1932

Abstract

Glucose homeostasis greatly depends on the match between fluctuating insulin demands and adjusted rates of insulin secretion, which is the function of pancreatic beta cells. Emerging evidence suggests that when neonatal beta cells mature, they acquire two faces of differentiated function: an expected “visible face” that depends on specific beta cell proteins needed for regulated insulin release, but also a “hidden face” that represses ubiquitous proteins to prevent inappropriate beta cell function such as elevated basal hormone secretion or insulin release triggered by exercise. This review highlights this novel concept, and we first propose that hidden faces may also be relevant for other specialized tissue functions, such as ketogenesis in the liver. Next, we discuss three scenarios in which aberrant gene expression causes abnormal glucose-induced insulin release and the epigenetic regulation of the hidden face in beta cells. We conclude with perspectives for new research, including beta cell replacement to cure diabetes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071715-050808
2016-07-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-071715-050808.html?itemId=/content/journals/10.1146/annurev-nutr-071715-050808&mimeType=html&fmt=ahah

Literature Cited

  1. Agius L. 1.  2008. Glucokinase and molecular aspects of liver glycogen metabolism. Biochem. J. 414:11–18 [Google Scholar]
  2. Ahrén B. 2.  2015. Glucagon—early breakthroughs and recent discoveries. Peptides 67:74–81 [Google Scholar]
  3. Alipio Z, Liao W, Roemer EJ, Waner M, Fink LM. 3.  et al. 2010. Reversal of hyperglycemia in diabetic mouse models using induced-pluripotent stem (iPS)-derived pancreatic β-like cells. PNAS 107:3013426–31 [Google Scholar]
  4. Andersson LE, Valtat B, Bagge A, Sharoyko VV, Nicholls DG. 4.  et al. 2015. Characterization of stimulus-secretion coupling in the human pancreatic EndoC-βh1 beta cell line. PLOS ONE 10:3e0120879 [Google Scholar]
  5. Andrews TJ, Schluppeck D, Homfray D, Matthews P, Blakemore C. 5.  2002. Activity in the fusiform gyrus predicts conscious perception of Rubin's vase-face illusion. NeuroImage 17:2890–901 [Google Scholar]
  6. Arnes L, Sussel L. 6.  2015. Epigenetic modifications and long noncoding RNAs influence pancreas development and function. Trends Genet. 31:6290–99 [Google Scholar]
  7. Ashcroft FM. 7.  2005. ATP-sensitive potassium channelopathies: focus on insulin secretion. J. Clin. Investig. 115:82047–58 [Google Scholar]
  8. Ashcroft FM, Rorsman P. 8.  2012. Diabetes mellitus and the beta cell: the last ten years. Cell 148:61160–71 [Google Scholar]
  9. Atouf F, Czernichow P, Scharfmann R. 9.  1997. Expression of neuronal traits in pancreatic beta cells. J. Biol. Chem. 272:31929–34 [Google Scholar]
  10. Baeyens L, Lemper M, Leuckx G, De Groef S, Bonfanti P. 10.  et al. 2014. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice. Nat. Biotechnol. 32:176–83 [Google Scholar]
  11. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. 11.  2005. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell 121:4645–57 [Google Scholar]
  12. Baroukh N, Ravier MA, Loder MK, Hill EV, Bounacer A. 12.  et al. 2007. MicroRNA-124a regulates Foxa2 expression and intracellular signaling in pancreatic β-cell lines. J. Biol. Chem. 282:2719575–88 [Google Scholar]
  13. Becker TC, Noel RJ, Johnson JH, Lynch RM, Hirose H. 13.  et al. 1996. Differential effects of overexpressed glucokinase and hexokinase I in isolated islets. Evidence for functional segregation of the high and low Km enzymes. J. Biol. Chem. 271:1390–94 [Google Scholar]
