1932

Abstract

This review presents principles of glycosylation, describes the relevant glycosylation pathways and their related disorders, and highlights some of the neurological aspects and issues that continue to challenge researchers. More than 100 rare human genetic disorders that result from deficiencies in the different glycosylation pathways are known today. Most of these disorders impact the central and/or peripheral nervous systems. Patients typically have developmental delays/intellectual disabilities, hypotonia, seizures, neuropathy, and metabolic abnormalities in multiple organ systems. Among these disorders there is great clinical diversity because all cell types differentially glycosylate proteins and lipids. The patients have hundreds of misglycosylated products, which afflict a myriad of processes, including cell signaling, cell-cell interaction, and cell migration. This vast complexity in glycan composition and function, along with the limited availability of analytic tools, has impeded the identification of key glycosylated molecules that cause pathologies. To date, few critical target proteins have been pinpointed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-neuro-071714-034019
2015-07-08
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/neuro/38/1/annurev-neuro-071714-034019.html?itemId=/content/journals/10.1146/annurev-neuro-071714-034019&mimeType=html&fmt=ahah

Literature Cited

  1. Abadi RV. 2002. Mechanisms underlying nystagmus. J. R. Soc. Med. 95:231–34 [Google Scholar]
  2. Aebi M, Hennet T. 2001. Congenital disorders of glycosylation: genetic model systems lead the way. Trends Cell Biol. 11:136–41 [Google Scholar]
  3. Agrawal P, Kurcon T, Pilobello KT, Rakus JF, Koppolu S. et al. 2014. Mapping posttranscriptional regulation of the human glycome uncovers microRNA defining the glycocode. PNAS 111:4338–43 [Google Scholar]
  4. Almeida AM, Murakami Y, Layton DM, Hillmen P, Sellick GS. et al. 2006. Hypomorphic promoter mutation in PIGM causes inherited glycosylphosphatidylinositol deficiency. Nat. Med. 12:846–51 [Google Scholar]
  5. Amberger J, Bocchini C, Hamosh A. 2011. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM). Hum. Mutat. 32:564–67 [Google Scholar]
  6. Aronica E, van Kempen AA, van der Heide M, Poll-The BT, van Slooten HJ. et al. 2005. Congenital disorder of glycosylation type Ia: a clinicopathological report of a newborn infant with cerebellar pathology. Acta Neuropathol. 109:433–42 [Google Scholar]
  7. Arranz AM, Perkins KL, Irie F, Lewis DP, Hrabe J. et al. 2014. Hyaluronan deficiency due to Has3 knock-out causes altered neuronal activity and seizures via reduction in brain extracellular space. J. Neurosci. 34:6164–76 [Google Scholar]
  8. Atwal JK, Pinkston-Gosse J, Syken J, Stawicki S, Wu Y. et al. 2008. PirB is a functional receptor for myelin inhibitors of axonal regeneration. Science 322:967–70 [Google Scholar]
  9. Barone R, Fiumara A, Jaeken J. 2014. Congenital disorders of glycosylation with emphasis on cerebellar involvement. Semin. Neurol. 34:357–66 [Google Scholar]
  10. Baycin-Hizal D, Gottschalk A, Jacobson E, Mai S, Wolozny D. et al. 2014. Physiologic and pathophysiologic consequences of altered sialylation and glycosylation on ion channel function. Biochem. Biophys. Res. Commun. 453:243–53 [Google Scholar]
  11. Belaya K, Finlayson S, Slater CR, Cossins J, Liu WW. et al. 2012. Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am. J. Hum. Genet. 91:193–201 [Google Scholar]
  12. Belet S, Fieremans N, Yuan X, Van Esch H, Verbeeck J. et al. 2014. Early frameshift mutation in PIGA identified in a large XLID family without neonatal lethality. Hum. Mutat. 35:350–55 [Google Scholar]
