1932

Abstract

The International Agency for Research on Cancer recently released an assessment classifying red and processed meat as “carcinogenic to humans” on the basis of the positive association between increased consumption and risk for colorectal cancer. Diet, however, can also decrease the risk for colorectal cancer and be used as a chemopreventive strategy. Bioactive dietary molecules, such as n-3 polyunsaturated fatty acids, curcumin, and fermentable fiber, have been proposed to exert chemoprotective effects, and their molecular mechanisms have been the focus of research in the dietary/chemoprevention field. Using these bioactives as examples, this review surveys the proposed mechanisms by which they exert their effects, from the nucleus to the cellular membrane. In addition, we discuss emerging technologies involving the culturing of colonic organoids to study the physiological effects of dietary bioactives. Finally, we address future challenges to the field regarding the identification of additional molecular mechanisms and other bioactive dietary molecules that can be utilized in our fight to reduce the incidence of colorectal cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-nutr-071715-051039
2016-07-17
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/nutr/36/1/annurev-nutr-071715-051039.html?itemId=/content/journals/10.1146/annurev-nutr-071715-051039&mimeType=html&fmt=ahah

Literature Cited

  1. Abdelrahim M, Baker CH, Abbruzzese JL, Sheikh-Hamad D, Liu S. 1.  et al. 2007. Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1, 3, and 4 in pancreatic cancer cells. Cancer Res. 67:3286–94 [Google Scholar]
  2. Aggarwal BB, Shishodia S. 2.  2006. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71:1397–421 [Google Scholar]
  3. Ahn SH, Shah YM, Inoue J, Morimura K, Kim I. 3.  et al. 2008. Hepatocyte nuclear factor 4α in the intestinal epithelial cells protects against inflammatory bowel disease. Inflamm. Bowel Dis. 14:908–20 [Google Scholar]
  4. Altenburg JD, Bieberich AA, Terry C, Harvey KA, Vanhorn JF. 4.  et al. 2011. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: unique signaling not explained by the effects of either compound alone. BMC Cancer 11:149 [Google Scholar]
  5. Amaral CL, Crisma AR, Masi LN, Martins AR, Hirabara SM, Curi R. 5.  2014. DNA methylation changes induced by a high-fat diet and fish oil supplementation in the skeletal muscle of mice. J. Nutrigenet. Nutrigenom. 7:314–26 [Google Scholar]
  6. Anand P, Kunnumakkara AB, Sundaram C, Harikumar KB, Tharakan ST. 6.  et al. 2008. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 25:2097–116 [Google Scholar]
  7. Arango D, Corner GA, Wadler S, Catalano PJ, Augenlicht LH. 7.  2001. c-myc/p53 Interaction determines sensitivity of human colon carcinoma cells to 5-fluorouracil in vitro and in vivo. Cancer Res. 61:4910–15 [Google Scholar]
  8. Armstrong B, Doll R. 8.  1975. Environmental factors and cancer incidence and mortality in different countries, with special reference to dietary practices. Int. J. Cancer 15:617–31 [Google Scholar]
  9. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH. 9.  et al. 2008. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27:2128–36 [Google Scholar]
  10. Aslibekyan S, Wiener HW, Havel PJ, Stanhope KL, O'Brien DM. 10.  et al. 2014. DNA methylation patterns are associated with n-3 fatty acid intake in Yup'ik people. J. Nutr. 144:425–30 [Google Scholar]
  11. Balder HF, Vogel J, Jansen MC, Weijenberg MP, van den Brandt PA. 11.  et al. 2006. Heme and chlorophyll intake and risk of colorectal cancer in The Netherlands Cohort Study. Cancer Epidemiol. Biomarkers Prev. 15:717–25 [Google Scholar]
  12. Barcelo C, Paco N, Beckett AJ, Alvarez-Moya B, Garrido E. 12.  et al. 2013. Oncogenic K-ras segregates at spatially distinct plasma membrane signaling platforms according to its phosphorylation status. J. Cell Sci. 126:4553–59 [Google Scholar]
  13. Barker N, Ridgway RA, van Es JH, van de Wetering M, Begthel H. 13.  et al. 2009. Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–11 [Google Scholar]
  14. Bastide NM, Chenni F, Audebert M, Santarelli RL, Tache S. 14.  et al. 2015. A central role for heme iron in colon carcinogenesis associated with red meat intake. Cancer Res. 75:870–79 [Google Scholar]
  15. Beilstein F, Carriere V, Leturque A, Demignot S. 15.  2016. Characteristics and functions of lipid droplets and associated proteins in enterocytes. Exp. Cell Res. 340:172–79 [Google Scholar]
  16. Bernstein AM, Song M, Zhang X, Pan A, Wang M. 16.  et al. 2015. Processed and unprocessed red meat and risk of colorectal cancer: analysis by tumor location and modification by time. PLOS ONE 10:e0135959 [Google Scholar]