  14. Benner C, van der Meulen T, Cacéres E, Tigyi K, Donaldson CJ, Huising MO. 14.  2014. The transcriptional landscape of mouse beta cells compared to human beta cells reveals notable species differences in long non-coding RNA and protein-coding gene expression. BMC Genom. 15:1620 [Google Scholar]
  15. Bensellam M, Van Lommel L, Overbergh L, Schuit FC, Jonas JC. 15.  2009. Cluster analysis of rat pancreatic islet gene mRNA levels after culture in low-, intermediate- and high-glucose concentrations. Diabetologia 52:3463–76 [Google Scholar]
  16. Bernal-Mizrachi E, Kulkarni RN, Scott DK, Mauvais-Jarvis F, Stewart AF, Garcia-Ocana A. 16.  2014. Human β-cell proliferation and intracellular signaling part 2: still driving in the dark without a road map. Diabetes 63:3819–31 [Google Scholar]
  17. Bonner-Weir S, Li W-C, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. 17.  2010. Beta-cell growth and regeneration: Replication is only part of the story. Diabetes 59:102340–48 [Google Scholar]
  18. Bonner-Weir S, Taneja M, Weir GC, Tatarkiewicz K, Song K-H. 18.  et al. 2000. In vitro cultivation of human islets from expanded ductal tissue. PNAS 97:147999–8004 [Google Scholar]
  19. Bouwens L, Rooman I. 19.  2005. Regulation of pancreatic beta-cell mass. Physiol. Rev. 85:681255–70 [Google Scholar]
  20. Bracken AP, Kleine-Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G. 20.  et al. 2007. The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociated in senescent cells. Genes Dev. 21:5525–30 [Google Scholar]
  21. Brooks GA. 21.  2002. Lactate shuttles in nature. Biochem. Soc. Trans. 30:2258–64 [Google Scholar]
  22. Bruni A, Gala-Lopez B, Pepper AR, Abualhassan NS, Shapiro AJ. 22.  2014. Islet cell transplantation for the treatment of type 1 diabetes: recent advances and future challenges. Diabetes Metab. Syndr. Obes. 7:211–23 [Google Scholar]
  23. Burkewitz K, Zhang Y, Mair WB. 23.  2014. AMPK at the nexus of energetics and aging. Cell Metab. 20:110–25 [Google Scholar]
  24. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. 24.  2003. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes 52:1102–10 [Google Scholar]
  25. Canfora EE, Jocken JW, Blaak EE. 25.  2015. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat. Rev. Endocrinol. 11:10577–91 [Google Scholar]
  26. Chen H, Gu X, Liu Y, Wang J, Wirt SE. 26.  et al. 2011. PDGF signalling controls age-dependent proliferation in pancreatic β-cells. Nature 478:7369349–55 [Google Scholar]
  27. Chen H, Gu X, Su I, Bottino R, Contreras JL. 27.  et al. 2009. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 23:8975–85 [Google Scholar]
  28. Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y. 28.  et al. 1995. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:6949–57 [Google Scholar]
  29. Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L. 29.  et al. 2010. Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. PNAS 107:115208–13 [Google Scholar]
  30. Corkey BE. 30.  2012. Banting Lecture 2011. Hyperinsulinemia: cause or consequence?. Diabetes 61:14–13 [Google Scholar]
  31. Corritore E, Dugnani E, Pasquale V, Misawa R, Witkowski P. 31.  et al. 2014. β-cell differentiation of human pancreatic duct-derived cells after in vitro expansion. Cell Reprogram. 16:6456–66 [Google Scholar]
  32. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD. 32.  et al. 2006. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 24:111392–1401 [Google Scholar]
  33. Da Silva D, Ausina P, Alencar EM, Coelho WS, Zancan P, Sola-Penna M. 33.  2012. Metformin reverses hexokinase and phosphofructokinase downregulation and intracellular distribution in the heart of diabetic mice. IUBMB Life 64:9766–74 [Google Scholar]