  13. Boccuto L, Aoki K, Flanagan-Steet H, Chen CF, Fan X. et al. 2014. A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum. Mol. Genet. 23:418–33 [Google Scholar]
  14. Boukhris A, Schule R, Loureiro JL, Lourenço CM, Mundwiller E. et al. 2013. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia. Am. J. Hum. Genet. 93:118–23 [Google Scholar]
  15. Brockhausen I, Schachter H, Stanley P. 2009. O-GalNAc glycans. See Varki et al. 2009 115–27
  16. Caffaro CE, Luhn K, Bakker H, Vestweber D, Samuelson J. et al. 2008. A single Caenorhabditis elegans Golgi apparatus-type transporter of UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine. Biochemistry 47:4337–44 [Google Scholar]
  17. Cai M, Yang Y. 2014. Targeted genome editing tools for disease modeling and gene therapy. Curr. Gene Ther. 14:2–9 [Google Scholar]
  18. Cantagrel V, Lefeber DJ, Ng BG, Guan Z, Silhavy JL. et al. 2010. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell 142:203–17 [Google Scholar]
  19. Carrera IA, Matthijs G, Perez B, Cerdá CP. 2012. DPAGT1-CDG: report of a patient with fetal hypokinesia phenotype. Am. J. Med. Genet. A 158A:2027–30 [Google Scholar]
  20. Chiyonobu T, Inoue N, Morimoto M, Kinoshita T, Murakami Y. 2014. Glycosylphosphatidylinositol (GPI) anchor deficiency caused by mutations in PIGW is associated with West syndrome and hyperphosphatasia with mental retardation syndrome. J. Med. Genet. 51:203–7 [Google Scholar]
  21. Cirak S, Foley AR, Herrmann R, Willer T, Yau S. et al. 2013. ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies. Brain 136:269–81 [Google Scholar]
  22. Clement E, Mercuri E, Godfrey C, Smith J, Robb S. et al. 2008. Brain involvement in muscular dystrophies with defective dystroglycan glycosylation. Ann. Neurol. 64:573–82 [Google Scholar]
  23. Cline A, Gao N, Flanagan-Steet H, Sharma V, Rosa S. et al. 2012. A zebrafish model of PMM2-CDG reveals altered neurogenesis and a substrate-accumulation mechanism for N-linked glycosylation deficiency. Mol. Biol. Cell 23:4175–87 [Google Scholar]
  24. Contessa JN, Bhojani MS, Freeze HH, Ross BD, Rehemtulla A, Lawrence TS. 2010. Molecular imaging of N-linked glycosylation suggests glycan biosynthesis is a novel target for cancer therapy. Clin. Cancer Res. 16:3205–14 [Google Scholar]
  25. Cossins J, Belaya K, Hicks D, Salih MA, Finlayson S. et al. 2013. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain 136:944–56 [Google Scholar]
  26. Cremer H, Chazal G, Goridis C, Represa A. 1997. NCAM is essential for axonal growth and fasciculation in the hippocampus. Mol. Cell. Neurosci. 8:323–35 [Google Scholar]
  27. Cummings RD, Pierce JM. 2014. The challenge and promise of glycomics. Chem. Biol. 21:1–15 [Google Scholar]
  28. de Koning TJ, Toet M, Dorland L, de Vries LS, van den Berg IE. et al. 1998. Recurrent nonimmune hydrops fetalis associated with carbohydrate-deficient glycoprotein syndrome. J. Inherit. Metab. Dis. 21:681–82 [Google Scholar]
  29. de la Morena-Barrio ME, Hernández-Caselles T, Corral J, García-López R, Martínez-Martínez I. et al. 2013. GPI-anchor and GPI-anchored protein expression in PMM2-CDG patients. Orphanet. J. Rare Dis. 8:170 [Google Scholar]
  30. Dejgaard K, Theberge JF, Heath-Engel H, Chevet E, Tremblay ML, Thomas DY. 2010. Organization of the Sec61 translocon, studied by high resolution native electrophoresis. J. Proteome Res. 9:1763–71 [Google Scholar]
  31. Dennis JW, Nabi IR, Demetriou M. 2009. Metabolism, cell surface organization, and disease. Cell 139:1229–41 [Google Scholar]
  32. Dityatev A, Dityateva G, Sytnyk V, Delling M, Toni N. et al. 2004. Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses. J. Neurosci. 24:9372–82 [Google Scholar]