  17. Bordonaro M, Lazarova DL, Sartorelli AC. 17.  2008. Butyrate and Wnt signaling: a possible solution to the puzzle of dietary fiber and colon cancer risk?. Cell Cycle 7:1178–83 [Google Scholar]
  18. Brinkman AB, Roelofsen T, Pennings SW, Martens JH, Jenuwein T, Stunnenberg HG. 18.  2006. Histone modification patterns associated with the human X chromosome. EMBO Rep. 7:628–34 [Google Scholar]
  19. Calle EE, Kaaks R. 19.  2004. Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat. Rev. Cancer 4:579–91 [Google Scholar]
  20. Calviello G, Di Nicuolo F, Serini S, Piccioni E, Boninsegna A. 20.  et al. 2005. Docosahexaenoic acid enhances the susceptibility of human colorectal cancer cells to 5-fluorouracil. Cancer Chemother. Pharmacol. 55:12–20 [Google Scholar]
  21. Canani RB, Costanzo MD, Leone L, Pedata M, Meli R, Calignano A. 21.  2011. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 17:1519–28 [Google Scholar]
  22. Cattin AL, Le Beyec J, Barreau F, Saint-Just S, Houllier A. 22.  et al. 2009. Hepatocyte nuclear factor 4α, a key factor for homeostasis, cell architecture, and barrier function of the adult intestinal epithelium. Mol. Cell. Biol. 29:6294–308 [Google Scholar]
  23. Ceccarelli V, Racanicchi S, Martelli MP, Nocentini G, Fettucciari K. 23.  et al. 2011. Eicosapentaenoic acid demethylates a single CpG that mediates expression of tumor suppressor CCAAT/enhancer-binding protein δ in U937 leukemia cells. J. Biol. Chem. 286:27092–102 [Google Scholar]
  24. Chadalapaka G, Jutooru I, Chintharlapalli S, Papineni S, Smith R 3rd. 24.  et al. 2008. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res. 68:5345–54 [Google Scholar]
  25. Chan AT, Giovannucci EL, Meyerhardt JA, Schernhammer ES, Curhan GC, Fuchs CS. 25.  2005. Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 294:914–23 [Google Scholar]
  26. Chan AT, Ogino S, Fuchs CS. 26.  2007. Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N. Engl. J. Med. 356:2131–42 [Google Scholar]
  27. Chan DS, Lau R, Aune D, Vieira R, Greenwood DC. 27.  et al. 2011. Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLOS ONE 6:e20456 [Google Scholar]
  28. Chang WC, Chapkin RS, Lupton JR. 28.  1997. Predictive value of proliferation, differentiation and apoptosis as intermediate markers for colon tumorigenesis. Carcinogenesis 18:721–30 [Google Scholar]
  29. Chapkin RS, Clark AE, Davidson LA, Schroeder F, Zoran DL, Lupton JR. 29.  1998. Dietary fiber differentially alters cellular fatty acid-binding protein expression in exfoliated colonocytes during tumor development. Nutr. Cancer 32:107–12 [Google Scholar]
  30. Chapkin RS, McMurray DN, Lupton JR. 30.  2007. Colon cancer, fatty acids and anti-inflammatory compounds. Curr. Opin. Gastroenterol. 23:48–54 [Google Scholar]
  31. Chellappa K, Robertson GR, Sladek FM. 31.  2012. HNF4α: a new biomarker in colon cancer?. Biomark. Med. 6:297–300 [Google Scholar]
  32. Chen A, Xu J, Johnson AC. 32.  2006. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 25:278–87 [Google Scholar]
  33. Cho Y, Kim H, Turner ND, Mann JC, Wei J. 33.  et al. 2011. A chemoprotective fish oil- and pectin-containing diet temporally alters gene expression profiles in exfoliated rat colonocytes throughout oncogenesis. J. Nutr. 141:1029–35 [Google Scholar]
  34. Cho Y, Turner ND, Davidson LA, Chapkin RS, Carroll RJ, Lupton JR. 34.  2014. Colon cancer cell apoptosis is induced by combined exposure to the n-3 fatty acid docosahexaenoic acid and butyrate through promoter methylation. Exp. Biol. Med. (Maywood) 239:302–10 [Google Scholar]
  35. Chubak J, Kamineni A, Buist DSM, Anderson ML, Whitlock EP. 35.  2015. Aspirin use for the prevention of colorectal cancer: an updated systematic evidence review for the U.S. Preventive Services Task Force. Rep. No. 15-05228-EF-1. Rockville, MD: Agency Healthc. Res. Qual.
  36. Cockbain AJ, Toogood GJ, Hull MA. 36.  2012. Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 61:135–49 [Google Scholar]
  37. Cole BF, Baron JA, Sandler RS, Haile RW, Ahnen DJ. 37.  et al. 2007. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial. JAMA 297:2351–59 [Google Scholar]
  38. Cottet V, Bonithon-Kopp C, Kronborg O, Santos L, Andreatta R. 38.  et al. 2005. Dietary patterns and the risk of colorectal adenoma recurrence in a European intervention trial. Eur. J. Cancer Prev. 14:21–29 [Google Scholar]
  39. Crim KC, Sanders LM, Hong MY, Taddeo SS, Turner ND. 39.  et al. 2008. Upregulation of p21Waf1/Cip1 expression in vivo by butyrate administration can be chemoprotective or chemopromotive depending on the lipid component of the diet. Carcinogenesis 29:1415–20 [Google Scholar]
  40. Cross AJ, Ferrucci LM, Risch A, Graubard BI, Ward MH. 40.  et al. 2010. A large prospective study of meat consumption and colorectal cancer risk: an investigation of potential mechanisms underlying this association. Cancer Res. 70:2406–14 [Google Scholar]