  34. De Vos A, Heimberg H, Quartier E, Huypens P, Bouwens L. 34.  et al. 1995. Human and rat beta cells differ in glucose transporter but not in glucokinase gene expression. J. Clin. Investig. 96:52489–95 [Google Scholar]
  35. Delmeire D, Flamez D, Hinke SA, Cali JJ, Pipeleers D, Schuit F. 35.  2003. Type VIII adenylyl cyclase in rat beta cells: coincidence signal detector/generator for glucose and GLP-1. Diabetologia 46:101383–93 [Google Scholar]
  36. Delmeire D, Flamez D, Moens K, Hinke SA, Van Schravendijk C. 36.  et al. 2004. Prior in vitro exposure to GLP-1 with or without GIP can influence the subsequent beta cell responsiveness. Biochem. Pharmacol. 68:133–39 [Google Scholar]
  37. Detimary P, Dejonghe S, Ling Z, Pipeleers D, Schuit F, Henquin JC. 37.  1998. The changes in adenine nucleotides measured in glucose-stimulated rodent islets occur in β cells but not in α cells and are also observed in human islets. J. Biol. Chem. 273:5133905–8 [Google Scholar]
  38. Dhawan S, Georgia S, Tschen S, Fan G, Bhushan A. 38.  2011. Pancreatic β cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 20:4419–29 [Google Scholar]
  39. Dhawan S, Tschen S-I, Bhushan A. 39.  2009. Bmi-1 regulates the Ink4a/Arf locus to control pancreatic β-cell proliferation. Genes Dev. 23:8906–11 [Google Scholar]
  40. Dhawan S, Tschen S-I, Zeng C, Guo T, Hebrok M. 40.  et al. 2015. DNA methylation directs functional maturation of pancreatic β cells. J. Clin. Investig. 125:72851–60 [Google Scholar]
  41. Dor Y, Brown J, Martinez OI, Melton DA. 41.  2004. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429:698741–46 [Google Scholar]
  42. Drucker DJ. 42.  2015. Deciphering metabolic messages from the gut drives therapeutic innovation: the 2014 Banting Lecture. Diabetes 64:2317–26 [Google Scholar]
  43. Eliasson L, Abdulkader F, Braun M, Galvanovskis J, Hoppa MB, Rorsman P. 43.  2008. Novel aspects of the molecular mechanisms controlling insulin secretion. J. Physiol. 586:143313–24 [Google Scholar]
  44. Elouil H, Bensellam M, Guiot Y, Vander Mierde D, Pascal SMA. 44.  et al. 2007. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia 50:71442–52 [Google Scholar]
  45. Ferdaoussi M, Dai X, Jensen MV, Wang R, Peterson BS. 45.  et al. 2015. Isocitrate-to-SENP1 signaling amplifies insulin secretion and rescues dysfunctional β cells. J. Clin. Investig. 125:101–14 [Google Scholar]
  46. Fu A, Robitaille K, Faubert B, Reeks C, Dai X-Q. 46.  et al. 2015. LKB1 couples glucose metabolism to insulin secretion in mice. Diabetologia 58:71513–22 [Google Scholar]
  47. Giusti SA, Vogl AM, Brockmann MM, Vercelli CA, Rein ML. 47.  et al. 2014. MicroRNA-9 controls dendritic development by targeting REST. eLife 3e02755
  48. Goginashvili A, Zhang Z, Erbs E, Spiegelhalter C, Kessler P. 48.  et al. 2015. Insulin secretory granules control autophagy in pancreatic β cells. Science 347:6224878–82 [Google Scholar]
  49. Gooding JR, Jensen MV, Dai X, Wenner BR, Lu D. 49.  et al. 2015. Adenylosuccinate is an insulin secretagogue derived from glucose-induced purine metabolism. Cell Rep. 13:1157–67 [Google Scholar]
  50. Goyvaerts L, Lemaire K, Arijs I, Auffret J, Granvik M. 50.  et al. 2015. Prolactin receptors and placental lactogen drive male mouse pancreatic islets to pregnancy-related mRNA changes. PLOS ONE 10:3e0121868 [Google Scholar]
  51. Groop L, Pociot F. 51.  2014. Genetics of diabetes—are we missing the genes or the disease?. Mol. Cell Endocrinol. 382:1726–39 [Google Scholar]