  33. Ednie AR, Bennett ES. 2012. Modulation of voltage-gated ion channels by sialylation. Compr. Physiol. 2:1269–301 [Google Scholar]
  34. Edvardson S, Ashikov A, Jalas C, Sturiale L, Shaag A. et al. 2013a. Mutations in SLC35A3 cause autism spectrum disorder, epilepsy and arthrogryposis. J. Med. Genet. 50:733–39 [Google Scholar]
  35. Edvardson S, Baumann AM, Mühlenhoff M, Stephan O, Kuss AW. et al. 2013b. West syndrome caused by ST3Gal-III deficiency. Epilepsia 54:e24–27 [Google Scholar]
  36. Ellies LG, Sperandio M, Underhill GH, Yousif J, Smith M. et al. 2002. Sialyltransferase specificity in selectin ligand formation. Blood 100:3618–25 [Google Scholar]
  37. Engel AG, Ohno K, Sine SM. 1999. Congenital myasthenic syndromes: recent advances. Arch. Neurol. 56:163–67 [Google Scholar]
  38. Engel AG, Shen XM, Selcen D, Sine S. 2012. New horizons for congenital myasthenic syndromes. Ann. N. Y. Acad. Sci. 1275:54–62 [Google Scholar]
  39. Enns GM, Shashi V, Bainbridge M, Gambello MJ, Zahir FR. et al. 2014. Mutations in NGLY1 cause an inherited disorder of the endoplasmic reticulum-associated degradation pathway. Genet. Med. 16:751–58 [Google Scholar]
  40. Epi4K Consort., Epilepsy Phenome/Genome Proj 2013. De novo mutations in epileptic encephalopathies. Nature 501:217–21 [Google Scholar]
  41. Esko JD, Kimata K, Lindahl U. 2009. Proteoglycans and sulfated glycosaminoglycans. See Varki et al. 2009 229–48
  42. EuroEPINOMICS-RES Consort., Epilepsy Phenome/Genome Proj., Epi4K Consort 2014. De novo mutations in synaptic transmission genes including DNM1 cause epileptic encephalopathies. Am. J. Hum. Genet. 95:360–70 [Google Scholar]
  43. Ferguson MAJ, Kinoshita T, Hart GW. 2009. Glycosylphosphatidylinositol anchors. See Varki et al. 2009 143–61
  44. Fragaki K, Ait-El-Mkadem S, Chaussenot A, Gire C, Mengual R. et al. 2013. Refractory epilepsy and mitochondrial dysfunction due to GM3 synthase deficiency. Eur. J. Hum. Genet. 21:528–34 [Google Scholar]
  45. Freeze HH. 2013. Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 288:6936–45 [Google Scholar]
  46. Freeze HH, Chong JX, Bamshad MJ, Ng BG. 2014. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am. J. Hum. Genet. 94:161–75 [Google Scholar]
  47. Freeze HH, Eklund EA, Ng BG, Patterson MC. 2012. Neurology of inherited glycosylation disorders. Lancet Neurol. 11:453–66 [Google Scholar]
  48. Freeze HH, Ng BG. 2011. Golgi glycosylation and human inherited diseases. Cold Spring Harb. Perspect. Biol. 3:a005371 [Google Scholar]
  49. Gao XD, Nishikawa A, Dean N. 2004. Physical interactions between the Alg1, Alg2, and Alg11 mannosyltransferases of the endoplasmic reticulum. Glycobiology 14:559–70 [Google Scholar]
  50. Gao XD, Tachikawa H, Sato T, Jigami Y, Dean N. 2005. Alg14 recruits Alg13 to the cytoplasmic face of the endoplasmic reticulum to form a novel bipartite UDP-N-acetylglucosamine transferase required for the second step of N-linked glycosylation. J. Biol. Chem. 280:36254–62 [Google Scholar]
  51. Garshasbi M, Hadavi V, Habibi H, Kahrizi K, Kariminejad R. et al. 2008. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am. J. Hum. Genet. 82:1158–64 [Google Scholar]
  52. Godfrey C, Foley AR, Clement E, Muntoni F. 2011. Dystroglycanopathies: coming into focus. Curr. Opin. Genet. Dev. 21:278–85 [Google Scholar]
  53. Hadley B, Maggioni A, Ashikov A, Day CJ, Haselhorst T, Tiralongo J. 2014. Structure and function of nucleotide sugar transporters: current progress. Comput. Struct. Biotechnol. J. 10:23–32 [Google Scholar]
  54. Hakomori S. 2004. Carbohydrate-to-carbohydrate interaction, through glycosynapse, as a basis of cell recognition and membrane organization. Glycoconj. J. 21:125–37 [Google Scholar]