  41. Cross AJ, Sinha R. 41.  2004. Meat-related mutagens/carcinogens in the etiology of colorectal cancer. Environ. Mol. Mutagen. 44:44–55 [Google Scholar]
  42. D'Archivio M, Scazzocchio B, Giammarioli S, Fiani ML, Vari R. 42.  et al. 2013. ω3-PUFAs exert anti-inflammatory activity in visceral adipocytes from colorectal cancer patients. PLOS ONE 8:e77432 [Google Scholar]
  43. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE. 43.  et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505:559–63 [Google Scholar]
  44. Davidson LA, Nguyen DV, Hokanson RM, Callaway ES, Isett RB. 44.  et al. 2004. Chemopreventive n-3 polyunsaturated fatty acids reprogram genetic signatures during colon cancer initiation and progression in the rat. Cancer Res. 64:6797–804 [Google Scholar]
  45. Davidson LA, Wang N, Ivanov I, Goldsby J, Lupton JR, Chapkin RS. 45.  2009. Identification of actively translated mRNA transcripts in a rat model of early-stage colon carcinogenesis. Cancer Prev. Res. (Phila.) 2:984–94 [Google Scholar]
  46. Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS. 46.  2009. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis 30:2077–84 [Google Scholar]
  47. Dellavalle CT, Xiao Q, Yang G, Shu XO, Aschebrook-Kilfoy B. 47.  et al. 2014. Dietary nitrate and nitrite intake and risk of colorectal cancer in the Shanghai Women's Health Study. Int. J. Cancer 134:2917–26 [Google Scholar]
  48. Diederichs S, Haber DA. 48.  2007. Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131:1097–108 [Google Scholar]
  49. Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM. 49.  et al. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13:517–26 [Google Scholar]
  50. Donovan SM, Wang M, Monaco MH, Martin CR, Davidson LA. 50.  et al. 2014. Noninvasive molecular fingerprinting of host-microbiome interactions in neonates. FEBS Lett. 588:4112–19 [Google Scholar]
  51. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L. 51.  et al. 2005. Diversity of the human intestinal microbial flora. Science 308:1635–38 [Google Scholar]
  52. Edwards IJ, O'Flaherty JT. 52.  2008. Omega-3 fatty acids and PPARγ in cancer. PPAR Res. 2008:358052 doi: 10.1155/2008/358052 [Google Scholar]
  53. Ekbom A, Helmick C, Zack M, Adami HO. 53.  1990. Ulcerative colitis and colorectal cancer. A population-based study. N. Engl. J. Med. 323:1228–33 [Google Scholar]
  54. Fan YY, Davidson LA, Callaway ES, Goldsby JS, Chapkin RS. 54.  2014. Differential effects of 2- and 3-series E-prostaglandins on in vitro expansion of Lgr5+ colonic stem cells. Carcinogenesis 35:606–12 [Google Scholar]
  55. Fan YY, Davidson LA, Callaway ES, Wright GA, Safe S, Chapkin RS. 55.  2015. A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells. Am. J. Physiol. Gastrointest. Liver Physiol. 309:G1–9 [Google Scholar]
  56. Fang Y, Xiang J, Chen Z, Gu X, Li Z. 56.  et al. 2012. miRNA expression profile of colon cancer stem cells compared to non-stem cells using the SW1116 cell line. Oncol. Rep. 28:2115–24 [Google Scholar]
  57. Feagins LA, Souza RF, Spechler SJ. 57.  2009. Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat. Rev. Gastroenterol. Hepatol. 6:297–305 [Google Scholar]
  58. Figueiredo JC, Mott LA, Giovannucci E, Wu K, Cole B. 58.  et al. 2011. Folic acid and prevention of colorectal adenomas: a combined analysis of randomized clinical trials. Int. J. Cancer 129:192–203 [Google Scholar]
  59. Flood DM, Weiss NS, Cook LS, Emerson JC, Schwartz SM, Potter JD. 59.  2000. Colorectal cancer incidence in Asian migrants to the United States and their descendants. Cancer Causes Control 11:403–11 [Google Scholar]
  60. Flossmann E, Rothwell PM. 60.  British Doctors Aspirin Trial, UK-TIA Aspirin Trial 2007. Effect of aspirin on long-term risk of colorectal cancer: consistent evidence from randomised and observational studies. Lancet 369:1603–13 [Google Scholar]
  61. Fox JT, Stover PJ. 61.  2008. Folate-mediated one-carbon metabolism. Vitam. Horm. 79:1–44 [Google Scholar]
  62. Fujise T, Iwakiri R, Kakimoto T, Shiraishi R, Sakata Y. 62.  et al. 2007. Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinogenesis through Wnt/β-catenin signaling in rats. Am. J. Physiol. Gastrointest. Liver Physiol. 292:G1150–56 [Google Scholar]
  63. Galli C, Marangoni F, Galella G. 63.  1993. Modulation of lipid derived mediators by polyunsaturated fatty acids. Prostaglandins Leukot. Essent. Fatty Acids 48:51–55 [Google Scholar]
  64. Gamet-Payrastre L, Li P, Lumeau S, Cassar G, Dupont MA. 64.  et al. 2000. Sulforaphane, a naturally occurring isothiocyanate, induces cell cycle arrest and apoptosis in HT29 human colon cancer cells. Cancer Res. 60:1426–33 [Google Scholar]
  65. Gandhy SU, Kim K, Larsen L, Rosengren RJ, Safe S. 65.  2012. Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer 12:564 [Google Scholar]