  52. Gut P, Verdin E. 52.  2013. The nexus of chromatin regulation and intermediary metabolism. Nature 502:7472489–98 [Google Scholar]
  53. Halestrap AP, Wilson MC. 53.  2012. The monocarboxylate transporter family—role and regulation. IUBMB Life 64:2109–19 [Google Scholar]
  54. Heimberg H, De Vos A, Vandercammen A, Van Schaftingen E, Pipeleers D, Schuit F. 54.  1993. Heterogeneity in glucose sensitivity among pancreatic beta-cells is correlated to differences in glucose phosphorylation rather than glucose transport. EMBO J. 12:72873–79 [Google Scholar]
  55. Hui Hu, He K, Gilbert T, Fomina-Yadlin D, Wagner B. 55.  2012. Small molecule–induced beta-cell regeneration from alternate cell sources. Curr. Tissue Eng. 1:183–90 [Google Scholar]
  56. Ivarsson R, Quintens R, Dejonghe S, Tsukamoto K, in 't Veld P. 56.  et al. 2005. Redox control of exocytosis: regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 54:72132–42 [Google Scholar]
  57. Jermendy A, Toschi E, Aye T, Koh A, Aguayo-Mazzucato C. 57.  et al. 2011. Rat neonatal beta cells lack the specialised metabolic phenotype of mature beta cells. Diabetologia 54:3594–604 [Google Scholar]
  58. Jonas JC, Sharma A, Hasenkamp W, Ilkova H, Patanè G. 58.  et al. 1999. Chronic hyperglycemia triggers loss of pancreatic beta cell differentiation in an animal model of diabetes. J. Biol. Chem. 274:2014112–21 [Google Scholar]
  59. Kahn SE, Hull RL, Utzschneider KM. 59.  2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:7121840–46 [Google Scholar]
  60. Kefas BA, Cai Y, Kerckhofs K, Ling Z, Martens G. 60.  et al. 2004. Metformin-induced stimulation of AMP-activated protein kinase in β-cells impairs their glucose responsiveness and can lead to apoptosis. Biochem. Pharmacol. 68:3409–16 [Google Scholar]
  61. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L. 61.  et al. 2005. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N. Engl. J. Med. 352:252598–608 [Google Scholar]
  62. Kiekens R, in 't Veld P, Mahler T, Schuit F, Van De Winkel M, Pipeleers D. 62.  1992. Differences in glucose recognition by individual rat pancreatic β cells are associated with intercellular differences in glucose-induced biosynthetic activity. J. Clin. Investig. 89:1117–25 [Google Scholar]
  63. Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T. 63.  et al. 2010. Serotonin regulates pancreatic beta cell mass during pregnancy. Nat. Med. 16:7804–8 [Google Scholar]
  64. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A. 64.  et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:51187–201 [Google Scholar]
  65. Korbutt GS, Yeung TY, Ellis CE. 65.  2012. The importance of beta cell characterisation: generating human beta cells by differentiating human embryonic stem cells. Diabetologia 55:2279–81 [Google Scholar]
  66. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A. 66.  et al. 2006. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443:7110453–57 [Google Scholar]
  67. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG. 67.  et al. 2008. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26:4443–52 [Google Scholar]
  68. Kumar A, Lo Nigro A, Gysemans C, Cai Q, Esguerra C. 68.  et al. 2013. Reversal of hyperglycemia by insulin-secreting rat bone marrow- and blastocyst-derived hypoblast stem cell-like cells. PLOS ONE 8:5e63491 [Google Scholar]
  69. Kushner JA, MacDonald PE, Atkinson MA. 69.  2014. Stem cells to insulin secreting cells: two steps forward and now a time to pause?. Cell Stem Cell 15:5535–36 [Google Scholar]