  55. Hancock JF. 2004. GPI-anchor synthesis: Ras takes charge. Dev. Cell 6:743–45 [Google Scholar]
  56. Harlalka GV, Lehman A, Chioza B, Baple EL, Maroofian R. et al. 2013. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis. Brain 136:3618–24 [Google Scholar]
  57. Helander A, Stödberg T, Jaeken J, Matthijs G, Eriksson M, Eggertsen G. 2013. Dolichol kinase deficiency (DOLK-CDG) with a purely neurological presentation caused by a novel mutation. Mol. Genet. Metab. 110:342–44 [Google Scholar]
  58. Hildebrandt H, Dityatev A. 2013. Polysialic acid in brain development and synaptic plasticity. Top. Curr. Chem. doi: 10.1007/128_2013_446
  59. Hildebrandt H, Muhlenhoff M, Weinhold B, Gerardy-Schahn R. 2007. Dissecting polysialic acid and NCAM functions in brain development. J. Neurochem. 103:Suppl. 156–64 [Google Scholar]
  60. Holleboom AG, Karlsson H, Lin RS, Beres TM, Sierts JA. et al. 2011. Heterozygosity for a loss-of-function mutation in GALNT2 improves plasma triglyceride clearance in man. Cell Metab. 14:811–18 [Google Scholar]
  61. Houlden H. 2013. Defective N-linked protein glycosylation pathway in congenital myasthenic syndromes. Brain 136:692–95 [Google Scholar]
  62. Hu H, Eggers K, Chen W, Garshasbi M, Motazacker MM. et al. 2011. ST3GAL3 mutations impair the development of higher cognitive functions. Am. J. Hum. Genet. 89:407–14 [Google Scholar]
  63. Irie F, Badie-Mahdavi H, Yamaguchi Y. 2012. Autism-like socio-communicative deficits and stereotypies in mice lacking heparan sulfate. PNAS 109:5052–56 [Google Scholar]
  64. Jae LT, Raaben M, Riemersma M, van Beusekom E, Blomen VA. et al. 2013. Deciphering the glycosylome of dystroglycanopathies using haploid screens for lassa virus entry. Science 340:479–83 [Google Scholar]
  65. Johnson D, Bennett ES. 2008. Gating of the shaker potassium channel is modulated differentially by N-glycosylation and sialic acids. Pflugers Arch. 456:393–405 [Google Scholar]
  66. Johnston JJ, Gropman AL, Sapp JC, Teer JK, Martin JM. et al. 2012. The phenotype of a germline mutation in PIGA: the gene somatically mutated in paroxysmal nocturnal hemoglobinuria. Am. J. Hum. Genet. 90:295–300 [Google Scholar]
  67. Kasper BT, Koppolu S, Mahal LK. 2014. Insights into miRNA regulation of the human glycome. Biochem. Biophys. Res. Commun. 445:774–79 [Google Scholar]
  68. Kato M, Saitsu H, Murakami Y, Kikuchi K, Watanabe S. et al. 2014. PIGA mutations cause early-onset epileptic encephalopathies and distinctive features. Neurology 82:1587–96 [Google Scholar]
  69. Kim S, Westphal V, Srikrishna G, Mehta DP, Peterson S. et al. 2000. Dolichol phosphate mannose synthase (DPM1) mutations define congenital disorder of glycosylation Ie (CDG-Ie). J. Clin. Investig. 105:191–98 [Google Scholar]
  70. Kiwamoto T, Brummet ME, Wu F, Motari MG, Smith DF. et al. 2014. Mice deficient in the St3gal3 gene product α2,3 sialyltransferase (ST3Gal-III) exhibit enhanced allergic eosinophilic airway inflammation. J. Allergy Clin. Immunol. 133:240–47e1–3 [Google Scholar]
  71. Kizuka Y, Kitazume S, Okahara K, Villagra A, Sotomayor EM, Taniguchi N. 2014. Epigenetic regulation of a brain-specific glycosyltransferase N-acetylglucosaminyltransferase-IX (GnT-IX) by specific chromatin modifiers. J. Biol. Chem. 289:11253–61 [Google Scholar]
  72. Kjaergaard S, Schwartz M, Skovby F. 2001. Congenital disorder of glycosylation type Ia (CDG-Ia): phenotypic spectrum of the R141H/F119L genotype. Arch. Dis. Child. 85:236–39 [Google Scholar]
  73. Kodera H, Nakamura K, Osaka H, Maegaki Y, Haginoya K. et al. 2013. De novo mutations in SLC35A2 encoding a UDP-galactose transporter cause early-onset epileptic encephalopathy. Hum. Mutat. 34:1708–14 [Google Scholar]