  66. Gangaraju VK, Lin H. 66.  2009. MicroRNAs: key regulators of stem cells. Nat. Rev. Mol. Cell Biol. 10:116–25 [Google Scholar]
  67. Gaur AB, Holbeck SL, Colburn NH, Israel MA. 67.  2011. Downregulation of Pdcd4 by mir-21 facilitates glioblastoma proliferation in vivo. Neuro Oncol. 13:580–90 [Google Scholar]
  68. Geelen A, Schouten JM, Kamphuis C, Stam BE, Burema J. 68.  et al. 2007. Fish consumption, n-3 fatty acids, and colorectal cancer: a meta-analysis of prospective cohort studies. Am. J. Epidemiol. 166:1116–25 [Google Scholar]
  69. Gerber M. 69.  2009. Background review paper on total fat, fatty acid intake and cancers. Ann. Nutr. Metab. 55:140–61 [Google Scholar]
  70. Gerber M. 70.  2012. Omega-3 fatty acids and cancers: a systematic update review of epidemiological studies. Br. J. Nutr. 107:Suppl. 2S228–39 [Google Scholar]
  71. Gerner EW, Ignatenko NA, Lance P, Hurley LH. 71.  2005. A comprehensive strategy to combat colon cancer targeting the adenomatous polyposis coli tumor suppressor gene. Ann. N. Y. Acad. Sci. 1059:97–105 [Google Scholar]
  72. Gil-Zamorano J, Martin R, Daimiel L, Richardson K, Giordano E. 72.  et al. 2014. Docosahexaenoic acid modulates the enterocyte Caco-2 cell expression of microRNAs involved in lipid metabolism. J. Nutr. 144:575–85 [Google Scholar]
  73. Giovannucci E. 73.  2002. Epidemiologic studies of folate and colorectal neoplasia: a review. J. Nutr. 132:2350–55S [Google Scholar]
  74. Gupta SC, Kim JH, Prasad S, Aggarwal BB. 74.  2010. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev. 29:405–34 [Google Scholar]
  75. Ha CW, Lam YY, Holmes AJ. 75.  2014. Mechanistic links between gut microbial community dynamics, microbial functions and metabolic health. World J. Gastroenterol. 20:16498–517 [Google Scholar]
  76. Hall MN, Campos H, Li H, Sesso HD, Stampfer MJ. 76.  et al. 2007. Blood levels of long-chain polyunsaturated fatty acids, aspirin, and the risk of colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 16:314–21 [Google Scholar]
  77. Hall MN, Chavarro JE, Lee IM, Willett WC, Ma J. 77.  2008. A 22-year prospective study of fish, n-3 fatty acid intake, and colorectal cancer risk in men. Cancer Epidemiol. Biomarkers Prev. 17:1136–43 [Google Scholar]
  78. Heijstek MW, Kranenburg O, Borel Rinkes IH. 78.  2005. Mouse models of colorectal cancer and liver metastases. Dig. Surg. 22:16–25 [Google Scholar]
  79. Helmus DS, Thompson CL, Zelenskiy S, Tucker TC, Li L. 79.  2013. Red meat–derived heterocyclic amines increase risk of colon cancer: a population-based case-control study. Nutr. Cancer 65:1141–50 [Google Scholar]
  80. Ho GY, Figueroa-Valles NR, De La Torre-Feliciano T, Tucker KL, Tortolero-Luna G. 80.  et al. 2009. Cancer disparities between mainland and island Puerto Ricans. Rev. Panam. Salud Publica 25:394–400 [Google Scholar]
  81. Hofmanova J, Hyrslova Vaculova A, Kozubik A. 81.  2013. Regulation of the metabolism of polyunsaturated fatty acids and butyrate in colon cancer cells. Curr. Pharm. Biotechnol. 14:274–88 [Google Scholar]
  82. Howlader N, Noone AM, Krapcho M, Garshell J, Miller D. 82.  et al. 2015. SEER Cancer Statistics Review, 1975–2012, National Cancer Institute Bethesda, MD: Natl. Cancer Inst http://seer.cancer.gov/csr/1975_2012/
  83. Hughes R, Cross AJ, Pollock JR, Bingham S. 83.  2001. Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22:199–202 [Google Scholar]
  84. IJssennagger N, Belzer C, Hooiveld GJ, Dekker J, van Mil SW. 84.  et al. 2015. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. PNAS 112:10038–43 [Google Scholar]
  85. IJssennagger N, Derrien M, van Doorn GM, Rijnierse A, van den Bogert B. 85.  et al. 2012. Dietary heme alters microbiota and mucosa of mouse colon without functional changes in host-microbe cross-talk. PLOS ONE 7:e49868 [Google Scholar]
  86. IJssennagger N, Rijnierse A, de Wit NJ, Boekschoten MV, Dekker J. 86.  et al. 2013. Dietary heme induces acute oxidative stress, but delayed cytotoxicity and compensatory hyperproliferation in mouse colon. Carcinogenesis 34:1628–35 [Google Scholar]
  87. IJssennagger N, Rijnierse A, de Wit N, Jonker-Termont D, Dekker J. 87.  et al. 2012. Dietary haem stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon. Gut 61:1041–49 [Google Scholar]
  88. Ingolfsson HI, Koeppe RE 2nd, Andersen OS. 88.  2007. Curcumin is a modulator of bilayer material properties. Biochemistry (Mosc.) 46:10384–91 [Google Scholar]
  89. Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C. 89.  et al. 2009. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat. Genet. 41:178–86 [Google Scholar]