  70. Kyriazis GA, Soundarapandian MM, Tyrberg B. 70.  2012. Sweet taste receptor signaling in beta cells mediates fructose-induced potentiation of glucose-stimulated insulin secretion. PNAS 109:8E524–32 [Google Scholar]
  71. Lau J, Svensson J, Grapensparr L, Johansson Å, Carlsson P-O. 71.  2012. Superior beta cell proliferation, function and gene expression in a subpopulation of rat islets identified by high blood perfusion. Diabetologia 55:51390–99 [Google Scholar]
  72. Lemaire K, Ravier MA, Schraenen A, Creemers JWM, Van de Plas R. 72.  et al. 2009. Insulin crystallization depends on zinc transporter ZnT8 expression, but is not required for normal glucose homeostasis in mice. PNAS 106:3514872–77 [Google Scholar]
  73. Lempradl A, Pospisilik JA, Penninger JM. 73.  2015. Exploring the emerging complexity in transcriptional regulation of energy homeostasis. Nat. Rev. Genet. 16:11665–81 [Google Scholar]
  74. Ling Z, Kiekens R, Mahler T, Schuit FC, Pipeleers-Marichal M. 74.  et al. 1996. Effects of chronically elevated glucose levels on the functional properties of rat pancreatic β-cells. Diabetes 45:121774–82 [Google Scholar]
  75. Ling Z, Pipeleers DG. 75.  1996. Prolonged exposure of human beta cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J. Clin. Investig. 98:122805–12 [Google Scholar]
  76. Martin D, Allagnat F, Chaffard G, Caille D, Fukuda M. 76.  et al. 2008. Functional significance of repressor element 1 silencing transcription factor (REST) target genes in pancreatic beta cells. Diabetologia 51:81429–39 [Google Scholar]
  77. Martin D, Kim Y-H, Sever D, Mao C-A, Haefliger J-A, Grapin-Botton A. 77.  2015. REST represses a subset of the pancreatic endocrine differentiation program. Dev. Biol. 405:316–27 [Google Scholar]
  78. Martinez-Sanchez A, Nguyen-Tu M, Rutter GA. 78.  2015. Dicer inactivation identifies pancreatic β-cell “disallowed” genes targeted by microRNAs. Mol. Endocrinol. 29:71067–79 [Google Scholar]
  79. Matschinsky FM. 79.  2002. Regulation of pancreatic β-cell glucokinase: from basics to therapeutics. Diabetes 51:Suppl. 3S394–404 [Google Scholar]
  80. Moens K, Heimberg H, Flamez D, Huypens P, Quartier E. 80.  et al. 1996. Expression and functional activity of glucagon, glucagon-like peptide I, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes 45:2257–61 [Google Scholar]
  81. Mosser RE, Maulis MF, Moullé VS, Dunn JC, Carboneau BA. 81.  et al. 2015. High-fat diet-induced β-cell proliferation occurs prior to insulin resistance in C57Bl/6J male mice. Am. J. Physiol. Endocrinol. Metab. 308:7E573–82 [Google Scholar]
  82. Moukil MA, Veiga-da-Cunha M, Van Schaftingen E. 82.  2000. Study of the regulatory properties of glucokinase by site-directed mutagenesis: conversion of glucokinase to an enzyme with high affinity for glucose. Diabetes 49:2195–201 [Google Scholar]
  83. Nalla A, Ringholm L, Søstrup B, Højrup P, Thim L. 83.  et al. 2014. Implications for the offspring of circulating factors involved in beta cell adaptation in pregnancy. Acta Obstet. Gynecol. Scand. 93:111181–89 [Google Scholar]
  84. Newgard CB. 84.  2012. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab. 15:5606–14 [Google Scholar]
  85. Ohara-Imaizumi M, Kim H, Yoshida M, Fujiwara T, Aoyagi K. 85.  et al. 2013. Serotonin regulates glucose-stimulated insulin secretion from pancreatic β cells during pregnancy. PNAS 110:4819420–25 [Google Scholar]
  86. Otonkoski T, Jiao H, Kaminen-Ahola N, Tapia-Paez I, Ullah MS. 86.  et al. 2007. Physical exercise–induced hypoglycemia caused by failed silencing of monocarboxylate transporter 1 in pancreatic beta cells. Am. J. Hum. Genet. 81:3467–74 [Google Scholar]