  74. Kong Y, Joshi HJ, Schjoldager KT, Madsen TD, Gerken TA. et al. 2015. Probing polypeptide GalNAc-transferase isoform substrate specificities by in vitro analysis. Glycobiology 25:55–65 [Google Scholar]
  75. Kranz C, Sun L, Eklund EA, Krasnewich D, Casey JR, Freeze HH. 2007. CDG-Id in two siblings with partially different phenotypes. Am. J. Med. Genet. A 143A:1414–20 [Google Scholar]
  76. Kröcher T, Röckle I, Diederichs U, Weinhold B, Burkhardt H. et al. 2014. A crucial role for polysialic acid in developmental interneuron migration and the establishment of interneuron densities in the mouse prefrontal cortex. Development 141:3022–32 [Google Scholar]
  77. Kuki I, Takahashi Y, Okazaki S, Kawawaki H, Ehara E. et al. 2013. Vitamin B6-responsive epilepsy due to inherited GPI deficiency. Neurology 81:1467–69 [Google Scholar]
  78. Lander AD. 2007. Morpheus unbound: reimagining the morphogen gradient. Cell 128:245–56 [Google Scholar]
  79. Lefeber DJ, Schönberger J, Morava E, Guillard M, Huyben KM. et al. 2009. Deficiency of Dol-P-Man synthase subunit DPM3 bridges the congenital disorders of glycosylation with the dystroglycanopathies. Am. J. Hum. Genet. 85:76–86 [Google Scholar]
  80. Levenson D. 2014. Mutations in NGLY1 gene linked with new genetic disorder: Parents' reports of children's symptoms help facilitate the discovery. Am. J. Med. Genet. A 164:viii–ix [Google Scholar]
  81. Li H, Chavan M, Schindelin H, Lennarz WJ, Li H. 2008. Structure of the oligosaccharyl transferase complex at 12 A resolution. Structure 16:432–40 [Google Scholar]
  82. Lommel M, Winterhalter PR, Willer T, Dahlhoff M, Schneider MR. et al. 2013. Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. PNAS 110:21024–29 [Google Scholar]
  83. Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH. et al. 2014. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum. Mol. Genet. 23:1602–5 [Google Scholar]
  84. Lu J, Takahashi T, Ohoka A, Nakajima K, Hashimoto R. et al. 2012. Alg14 organizes the formation of a multiglycosyltransferase complex involved in initiation of lipid-linked oligosaccharide biosynthesis. Glycobiology 22:504–16 [Google Scholar]
  85. Martin HC, Kim GE, Pagnamenta AT, Murakami Y, Carvill GL. et al. 2014. Clinical whole-genome sequencing in severe early-onset epilepsy reveals new genes and improves molecular diagnosis. Hum. Mol. Genet. 23:3200–11 [Google Scholar]
  86. Martin PT. 2005. The dystroglycanopathies: the new disorders of O-linked glycosylation. Semin. Pediatr. Neurol. 12:152–58 [Google Scholar]
  87. Maszczak-Seneczko D, Sosicka P, Olczak T, Jakimowicz P, Majkowski M, Olczak M. 2013. UDP-N-acetylglucosamine transporter (SLC35A3) regulates biosynthesis of highly branched N-glycans and keratan sulfate. J. Biol. Chem. 288:21850–60 [Google Scholar]
  88. Maydan G, Noyman I, Har-Zahav A, Neriah ZB, Pasmanik-Chor M. et al. 2011. Multiple congenital anomalies-hypotonia-seizures syndrome is caused by a mutation in PIGN. J. Med. Genet. 48:383–89 [Google Scholar]
  89. Michaud JL, Lachance M, Hamdan FF, Carmant L, Lortie A. et al. 2014. The genetic landscape of infantile spasms. Hum. Mol. Genet. 23:4846–58 [Google Scholar]
  90. Might M, Wilsey M. 2014. The shifting model in clinical diagnostics: how next-generation sequencing and families are altering the way rare diseases are discovered, studied, and treated. Genet. Med. 16:736–37 [Google Scholar]
  91. Mohorko E, Owen RL, Malojčić G, Brozzo MS, Aebi M, Glockshuber R. 2014. Structural basis of substrate specificity of human oligosaccharyl transferase subunit N33/Tusc3 and its role in regulating protein N-glycosylation. Structure 22:590–601 [Google Scholar]
  92. Molinari F, Foulquier F, Tarpey PS, Morelle W, Boissel S. et al. 2008. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am. J. Hum. Genet. 82:1150–57 [Google Scholar]