  90. Irving GR, Howells LM, Sale S, Kralj-Hans I, Atkin WS. 90.  et al. 2013. Prolonged biologically active colonic tissue levels of curcumin achieved after oral administration—a clinical pilot study including assessment of patient acceptability. Cancer Prev. Res. (Phila.) 6:119–28 [Google Scholar]
  91. Jagerstad M, Skog K. 91.  2005. Genotoxicity of heat-processed foods. Mutat. Res. 574:156–72 [Google Scholar]
  92. Jakobsen CH, Storvold GL, Bremseth H, Follestad T, Sand K. 92.  et al. 2008. DHA induces ER stress and growth arrest in human colon cancer cells: associations with cholesterol and calcium homeostasis. J. Lipid Res. 49:2089–100 [Google Scholar]
  93. Jaszewski R, Misra S, Tobi M, Ullah N, Naumoff JA. 93.  et al. 2008. Folic acid supplementation inhibits recurrence of colorectal adenomas: a randomized chemoprevention trial. World J. Gastroenterol. 14:4492–98 [Google Scholar]
  94. Ji Q, Karnak D, Hao P, Wang R, Xu L. 94.  2010. No small matter: microRNAs—key regulators of cancer stem cells. Int. J. Clin. Exp. Med. 3:84–87 [Google Scholar]
  95. Joosen AM, Kuhnle GG, Aspinall SM, Barrow TM, Lecommandeur E. 95.  et al. 2009. Effect of processed and red meat on endogenous nitrosation and DNA damage. Carcinogenesis 30:1402–7 [Google Scholar]
  96. Karunagaran D, Joseph J, Kumar TR. 96.  2007. Cell growth regulation. Adv. Exp. Med. Biol. 595:245–68 [Google Scholar]
  97. Kennedy DA, Stern SJ, Matok I, Moretti ME, Sarkar M. 97.  et al. 2012. Folate intake, MTHFR polymorphisms, and the risk of colorectal cancer: a systematic review and meta-analysis. J. Cancer Epidemiol. 2012:952508 [Google Scholar]
  98. Kennedy DA, Stern SJ, Moretti M, Matok I, Sarkar M. 98.  et al. 2011. Folate intake and the risk of colorectal cancer: a systematic review and meta-analysis. Cancer Epidemiol. 35:2–10 [Google Scholar]
  99. Kim DH, Smith-Warner SA, Spiegelman D, Yaun SS, Colditz GA. 99.  et al. 2010. Pooled analyses of 13 prospective cohort studies on folate intake and colon cancer. Cancer Causes Control 21:1919–30 [Google Scholar]
  100. Kim S, Sandler DP, Galanko J, Martin C, Sandler RS. 100.  2010. Intake of polyunsaturated fatty acids and distal large bowel cancer risk in whites and African Americans. Am. J. Epidemiol. 171:969–79 [Google Scholar]
  101. Kim Y-I. 101.  2016. Current status of folic acid supplementation on colorectal cancer prevention. Curr. Pharmacol. Rep. 2:21–33 [Google Scholar]
  102. Kim YI. 102.  1999. Folate and carcinogenesis: evidence, mechanisms, and implications. J. Nutr. Biochem. 10:66–88 [Google Scholar]
  103. Kim YI. 103.  2006. Folate: a magic bullet or a double edged sword for colorectal cancer prevention?. Gut 55:1387–89 [Google Scholar]
  104. Kim YI. 104.  2007. Folate and colorectal cancer: an evidence-based critical review. Mol. Nutr. Food Res. 51:267–92 [Google Scholar]
  105. Kimura Y, Kono S, Toyomura K, Nagano J, Mizoue T. 105.  et al. 2007. Meat, fish and fat intake in relation to subsite-specific risk of colorectal cancer: the Fukuoka Colorectal Cancer Study. Cancer Sci. 98:590–97 [Google Scholar]
  106. Klaus A, Birchmeier W. 106.  2008. Wnt signalling and its impact on development and cancer. Nat. Rev. Cancer 8:387–98 [Google Scholar]
  107. Knight JM, Davidson LA, Herman D, Martin CR, Goldsby JS. 107.  et al. 2014. Non-invasive analysis of intestinal development in preterm and term infants using RNA-sequencing. Sci. Rep. 4:5453 [Google Scholar]
  108. Kojima M, Wakai K, Tokudome S, Suzuki K, Tamakoshi K. 108.  et al. 2005. Serum levels of polyunsaturated fatty acids and risk of colorectal cancer: a prospective study. Am. J. Epidemiol. 161:462–71 [Google Scholar]
  109. Kolar S, Barhoumi R, Jones CK, Wesley J, Lupton JR. 109.  et al. 2011. Interactive effects of fatty acid and butyrate-induced mitochondrial Ca2+ loading and apoptosis in colonocytes. Cancer 117:5294–303 [Google Scholar]
  110. Kolar SS, Barhoumi R, Callaway ES, Fan YY, Wang N. 110.  et al. 2007. Synergy between docosahexaenoic acid and butyrate elicits p53-independent apoptosis via mitochondrial Ca2+ accumulation in colonocytes. Am. J. Physiol. Gastrointest. Liver Physiol. 293:G935–43 [Google Scholar]
  111. Kolar SS, Barhoumi R, Lupton JR, Chapkin RS. 111.  2007. Docosahexaenoic acid and butyrate synergistically induce colonocyte apoptosis by enhancing mitochondrial Ca2+ accumulation. Cancer Res. 67:5561–68 [Google Scholar]
  112. Korinek V, Barker N, Moerer P, van Donselaar E, Huls G. 112.  et al. 1998. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 19:379–83 [Google Scholar]
  113. Korinek V, Barker N, Morin PJ, van Wichen D, de Weger R. 113.  et al. 1997. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC−/− colon carcinoma. Science 275:1784–87 [Google Scholar]
  114. Kuan CY, Walker TH, Luo PG, Chen CF. 114.  2011. Long-chain polyunsaturated fatty acids promote paclitaxel cytotoxicity via inhibition of the MDR1 gene in the human colon cancer Caco-2 cell line. J. Am. Coll. Nutr. 30:265–73 [Google Scholar]