  87. Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T. 87.  et al. 2003. Physical exercise–induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52:1199–204 [Google Scholar]
  88. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A. 88.  et al. 2014. Generation of functional human pancreatic β cells in vitro. Cell 159:2428–39 [Google Scholar]
  89. Pajvani UB, Accili D. 89.  2015. The new biology of diabetes. Diabetologia 58:112459–68 [Google Scholar]
  90. Pan JB, Hu SC, Shi D, Cai MC, Li YB. 90.  et al. 2013. Pagenbase: a pattern gene database for the global and dynamic understanding of gene function. PLOS ONE 8:12e80747 [Google Scholar]
  91. Pandian GN, Taniguchi J, Sugiyama H. 91.  2014. Cellular reprogramming for pancreatic β-cell regeneration: clinical potential of small molecule control. Clin. Transl. Med. 3:16 [Google Scholar]
  92. Prentki M, Nolan CJ. 92.  2006. Islet beta cell failure in type 2 diabetes. J. Clin. Investig. 116:71802–12 [Google Scholar]
  93. Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA. 93.  2011. miR-29a and miR-29b contribute to pancreatic β-cell-specific silencing of monocarboxylate transporter 1 (Mct1). Mol. Cell Biol. 31:153182–94 [Google Scholar]
  94. Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA. 94.  2010. Identification of genes selectively disallowed in the pancreatic islet. Islets 2:289–95 [Google Scholar]
  95. Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA. 95.  2012. Overexpression of monocarboxylate transporter-1 (Slc16a1) in mouse pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes 61:71719–25 [Google Scholar]
  96. Puri S, Folias AE, Hebrok M. 96.  2015. Plasticity and dedifferentiation within the pancreas: development, homeostasis, and disease. Cell Stem Cell 16:118–31 [Google Scholar]
  97. Puri S, Hebrok M. 97.  2010. Cellular plasticity within the pancreas—lessons learned from development. Dev. Cell 18:3342–56 [Google Scholar]
  98. Quintens R, Hendrickx N, Lemaire K, Schuit F. 98.  2008. Why expression of some genes is disallowed in beta-cells. Biochem. Soc. Trans. 36:Part 3300–5 [Google Scholar]
  99. Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. 99.  2008. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes. Metab. 10:32–42 [Google Scholar]
  100. Rezania A, Bruin JE, Arora P, Rubin A, Batushansky I. 100.  et al. 2014. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 32:111121–33 [Google Scholar]
  101. Rieck S, Kaestner KH. 101.  2010. Expansion of β-cell mass in response to pregnancy. Trends Endocrinol. Metab. 21:3151–58 [Google Scholar]
  102. Rieck S, White P, Schug J, Fox AJ, Smirnova O. 102.  et al. 2009. The transcriptional response of the islet to pregnancy in mice. Mol. Endocrinol. 23:101702–12 [Google Scholar]
  103. Ronnebaum SM, Ilkayeva O, Burgess SC, Joseph JW, Lu D. 103.  et al. 2006. A pyruvate cycling pathway involving cytosolic NADP-dependent isocitrate dehydrogenase regulates glucose-stimulated insulin secretion. J. Biol. Chem. 281:4130593–602 [Google Scholar]
  104. Rorsman P, Braun M. 104.  2013. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75:155–79 [Google Scholar]
  105. Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A. 105.  2015. Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem. J. 466:2203–18 [Google Scholar]
  106. Salomon D, Meda P. 106.  1986. Heterogeneity and contact-dependent regulation of hormone secretion by individual β cells. Exp. Cell Res. 162:2507–20 [Google Scholar]
  107. Samuel VT, Shulman GI. 107.  2012. Mechanisms for insulin resistance: common threads and missing links. Cell 148:5852–71 [Google Scholar]