  93. Morava E, Vodopiutz J, Lefeber DJ, Janecke AR, Schmidt WM. et al. 2012. Defining the phenotype in congenital disorder of glycosylation due to ALG1 mutations. Pediatrics 130:e1034–39 [Google Scholar]
  94. Morava E, Wevers RA, Cantagrel V, Hoefsloot LH, Al-Gazali L. et al. 2010. A novel cerebello-ocular syndrome with abnormal glycosylation due to abnormalities in dolichol metabolism. Brain 133:3210–20 [Google Scholar]
  95. Muppidi S, Wolfe GI, Barohn RJ. 2012. Disease of the neuromuscular junction. Swaiman's Pediatric Neurology KF Swaiman, S Ashwal, DM Ferriero, N Schor 1549–69 New York: Elsevier [Google Scholar]
  96. Ng BG, Buckingham KJ, Raymond K, Kircher M, Turner EH. et al. 2013. Mosaicism of the UDP-galactose transporter SLC35A2 causes a congenital disorder of glycosylation. Am. J. Hum. Genet. 92:632–36 [Google Scholar]
  97. Ng BG, Freeze HH. 2015. Human genetic disorders involving glycosylphosphatidylinositol (GPI) anchors and glycosphingolipids (GSL). J. Inherit. Metab. Dis. 38:171–78 [Google Scholar]
  98. Nowycky MC, Wu G, Ledeen RW. 2014. Glycobiology of ion transport in the nervous system. Adv. Neurobiol. 9:321–42 [Google Scholar]
  99. O'Connell TM, King D, Dixit CK, O'Connor B, Walls D, Ducrée J. 2014. Sequential glycan profiling at single cell level with the microfluidic lab-in-a-trench platform: a new era in experimental cell biology. Lab Chip 14:3629–39 [Google Scholar]
  100. Orr SL, Le D, Long JM, Sobieszczuk P, Ma B. et al. 2013. A phenotype survey of 36 mutant mouse strains with gene-targeted defects in glycosyltransferases or glycan-binding proteins. Glycobiology 23:363–80 [Google Scholar]
  101. Parker CJ. 2012. Paroxysmal nocturnal hemoglobinuria. Curr. Opin. Hematol. 19:141–48 [Google Scholar]
  102. Parkinson W, Dear ML, Rushton E, Broadie K. 2013. N-glycosylation requirements in neuromuscular synaptogenesis. Development 140:4970–81 [Google Scholar]
  103. Pedersen ME, Snieckute G, Kagias K, Nehammer C, Multhaupt HA. et al. 2013. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state. Science 341:1404–408 [Google Scholar]
  104. Pernet V, Schwab ME. 2012. The role of Nogo-A in axonal plasticity, regrowth and repair. Cell Tissue Res. 349:97–104 [Google Scholar]
  105. Praissman JL, Wells L. 2014. Mammalian O-mannosylation pathway: glycan structures, enzymes, and protein substrates. Biochemistry 53:3066–78 [Google Scholar]
  106. Pribiag H, Peng H, Shah WA, Stellwagen D, Carbonetto S. 2014. Dystroglycan mediates homeostatic synaptic plasticity at GABAergic synapses. PNAS 111:6810–15 [Google Scholar]
  107. Rosen CL, Lisanti MP, Salzer JL. 1992. Expression of unique sets of GPI-linked proteins by different primary neurons in vitro. J. Cell Biol. 117:617–27 [Google Scholar]
  108. Schenk B, Imbach T, Frank CG, Grubenmann CE, Raymond GV. et al. 2001. MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J. Clin. Investig. 108:1687–95 [Google Scholar]
  109. Schjoldager KT, Clausen H. 2012. Site-specific protein O-glycosylation modulates proprotein processing—deciphering specific functions of the large polypeptide GalNAc-transferase gene family. Biochim. Biophys. Acta 1820:2079–94 [Google Scholar]
  110. Schjoldager KT, Vakhrushev SY, Kong Y, Steentoft C, Nudelman AS. et al. 2012. Probing isoform-specific functions of polypeptide GalNAc-transferases using zinc finger nuclease glycoengineered SimpleCells. PNAS 109:9893–98 [Google Scholar]
  111. Schnaar RL, Gerardy-Schahn R, Hildebrandt H. 2014. Sialic acids in the brain: gangliosides and polysialic acid in nervous system development, stability, disease, and regeneration. Physiol. Rev. 94:461–518 [Google Scholar]