  115. Kuhnert F, Davis CR, Wang HT, Chu P, Lee M. 115.  et al. 2004. Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. PNAS 101:266–71 [Google Scholar]
  116. Larsson SC, Wolk A. 116.  2006. Meat consumption and risk of colorectal cancer: a meta-analysis of prospective studies. Int. J. Cancer 119:2657–64 [Google Scholar]
  117. Lee DH, Anderson KE, Harnack LJ, Folsom AR, Jacobs DR Jr. 117.  2004. Heme iron, zinc, alcohol consumption, and colon cancer: Iowa Women's Health Study. J. Natl. Cancer Inst. 96:403–7 [Google Scholar]
  118. Lee J, Demissie K, Lu SE, Rhoads GG. 118.  2007. Cancer incidence among Korean-American immigrants in the United States and native Koreans in South Korea. Cancer Control 14:78–85 [Google Scholar]
  119. Lewin MH, Bailey N, Bandaletova T, Bowman R, Cross AJ. 119.  et al. 2006. Red meat enhances the colonic formation of the DNA adduct O6-carboxymethyl guanine: implications for colorectal cancer risk. Cancer Res. 66:1859–65 [Google Scholar]
  120. Li X, Xin S, He Z, Che X, Wang J. 120.  et al. 2014. MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor PDCD4 and promotes cell transformation, proliferation, and metastasis in renal cell carcinoma. Cell. Physiol. Biochem. 33:1631–42 [Google Scholar]
  121. Lijinsky W. 121.  1987. Structure-activity relations in carcinogenesis by N-nitroso compounds. Cancer Metastasis Rev. 6:301–56 [Google Scholar]
  122. Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC. 122.  et al. 2013. Curcumin modulates DNA methylation in colorectal cancer cells. PLOS ONE 8:e57709 [Google Scholar]
  123. Lo Sasso G, Bovenga F, Murzilli S, Salvatore L, Di Tullio G. 123.  et al. 2013. Liver X receptors inhibit proliferation of human colorectal cancer cells and growth of intestinal tumors in mice. Gastroenterology 144:1497–507.e13 [Google Scholar]
  124. Logan RF, Grainge MJ, Shepherd VC, Armitage NC, Muir KR. 124.  2008. Aspirin and folic acid for the prevention of recurrent colorectal adenomas. Gastroenterology 134:29–38 [Google Scholar]
  125. Loh YH, Jakszyn P, Luben RN, Mulligan AA, Mitrou PN, Khaw KT. 125.  2011. N-nitroso compounds and cancer incidence: the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk Study. Am. J. Clin. Nutr. 93:1053–61 [Google Scholar]
  126. Lopez-Serra P, Esteller M. 126.  2012. DNA methylation-associated silencing of tumor-suppressor microRNAs in cancer. Oncogene 31:1609–22 [Google Scholar]
  127. Lunn JC, Kuhnle G, Mai V, Frankenfeld C, Shuker DE. 127.  et al. 2007. The effect of haem in red and processed meat on the endogenous formation of N-nitroso compounds in the upper gastrointestinal tract. Carcinogenesis 28:685–90 [Google Scholar]
  128. Lynch HT, de la Chapelle A. 128.  2003. Hereditary colorectal cancer. N. Engl. J. Med. 348:919–32 [Google Scholar]
  129. MacLean CH, Newberry SJ, Mojica WA, Khanna P, Issa AM. 129.  et al. 2006. Effects of omega-3 fatty acids on cancer risk: a systematic review. JAMA 295:403–15 [Google Scholar]
  130. Martinez-Augustin O, Lopez-Posadas R, Gonzalez R, Suarez MD, Zarzuelo A, Sanchez de Medina F. 130.  2009. Genomic analysis of sulfasalazine effect in experimental colitis is consistent primarily with the modulation of NF-κB but not PPAR-γ signaling. Pharmacogenet. Genom. 19:363–72 [Google Scholar]
  131. Matano M, Date S, Shimokawa M, Takano A, Fujii M. 131.  et al. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21:256–62 [Google Scholar]
  132. Mazhab-Jafari MT, Marshall CB, Smith MJ, Gasmi-Seabrook GM, Stathopulos PB. 132.  et al. 2015. Oncogenic and RASopathy-associated K-RAS mutations relieve membrane-dependent occlusion of the effector-binding site. PNAS 112:6625–30 [Google Scholar]
  133. McDonald SA, Preston SL, Lovell MJ, Wright NA, Jankowski JA. 133.  2006. Mechanisms of disease: from stem cells to colorectal cancer. Nat. Clin. Pract. Gastroenterol. Hepatol. 3:267–74 [Google Scholar]
  134. Meerschaert RL, Kelly CV. 134.  2015. Trace membrane additives affect lipid phases with distinct mechanisms: a modified Ising model. Eur. Biophys. J. 44:227–33 [Google Scholar]
  135. Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T. 135.  2007. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 133:647–58 [Google Scholar]
  136. Meyer AS, Zweemer AJ, Lauffenburger DA. 136.  2015. The AXL receptor is a sensor of ligand spatial heterogeneity. Cell Syst. 1:25–36 [Google Scholar]
  137. Midura-Kiela MT, Radhakrishnan VM, Larmonier CB, Laubitz D, Ghishan FK, Kiela PR. 137.  2012. Curcumin inhibits interferon-gamma signaling in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 302:G85–96 [Google Scholar]
  138. Mishra A, Chaudhary A, Sethi S. 138.  2004. Oxidized omega-3 fatty acids inhibit NF-κB activation via a PPARα-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 24:1621–27 [Google Scholar]
