2093–101 [Google Scholar]
  9. Bota M, Swanson LW. 2007. The neuron classification problem. Brain Res. Rev. 56:79–88 [Google Scholar]
  10. Boulina M, Samarajeewa H, Baker JD, Kim MD, Chiba A. 2013. Live imaging of multicolor-labeled cells in Drosophila. Development 140:1605–13 [Google Scholar]
  11. Brown RA, Swanson LW. 2013. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity. J. Comp. Neurol. 521:2889–906 [Google Scholar]
  12. Brown RA, Swanson LW. 2015. Golgi: interactive online brain mapping. Front. Neuroinformatics 9:26 [Google Scholar]
  13. Bullmore E, Sporns O. 2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186–98 [Google Scholar]
  14. Bullmore E, Sporns O. 2012. The economy of brain network organization. Nat. Rev. Neurosci. 13:336–49 [Google Scholar]
  15. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR. 2013. Improved tools for the Brainbow toolbox. Nat. Methods 10:540–47 [Google Scholar]
  16. Cajal SRy. 1888. Estructura de los centros nerviosos de las aves. Rev. Trim. Histol. Norm. Patol. 1:1–10 [Google Scholar]
  17. Cajal SRy. 1892. El nuevo concepto de la histología de los centros nerviosos. Rev. Cien. Méd. Barc. 18:361–376, 457–476, 505–520, 529–541 [Google Scholar]
  18. Cajal SRy. 1893. Neue Darstellung vom histologischen Bau des Centralnervensystems. Arch. Anat. Physiol. Anat. Abth. 5–6:319–428 [Google Scholar]
  19. Cajal SRy. 1899–1904. Textura del Sistema Nervioso del Hombre y de los Vertebrados Madrid: Moya
  20. Cajal SRy. 1909–1911. Histologie du Systéme Nerveux de l'Homme et des Vertébrés 2 transl. L Azoulay Paris: Maloine
  21. Callaway EM, Luo L. 2015. Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J. Neurosci. 35:8979–85 [Google Scholar]
  22. Canteras NS, Simerly RB, Swanson LW. 1992. The connections of the posterior nucleus of the amygdala. J. Comp. Neurol. 324:143–79 [Google Scholar]
  23. Chen BE, Kondo M, Garnier A, Watson FL, Püettmann-Holgado R. et al. 2006. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. Cell 125:607–20 [Google Scholar]
  24. Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H. et al. 2011. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21:1–11 [Google Scholar]
  25. Chitwood BG, Chitwood MB. 1974. Introduction to Nematology Baltimore: Univ. Park
  26. Clarke E, O'Malley CD. 1996. The Human Brain and Spinal Cord: A Historical Study Illustrated by Writings from Antiquity to the Twentieth Century San Francisco: Norman, 2nd ed..
  27. Csete ME, Doyle JC. 2002. Reverse engineering of biological complexity. Science 295:1664–68 [Google Scholar]
  28. De Robertis E. 1959. Submicroscopic morphology and function of the synapse. Int. Rev. Cytol. 8:61–96 [Google Scholar]
  29. Dumas L, Heitz-Marchaland C, Fouquet S, Suter U, Livet J. et al. 2015. Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow. Glia 63:699–717 [Google Scholar]
  30. Eberle AL, Mikula S, Schalek R, Lichtman JW, Tate ML, Zeidler D. 2015. High-resolution, high-throughput imaging with a multibeam scanning electron microscope. J. Microsc. 259:114–20 [Google Scholar]
  31. Emmons SW. 2015. The beginning of connectomics: a commentary on White et al. 1986 ‘The structure of the nervous system of the nematode Caenorhabditis elegans.’. Philos. Trans. R. Soc. B 370:20140309 [Google Scholar]
  32. Eurocontrol 2015. Frequently asked questions (FAQ) on student controller recruitment Brussels: Eur. Organ. Saf. Air Navig https://www.eurocontrol.int/faq/air-traffic-controller-jobs
  33. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD. et al. 2008. GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–63 [Google Scholar]
  34. Friston KJ. 1994. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2:56–78 [Google Scholar]
  35. Goldschmidt R. 1903. Histologische Untersuchungen an Nematoden. I. Die Sinnesorgane von Ascaris lumbricoides L. und Ascaris megalocephala (Clequ.). Zool. Zbl. 24:173–82 [Google Scholar]