  112. Schnaar RL, Suzuki A, Stanley P. 2009. Glycosphingolipids. See Varki et al. 2009 129–41
  113. Senderek J, Müller JS, Dusl M, Strom TM, Guergueltcheva V. et al. 2011. Hexosamine biosynthetic pathway mutations cause neuromuscular transmission defect. Am. J. Hum. Genet. 88:162–72 [Google Scholar]
  114. Senkov O, Tikhobrazova O, Dityatev A. 2012. PSA-NCAM: synaptic functions mediated by its interactions with proteoglycans and glutamate receptors. Int. J. Biochem. Cell Biol. 44:591–95 [Google Scholar]
  115. Sharma V, Ichikawa M, Freeze HH. 2014. Mannose metabolism: more than meets the eye. Biochem. Biophys. Res. Commun. 453:220–28 [Google Scholar]
  116. Shi Z, Ruvkun G. 2012. The mevalonate pathway regulates microRNA activity in Caenorhabditis elegans. PNAS 109:4568–73 [Google Scholar]
  117. Shibatani T, David LL, McCormack AL, Frueh K, Skach WR. 2005. Proteomic analysis of mammalian oligosaccharyltransferase reveals multiple subcomplexes that contain Sec61, TRAP, and two potential new subunits. Biochemistry 44:5982–92 [Google Scholar]
  118. Simpson MA, Cross H, Proukakis C, Priestman DA, Neville DC. et al. 2004. Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase. Nat. Genet. 36:1225–29 [Google Scholar]
  119. Smith DF, Cummings RD. 2014. Investigating virus-glycan interactions using glycan microarrays. Curr. Opin. Virol. 7C:79–87 [Google Scholar]
  120. Spiro RG. 2002. Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12:43R–56 [Google Scholar]
  121. Stalnaker SH, Aoki K, Lim JM, Porterfield M, Liu M. et al. 2011. Glycomic analyses of mouse models of congenital muscular dystrophy. J. Biol. Chem. 286:21180–90 [Google Scholar]
  122. Stanley P, Schachter H, Taniguchi N. 2009. N-glycans. See Varki et al. 2009 101–14
  123. Steentoft C, Bennett EP, Schjoldager KT, Vakhrushev SY, Wandall HH, Clausen H. 2014. Precision genome editing: a small revolution for glycobiology. Glycobiology 24:663–80 [Google Scholar]
  124. Sun L, Zhao Y, Zhou K, Freeze HH, Zhang YW, Xu H. 2013. Insufficient ER-stress response causes selective mouse cerebellar granule cell degeneration resembling that seen in congenital disorders of glycosylation. Mol. Brain 6:52 [Google Scholar]
  125. Swoboda KJ, Margraf RL, Carey JC, Zhou H, Newcomb TM. et al. 2014. A novel germline PIGA mutation in Ferro-Cerebro-Cutaneous syndrome: a neurodegenerative X-linked epileptic encephalopathy with systemic iron-overload. Am. J. Med. Genet. A 164A:17–28 [Google Scholar]
  126. Takamiya K, Yamamoto A, Furukawa K, Yamashiro S, Shin M. et al. 1996. Mice with disrupted GM2/GD2 synthase gene lack complex gangliosides but exhibit only subtle defects in their nervous system. PNAS 93:10662–67 [Google Scholar]
  127. Tegtmeyer LC, Rust S, van Scherpenzeel M, Ng BG, Losfeld ME. et al. 2014. Multiple phenotypes in phosphoglucomutase 1 deficiency. N. Engl. J. Med. 370:533–42 [Google Scholar]
  128. Tennant KA. 2014. Thinking outside the brain: structural plasticity in the spinal cord promotes recovery from cortical stroke. Exp. Neurol. 254:195–99 [Google Scholar]
  129. Tettamanti G, Bonali F, Marchesini S, Zambotti V. 1973. A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim. Biophys. Acta 296:160–70 [Google Scholar]
  130. Thompson MD, Killoran A, Percy ME, Nezarati M, Cole DE, Hwang PA. 2006. Hyperphosphatasia with neurologic deficit: a pyridoxine-responsive seizure disorder?. Pediatr. Neurol. 34:303–7 [Google Scholar]
  131. van Bokhoven H. 2011. Genetic and epigenetic networks in intellectual disabilities. Annu. Rev. Genet. 45:81–104 [Google Scholar]