  108. Schraenen A, de Faudeur G, Thorrez L, Lemaire K, Van Wichelen G. 108.  et al. 2010. mRNA expression analysis of cell cycle genes in islets of pregnant mice. Diabetologia 53:122579–88 [Google Scholar]
  109. Schraenen A, Lemaire K, de Faudeur G, Hendrickx N, Granvik M. 109.  et al. 2010. Placental lactogens induce serotonin biosynthesis in a subset of mouse beta cells during pregnancy. Diabetologia 53:122589–99 [Google Scholar]
  110. Schuit F, De Vos A, Farfari S, Moens K, Pipeleers D. 110.  et al. 1997. Metabolic fate of glucose in purified islet cells. glucose-regulated anaplerosis in β cells. J. Biol. Chem. 272:3018572–79 [Google Scholar]
  111. Schuit F, Moens K, Heimberg H, Pipeleers D. 111.  1999. Cellular origin of hexokinase in pancreatic islets. J. Biol. Chem. 274:4632803–9 [Google Scholar]
  112. Schuit F, Van Lommel L, Granvik M, Goyvaerts L, de Faudeur G. 112.  et al. 2012. β-cell–specific gene repression: a mechanism to protect against inappropriate or maladjusted insulin secretion?. Diabetes 61:5969–75 [Google Scholar]
  113. Schuit FC, Huypens P, Heimberg H, Pipeleers D. 113.  2001. Glucose sensing in pancreatic β-cells. Diabetes 50:1–11 [Google Scholar]
  114. Schuit FC, in 't Veld PA, Pipeleers DG. 114.  1988. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. PNAS 85:113865–69 [Google Scholar]
  115. Schuit FC, Pipeleers DG. 115.  1986. Differences in adrenergic recognition by pancreatic α and β cells. Science 232:4752875–77 [Google Scholar]
  116. Schwartz GJ. 116.  2013. Central leucine sensing in the control of energy homeostasis. Endocrinol. Metab. Clin. N. Am. 42:181–87 [Google Scholar]
  117. Seino S. 117.  2012. Cell signalling in insulin secretion: the molecular targets of ATP, cAMP and sulfonylurea. Diabetologia 55:82096–108 [Google Scholar]
  118. Sekine N, Cirulli V, Regazzi R, Brown LJ, Gine E. 118.  et al. 1994. Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic beta-cells. Potential role in nutrient sensing. J. Biol. Chem. 269:74895–902 [Google Scholar]
  119. Sharma RB, O'Donnell AC, Stamateris RE, Ha B, McCloskey KM. 119.  et al. 2015. Insulin demand regulates β cell number via the unfolded protein response. J. Clin. Investig. 125:101–16 [Google Scholar]
  120. Shen W, Tremblay MS, Deshmukh VA, Wang W, Filippi CM. 120.  et al. 2013. Small-molecule inducer of β cell proliferation identified by high-throughput screening. J. Am. Chem. Soc. 135:51669–72 [Google Scholar]
  121. Shim JH, Kim SE, Woo DH, Kim SK, Oh CH. 121.  et al. 2007. Directed differentiation of human embryonic stem cells towards a pancreatic cell fate. Diabetologia 50:61228–38 [Google Scholar]
  122. Steffen W, Richardson K, Rockstrom J, Cornell SE, Fetzer I. 122.  et al. 2015. Planetary boundaries: guiding human development on a changing planet. Science 347:6223736 [Google Scholar]
  123. Swisa A, Granot Z, Tamarina N, Sayers S, Bardeesy N. 123.  et al. 2015. Loss of liver kinase B1 (LKB1) in beta cells enhances glucose-stimulated insulin secretion despite profound mitochondrial defects. J. Biol. Chem. 290:3420934–46 [Google Scholar]
  124. Takahashi K, Yamanaka S. 124.  2015. A developmental framework for induced pluripotency. Development 142:193274–85 [Google Scholar]
  125. Talchai C, Xuan S, Lin HV, Sussel L, Accili D. 125.  2012. Pancreatic β-cell dedifferentiation as a mechanism of diabetic β-cell failure. Cell 150:61223–34 [Google Scholar]
  126. Thiel G, Schuit F. 126.  2008. No REST for healthy beta cells. Diabetologia 51:81343–46 [Google Scholar]
  127. Thorens B. 127.  2015. Glut2, glucose sensing and glucose homeostasis. Diabetologia 58:2221–32 [Google Scholar]