  139. Moghaddam AA, Woodward M, Huxley R. 139.  2007. Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol. Biomarkers Prev. 16:2533–47 [Google Scholar]
  140. Moriyama T, Ohuchida K, Mizumoto K, Yu J, Sato N. 140.  et al. 2009. MicroRNA-21 modulates biological functions of pancreatic cancer cells including their proliferation, invasion, and chemoresistance. Mol. Cancer Ther. 8:1067–74 [Google Scholar]
  141. Mudduluru G, George-William JN, Muppala S, Asangani IA, Kumarswamy R. 141.  et al. 2011. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer. Biosci. Rep. 31:185–97 [Google Scholar]
  142. Mukherjee D, Nissen SE, Topol EJ. 142.  2001. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 286:954–59 [Google Scholar]
  143. Murff HJ, Shrubsole MJ, Cai Q, Smalley WE, Dai Q. 143.  et al. 2012. Dietary intake of PUFAs and colorectal polyp risk. Am. J. Clin. Nutr. 95:703–12 [Google Scholar]
  144. Nan X, Tamguney TM, Collisson EA, Lin LJ, Pitt C. 144.  et al. 2015. Ras-GTP dimers activate the mitogen-activated protein kinase (MAPK) pathway. PNAS 112:7996–8001 [Google Scholar]
  145. Nautiyal J, Banerjee S, Kanwar SS, Yu Y, Patel BB. 145.  et al. 2011. Curcumin enhances dasatinib-induced inhibition of growth and transformation of colon cancer cells. Int. J. Cancer 128:951–61 [Google Scholar]
  146. Nomoto H, Iigo M, Hamada H, Kojima S, Tsuda H. 146.  2004. Chemoprevention of colorectal cancer by grape seed proanthocyanidin is accompanied by a decrease in proliferation and increase in apoptosis. Nutr. Cancer 49:81–88 [Google Scholar]
  147. Norat T, Lukanova A, Ferrari P, Riboli E. 147.  2002. Meat consumption and colorectal cancer risk: dose-response meta-analysis of epidemiological studies. Int. J. Cancer 98:241–56 [Google Scholar]
  148. Ollberding NJ, Wilkens LR, Henderson BE, Kolonel LN, Le Marchand L. 148.  2012. Meat consumption, heterocyclic amines and colorectal cancer risk: the Multiethnic Cohort Study. Int. J. Cancer 131:E1125–33 [Google Scholar]
  149. Orlich MJ, Singh PN, Sabate J, Fan J, Sveen L. 149.  et al. 2015. Vegetarian dietary patterns and the risk of colorectal cancers. JAMA Int. Med. 175:767–76 [Google Scholar]
  150. Oshima T, Kawasaki T, Ohashi R, Hasegawa G, Jiang S. 150.  et al. 2007. Downregulated P1 promoter-driven hepatocyte nuclear factor-4α expression in human colorectal carcinoma is a new prognostic factor against liver metastasis. Pathol. Int. 57:82–90 [Google Scholar]
  151. Ouyang N, Ke S, Eagleton N, Xie Y, Chen G. 151.  et al. 2010. Pregnane X receptor suppresses proliferation and tumourigenicity of colon cancer cells. Br. J. Cancer 102:1753–61 [Google Scholar]
  152. Park W, Amin AR, Chen ZG, Shin DM. 152.  2013. New perspectives of curcumin in cancer prevention. Cancer Prev. Res. (Phila.) 6:387–400 [Google Scholar]
  153. Parris A, Williams MR. 153.  2015. A human colonic crypt culture system to study regulation of stem cell-driven tissue renewal and physiological function. Methods Mol. Biol.1212141–61
  154. Paspatis GA, Karamanolis DG. 154.  1994. Folate supplementation and adenomatous colonic polyps. Dis. Colon Rectum 37:1340–41 [Google Scholar]
  155. Patterson E, O'Doherty RM, Murphy EF, Wall R, O'Sullivan O. 155.  et al. 2014. Impact of dietary fatty acids on metabolic activity and host intestinal microbiota composition in C57BL/6J mice. Br. J. Nutr. 111:1905–17 [Google Scholar]
  156. Paulsen JE, Elvsaas IK, Steffensen IL, Alexander J. 156.  1997. A fish oil derived concentrate enriched in eicosapentaenoic and docosahexaenoic acid as ethyl ester suppresses the formation and growth of intestinal polyps in the Min mouse. Carcinogenesis 18:1905–10 [Google Scholar]
  157. Pegorier JP, Le May C, Girard J. 157.  2004. Control of gene expression by fatty acids. J. Nutr. 134:2444–49S [Google Scholar]
  158. Pfeiffer CM, Hughes JP, Lacher DA, Bailey RL, Berry RJ. 158.  et al. 2012. Estimation of trends in serum and RBC folate in the U.S. population from pre- to postfortification using assay-adjusted data from the NHANES 1988–2010. J. Nutr. 142:886–93 [Google Scholar]
  159. Piepoli A, Tavano F, Copetti M, Mazza T, Palumbo O. 159.  et al. 2012. miRNA expression profiles identify drivers in colorectal and pancreatic cancers. PLOS ONE 7:e33663 [Google Scholar]
  160. Pierzchalska M, Grabacka M, Michalik M, Zyla K, Pierzchalski P. 160.  2012. Prostaglandin E2 supports growth of chicken embryo intestinal organoids in Matrigel matrix. Biotechniques 52:307–15 [Google Scholar]
  161. Pinheiro PS, Sherman RL, Trapido EJ, Fleming LE, Huang Y. 161.  et al. 2009. Cancer incidence in first-generation U.S. Hispanics: Cubans, Mexicans, Puerto Ricans, and new Latinos. Cancer Epidemiol. Biomarkers Prev. 18:2162–69 [Google Scholar]