  132. van der Crabben SN, Harakalova M, Brilstra EH, van Berkestijn FM, Hofstede FC. et al. 2014. Expanding the spectrum of phenotypes associated with germline PIGA mutations: a child with developmental delay, accelerated linear growth, facial dysmorphisms, elevated alkaline phosphatase, and progressive CNS abnormalities. Am. J. Med. Genet. A 164A:29–35 [Google Scholar]
  133. Varki A. 1993. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3:97–130 [Google Scholar]
  134. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P. et al. 2009. Essentials of Glycobiology Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press
  135. Varki A, Sharon N. 2009. Historical background and overview. See Varki et al. 2009 1–22
  136. Verrotti A, Spalice A, Ursitti F, Papetti L, Mariani R. et al. 2010. New trends in neuronal migration disorders. Eur. J. Paediatr. Neurol. 14:1–12 [Google Scholar]
  137. Vester-Christensen MB, Halim A, Joshi HJ, Steentoft C, Bennett EP. et al. 2013. Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. PNAS 110:21018–23 [Google Scholar]
  138. Vuillaumier-Barrot S, Bouchet-Séraphin C, Chelbi M, Devisme L, Quentin S. et al. 2012. Identification of mutations in TMEM5 and ISPD as a cause of severe cobblestone lissencephaly. Am. J. Hum. Genet. 91:1135–43 [Google Scholar]
  139. Wakil SM, Monies DM, Ramzan K, Hagos S, Bastaki L. et al. 2014. Novel B4GALNT1 mutations in a complicated form of hereditary spastic paraplegia. Clin. Genet. 86:500–1 [Google Scholar]
  140. Wang Y, Schachter H, Marth JD. 2002. Mice with a homozygous deletion of the Mgat2 gene encoding UDP-N-acetylglucosamine:alpha-6-D-mannoside beta1,2-N-acetylglucosaminyltransferase II: a model for congenital disorder of glycosylation type IIa. Biochim. Biophys. Acta 1573:301–11 [Google Scholar]
  141. Willett R, Ungar D, Lupashin V. 2013. The Golgi puppet master: COG complex at center stage of membrane trafficking interactions. Histochem. Cell Biol. 140:271–83 [Google Scholar]
  142. Wills ZP, Mandel-Brehm C, Mardinly AR, McCord AE, Giger RJ, Greenberg ME. 2012. The nogo receptor family restricts synapse number in the developing hippocampus. Neuron 73:466–81 [Google Scholar]
  143. Wu X, Rush JS, Karaoglu D, Krasnewich D, Lubinsky MS. et al. 2003. Deficiency of UDP-GlcNAc:Dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum. Mutat. 22:144–50 [Google Scholar]
  144. Yoshida-Moriguchi T, Yu L, Stalnaker SH, Davis S, Kunz S. et al. 2010. O-mannosyl phosphorylation of alpha-dystroglycan is required for laminin binding. Science 327:88–92 [Google Scholar]
  145. Zelinger L, Banin E, Obolensky A, Mizrahi-Meissonnier L, Beryozkin A. et al. 2011. A missense mutation in DHDDS, encoding dehydrodolichyl diphosphate synthase, is associated with autosomal-recessive retinitis pigmentosa in Ashkenazi Jews. Am. J. Hum. Genet. 88:207–15 [Google Scholar]
  146. Zhang YT, Lander AD, Nie Q. 2007. Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. J. Theor. Biol. 248:579–89 [Google Scholar]
  147. Zhou H, Clapham DE. 2009. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. PNAS 106:15750–55 [Google Scholar]
  148. Zielinska DF, Gnad F, Wisniewski JR, Mann M. 2010. Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907 [Google Scholar]
  149. Zoltowska K, Webster R, Finlayson S, Maxwell S, Cossins J. et al. 2013. Mutations in GFPT1 that underlie limb-girdle congenital myasthenic syndrome result in reduced cell-surface expression of muscle AChR. Hum. Mol. Genet. 22:2905–13 [Google Scholar]
  150. Züchner S, Dallman J, Wen R, Beecham G, Naj A. et al. 2011. Whole-exome sequencing links a variant in DHDDS to retinitis pigmentosa. Am. J. Hum. Genet. 88:201–6 [Google Scholar]
/content/journals/10.1146/annurev-neuro-071714-034019
Loading
/content/journals/10.1146/annurev-neuro-071714-034019
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error