  36. Goldschmidt R. 1908. Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen. Erster Teil. Zeitsch. Wissen. Zool. 90:73–136 [Google Scholar]
  37. Goldschmidt R. 1909. Nervensystem von Ascaris lumbricoides und megalocephala. Ein Versuch, in den Aufbau eines einfachen Nervensystems einzudringen. Zweite Teil. Zeitsch. Wissen. Zool. 92:306–57 [Google Scholar]
  38. Golgi C. 1873. Sulla struttura della grigia del cervello. Gaz. Med. Ital. Lomb. 6:244–46 [Google Scholar]
  39. Golgi C. 1885. Sulla Fina Anatomia degli Organi Centrali del Sistema Nervoso Reggio-Emilia: Stefano Calderini e Figlio
  40. Hahn JD, Swanson LW. 2015. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Front. Sys. Neurosci. 9:66 [Google Scholar]
  41. Hampel S, Chung P, McKellar CE, Hall D, Looger LL, Simpson JH. 2011. Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat. Methods 8:253–59 [Google Scholar]
  42. Hayworth KJ, Xu CS, Lu Z, Knott GW, Fetter RD. et al. 2015. Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat. Methods 12:319–22 [Google Scholar]
  43. Herrick CJ. 1948. The Brain of the Tiger Salamander Ambystoma tigrinum Chicago: Univ. Chicago Press
  44. Hikosaka R, Takahashi M, Takahat M. 1996. Variability and invariability in the structure of an identified nonspiking interneuron of crayfish as revealed by three-dimensional morphometry. Zool. Sci. 131:69–78 [Google Scholar]
  45. Hodgkin AL. 1964. The Conduction of the Nerve Impulse Liverpool: Liverpool Univ. Press
  46. Horgan J. 1999. The Undiscovered Mind: How the Human Brain Defies Replication, Medication, and Explanation New York: Free
  47. Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M. et al. 2012. The connectome of a decision-making neural network. Science 337:437–44 [Google Scholar]
  48. Jones DK, Knösche TR, Turner R. 2013. White matter integrity, fiber count, and other fallacies: the do's and don'ts of diffusion MRI. NeuroImage 73:239–54 [Google Scholar]
  49. Kasthuri N, Hayworth K, Berger DR, Schalek RL, Conchello JA. et al. 2015. Saturated reconstruction of a volume of neocortex. Cell 162:635–47 [Google Scholar]
  50. Kasthuri N, Lichtman JW. 2007. The rise of the “projectome.”. Nat. Methods 4:307–8 [Google Scholar]
  51. Kim J, Zhao T, Petralia RS, Yu Y, Peng H. et al. 2012. mGRASP enables mapping mammalian synaptic connectivity with light microscopy. Nat. Methods 9:96–102 [Google Scholar]
  52. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M. et al. 2014. Space-time wiring specificity supports direction selectivity in the retina. Nature 509:331–36 [Google Scholar]
  53. Kruger L, Otis TS. 2007. Whither withered Golgi? A retrospective evaluation of reticularist and synaptic constructs. Brain Res. Bull. 72:201–7 [Google Scholar]
  54. Lichtman JW, Colman H. 2000. Synapse elimination and indelible memory. Neuron 25:269–78 [Google Scholar]
  55. Lichtman JW, Pfister H, Shavit N. 2014. The big data challenges of connectomics. Nat. Neurosci. 17:1448–54 [Google Scholar]
  56. Lichtman JW, Sanes JR. 2008. Ome sweet ome: What can the genome tell us about the connectome?. Curr. Opin. Neurobiol. 18:346–53 [Google Scholar]
  57. Livet J, Weissman TA, Kang H, Draft RW, Lu J. et al. 2007. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62 [Google Scholar]
  58. Loulier K, Barry R, Mahou P, Le Franc Y, Supatto W. et al. 2014. Multiplex cell and lineage tracking with combinatorial labels. Neuron 81:505–20 [Google Scholar]
  59. Lu J, Tapia JC, White OL, Lichtman JW. 2009. The interscutularis muscle connectome. PLOS Biol. 7:e32 [Google Scholar]
  60. Luo L, Callaway EM, Svoboda K. 2008. Genetic dissection of neural circuits. Neuron 57:634–60 [Google Scholar]
  61. Macagno E, Honig B, Chasin L. 2014. Cyrus Levinthal, 1922–1970: A Biographical Memoir Washington, DC: Natl. Acad. Sci.