  128. Thorrez L, Laudadio I, Van Deun K, Quintens R, Hendrickx N. 128.  et al. 2011. Tissue-specific disallowance of housekeeping genes: the other face of cell differentiation. Genome Res. 21:195–105 [Google Scholar]
  129. Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K. 129.  et al. 2008. Using ribosomal protein genes as reference: a tale of caution. PLOS ONE 3:3e1854 [Google Scholar]
  130. Tian L, Gao J, Weng G, Yi H, Tian B. 130.  et al. 2011. Comparison of exendin-4 on beta-cell replication in mouse and human islet grafts. Transpl. Int. 24:8856–64 [Google Scholar]
  131. Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB. 131.  et al. 2009. Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32:2335–41 [Google Scholar]
  132. Van Arensbergen J, García-Hurtado J, Maestro MA, Correa-Tapia M, Rutter GA. 132.  et al. 2013. Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev. 27:152–63 [Google Scholar]
  133. Van Arensbergen J, García-Hurtado J, Moran I, Maestro MA, Xu X. 133.  et al. 2010. Derepression of polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program. Genome Res. 20:6722–32 [Google Scholar]
  134. Van Deun K, Hoijtink H, Thorrez L, Van Lommel L, Schuit F, Van Mechelen I. 134.  2009. Testing the hypothesis of tissue selectivity: the intersection-union test and a Bayesian approach. Bioinformatics 25:192588–94 [Google Scholar]
  135. van Kruijsbergen I, Hontelez S, Veenstra GJC. 135.  2015. Recruiting polycomb to chromatin. Int. J. Biochem. Cell Biol. 67:177–87 [Google Scholar]
  136. Vetere A, Choudhary A, Burns SM, Wagner BK. 136.  2014. Targeting the pancreatic β-cell to treat diabetes. Nat. Rev. Drug Discov. 13:4278–89 [Google Scholar]
  137. Wang X, Wang X. 137.  2006. Systematic identification of microRNA functions by combining target prediction and expression profiling. Nucleic Acids Res. 34:51646–52 [Google Scholar]
  138. Weinhaus AJ, Stout LE, Bhagroo NV, Brelje TC, Sorenson RL. 138.  2007. Regulation of glucokinase in pancreatic islets by prolactin: a mechanism for increasing glucose-stimulated insulin secretion during pregnancy. J. Endocrinol. 193:3367–81 [Google Scholar]
  139. Whitmee S, Haines A, Beyrer C, Boltz F, Capon AG. 139.  et al. 2015. Safeguarding human health in the Anthropocene epoch: report of the Rockefeller Foundation-Lancet Commission on planetary health. Lancet 386:1973–2028 [Google Scholar]
  140. Xu X, D'Hoker J, Stangé G, Bonné S, De Leu N. 140.  et al. 2008. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 132:2197–207 [Google Scholar]
  141. Zelent D, Golson ML, Koeberlein B, Quintens R, Van Lommel L. 141.  et al. 2006. A glucose sensor role for glucokinase in anterior pituitary cells. Diabetes 55:71923–29 [Google Scholar]
  142. Zhang C-L, Katoh M, Shibasaki T, Minami K, Sunaga Y. 142.  et al. 2009. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science 325:5940607–10 [Google Scholar]
  143. Zhao C, Wilson MC, Schuit F, Halestrap AP, Rutter GA. 143.  2001. Expression and distribution of lactate/monocarboxylate transporter isoforms in pancreatic islets and the exocrine pancreas. Diabetes 50:2361–66 [Google Scholar]
  144. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. 144.  2008. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature 455:7213627–32 [Google Scholar]
  145. Zimmet PZ, Magliano DJ, Herman WH, Shaw JE. 145.  2014. Diabetes: a 21st century challenge. Lancet Diabetes Endocrinol. 2:156–64 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071715-050808
Loading
/content/journals/10.1146/annurev-nutr-071715-050808
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error