  62. Manzoni T. 1998. The cerebral ventricles, the animal spirits and the dawn of brain localization of function. Arch. Ital. Biol. 136:103–52 [Google Scholar]
  63. McCulloch WS, Pitts W. 1943. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5:115–33 [Google Scholar]
  64. Meadows DH. 2008. Thinking in Systems: A Primer White River Junction, VT: Chelsea Green
  65. Meynert T. 1872. The brain of mammals. A Manual of Histology S Stricker 650–766 New York: William Wood [Google Scholar]
  66. Nikolenko V, Poskanzer KE, Yuste R. 2007. Two-photon photostimulation and imaging of neural circuits. Nat. Methods 4:943–50 [Google Scholar]
  67. Oberlaender M, de Kock CPJ, Bruno RM, Ramirez A, Meyer HS. et al. 2012. Cell type–specific three-dimensional structure of thalamocortical circuits in a column of rat vibrissal cortex. Cereb. Cortex 22:2375–91 [Google Scholar]
  68. Oh SW, Harris JA, Ng L, Winslow B, Cain N. et al. 2014. A mesoscale connectome of the mouse brain. Nature 508:207–14 [Google Scholar]
  69. Packer AM, Russell LE, Dalgleish HW, Hausser M. 2015. Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo. Nat. Methods 12:140–46 [Google Scholar]
  70. Pan YA, Freundlich T, Weissman TA, Schoppik D, Wang XC. et al. 2013. Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish. Development 140:2835–46 [Google Scholar]
  71. Pechura CM, Martin JB. 1991. Mapping the Brain and its Functions: Integrating Enabling Technologies into Neuroscience Research Washington, DC: Natl. Acad.
  72. Pivetta C, Esposito MS, Sigrist M, Arber S. 2014. Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 156:537–48 [Google Scholar]
  73. Randel N, Shahidi R, Verasztó C, Bezares-Calderón LA, Schmidt S, Jékely G. 2015. Inter-individual stereotypy of the Platynereis larval visual connectome. eLife 4e08069
  74. Richier B, Salecker I. 2015. Versatile genetic paintbrushes: Brainbow technologies. Wiley Interdiscip. Rev. Dev. Biol. 4:161–80 [Google Scholar]
  75. Robertson JD. 1955. Recent electron microscope observations on the ultrastructure of the crayfish median-to-motor giant synapse. Exp. Cell Res. 8:226–29 [Google Scholar]
  76. Robertson JD. 1956. Some features of the ultrastructure of reptilian skeletal muscle. J. Biophys. Biochem. Cytol. 2:369–80 [Google Scholar]
  77. Robles E, Filosa A, Baier H. 2013. Precise lamination of retinal axons generates multiple parallel input pathways in the tectum. J. Neurosci. 33:5027–39 [Google Scholar]
  78. Rubinov M, Sporns O. 2010. Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52:1059–69 [Google Scholar]
  79. Shepherd GM. 1991. Foundations of the Neuron Doctrine New York: Oxford Univ. Press
  80. Shepherd GM. 2010. Creating Modern Neuroscience: The Revolutionary 1950s Oxford, UK: Oxford Univ. Press
  81. Shepherd GM. 2014. Diversity and complexity in the pyramidal tract projectome. Nat. Rev. Neurosci. 15:63 [Google Scholar]
  82. Sherrington CS. 1897. A Text Book of Physiology, Part III: The Central Nervous System M Foster 915–1252 London: Macmillan, 7th ed.. [Google Scholar]
  83. Shih C-T, Sporns O, Yuan S-L, Su T-A, Lin Y-J. et al. 2015. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25:1249–58 [Google Scholar]
  84. Shimosako N, Hadjieconomou D, Salecker I. 2014. Flybow to dissect circuit assembly in the Drosophila brain. Methods Mol. Biol. 1082:57–69 [Google Scholar]
  85. Simpson GG. 1961. Principles of Taxonomy New York: Columbia Univ. Press
  86. Sporns O. 2011. Networks of the Brain Cambridge, MA: MIT Press
  87. Sporns O, Tononi G, Kötter R. 2005. The human connectome: a structural description of the human brain. PLOS Comput. Biol. 1:4e42 [Google Scholar]
  88. Swanson LW. 1992. Brain Maps: Structure of the Rat Brain Amsterdam: Elsevier
  89. Swanson LW. 2000. A history of neuroanatomical mapping. Brain Mapping: The Systems AW Toga, JC Mazziota 77–109 San Diego, CA: Academic [Google Scholar]
  90. Swanson LW. 2004. Brain Maps: Structure of the Rat Brain. A Laboratory Guide with Printed and Electronic Templates for Data, Models and Schematics. Amsterdam: Elsevier, 3rd ed..
  91. Swanson LW. 2012. Brain Architecture: Understanding the Basic Plan New York: Oxford Univ. Press, 2nd ed..
  92. Swanson LW. 2014. Neuroanatomical Terminology: A Lexicon of Classical Origins and Historical Foundations New York: Oxford Univ. Press
  93. Swanson LW, Bota M. 2010. Foundational model of nervous system structural connectivity with a schema for wiring diagrams, connectome, and basic plan architecture. PNAS 107:20610–17 [Google Scholar]
  94. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS. et al. 2014. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. PNAS 111:16574–79 [Google Scholar]
  95. Tsuriel S, Gudes S, Draft RW, Binshtok AM, Lichtman JW. 2015. Multispectral labeling technique to map many neighboring axonal projections in the same tissue. Nat. Methods 12:547–52 [Google Scholar]
  96. van den Heuvel MP, Sporns O. 2011. Rich-club organization of the human connectome. J. Neurosci. 31:15775–86 [Google Scholar]
  97. Varshney LR, Chen BL, Paniagua E, Hall DH, Chklovskii DB. 2011. Structural properties of the Caenorhabditis elegans neuronal network. PLOS Comput. Biol. 7:2e1001066 [Google Scholar]
  98. Ward S, Thomson N, White JG, Brenner S. 1975. Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans.. J. Comp. Neurol. 160:313–38 [Google Scholar]
  99. Weissman TA, Pan YA. 2015. Brainbow: new resources and emerging biological applications for multicolor genetic labeling and analysis. Genetics 199:293–306 [Google Scholar]
  100. White JG, Southgate E, Thomson JN, Brenner S. 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B 314:1–340 [Google Scholar]
  101. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S. et al. 2007. Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53:639–47 [Google Scholar]
  102. Willis T. 1664. Cerebri Anatome: Cui Accessit Nervorum Descriptio et Usus London: Flesher, Martyn and Allestry
  103. Wolff T, Iyer NA, Rubin GM. 2015. Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp Neurol. 523:997–1037 [Google Scholar]
  104. Xiong F, Obholzer ND, Noche RR, Megason SG. 2015. Multibow: digital spectral barcodes for cell tracing. PLOS ONE 10:5e0127822 [Google Scholar]
  105. Zador AM, Dubnau J, Oyibo HK, Zhan H, Cao G, Peikon ID. 2012. Sequencing the connectome. PLOS Biol. 10:10e1001411 [Google Scholar]
  106. Zhang GR, Zhao H, Abdul-Muneer PM, Cao H, Li X, Geller A. 2015. Neurons can be labeled with unique hues by helper virus-free HSV-1 vectors expressing Brainbow. J. Neurosci. Methods 240:77–88 [Google Scholar]
  107. Zingg B, Hintiryan H, Gou L, Song MY, Bay M. et al. 2014. Neural networks of the mouse neocortex. Cell 156:1096–111 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-033954
Loading
/content/journals/10.1146/annurev-neuro-071714-033954
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error