  162. Pinto D, Gregorieff A, Begthel H, Clevers H. 162.  2003. Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev. 17:1709–13 [Google Scholar]
  163. Ponferrada A, Caso JR, Alou L, Colon A, Sevillano D. 163.  et al. 2007. The role of PPARγ on restoration of colonic homeostasis after experimental stress-induced inflammation and dysfunction. Gastroenterology 132:1791–803 [Google Scholar]
  164. Possidonio AC, Miranda M, Gregoracci GB, Thompson FL, Costa ML, Mermelstein C. 164.  2014. Cholesterol depletion induces transcriptional changes during skeletal muscle differentiation. BMC Genomics 15:544 [Google Scholar]
  165. Pot GK, Geelen A, van Heijningen EM, Siezen CL, van Kranen HJ, Kampman E. 165.  2008. Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study. Int. J. Cancer 123:1974–77 [Google Scholar]
  166. Qi W, Weber CR, Wasland K, Savkovic SD. 166.  2011. Genistein inhibits proliferation of colon cancer cells by attenuating a negative effect of epidermal growth factor on tumor suppressor FOXO3 activity. BMC Cancer 11:219 [Google Scholar]
  167. Qiao EQ, Ji MH, Wu JZ, Ma R, Zhang XH. 167.  et al. 2013. Expression of the PXR gene in various types of cancer and drug resistance (review). Oncol. Lett. 5:1093–100 [Google Scholar]
  168. Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M. 168.  et al. 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161:581–94 [Google Scholar]
  169. Rao CV. 169.  2007. Regulation of COX and LOX by curcumin. Adv. Exp. Med. Biol. 595:213–26 [Google Scholar]
  170. Ray WA, Stein CM, Daugherty JR, Hall K, Arbogast PG, Griffin MR. 170.  2002. COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet 360:1071–73 [Google Scholar]
  171. Reya T, Clevers H. 171.  2005. Wnt signalling in stem cells and cancer. Nature 434:843–50 [Google Scholar]
  172. Robbins D, Chen T. 172.  2014. Tissue-specific regulation of pregnane X receptor in cancer development and therapy. Cell Biosci. 4:17 [Google Scholar]
  173. Rose DP, Boyar AP, Wynder EL. 173.  1986. International comparisons of mortality rates for cancer of the breast, ovary, prostate, and colon, and per capita food consumption. Cancer 58:2363–71 [Google Scholar]
  174. Rotelli MT, Bocale D, De Fazio M, Ancona P, Scalera I. 174.  et al. 2015. IN-VITRO evidence for the protective properties of the main components of the Mediterranean diet against colorectal cancer: a systematic review. Surg. Oncol. 24:145–52 [Google Scholar]
  175. Ruder EH, Thiebaut AC, Thompson FE, Potischman N, Subar AF. 175.  et al. 2011. Adolescent and mid-life diet: risk of colorectal cancer in the NIH-AARP Diet and Health Study. Am. J. Clin. Nutr. 94:1607–19 [Google Scholar]
  176. Sampath H, Ntambi JM. 176.  2005. Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu. Rev. Nutr. 25:317–40 [Google Scholar]
  177. Sanders LM, Henderson CE, Hong MY, Barhoumi R, Burghardt RC. 177.  et al. 2004. An increase in reactive oxygen species by dietary fish oil coupled with the attenuation of antioxidant defenses by dietary pectin enhances rat colonocyte apoptosis. J. Nutr. 134:3233–38 [Google Scholar]
  178. Sandhu MS, White IR, McPherson K. 178.  2001. Systematic review of the prospective cohort studies on meat consumption and colorectal cancer risk: a meta-analytical approach. Cancer Epidemiol. Biomarkers Prev. 10:439–46 [Google Scholar]
  179. Sanjoaquin MA, Allen N, Couto E, Roddam AW, Key TJ. 179.  2005. Folate intake and colorectal cancer risk: a meta-analytical approach. Int. J. Cancer 113:825–28 [Google Scholar]
  180. Sasazuki S, Inoue M, Iwasaki M, Sawada N, Shimazu T. 180.  et al. 2011. Intake of n-3 and n-6 polyunsaturated fatty acids and development of colorectal cancer by subsite: Japan Public Health Center-based prospective study. Int. J. Cancer 129:1718–29 [Google Scholar]
  181. Sato T, Clevers H. 181.  2015. SnapShot: growing organoids from stem cells. Cell 161:e1700–1 [Google Scholar]
  182. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. 182.  et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–65 [Google Scholar]
  183. Scharlau D, Borowicki A, Habermann N, Hofmann T, Klenow S. 183.  et al. 2009. Mechanisms of primary cancer prevention by butyrate and other products formed during gut flora-mediated fermentation of dietary fibre. Mutat. Res. 682:39–53 [Google Scholar]
  184. Schoen RE. 184.  2000. Families at risk for colorectal cancer: risk assessment and genetic testing. J. Clin. Gastroenterol. 31:114–20 [Google Scholar]
  185. Schonberg SA, Lundemo AG, Fladvad T, Holmgren K, Bremseth H. 185.  et al. 2006. Closely related colon cancer cell lines display different sensitivity to polyunsaturated fatty acids, accumulate different lipid classes and downregulate sterol regulatory element-binding protein 1. FEBS J. 273:2749–65 [Google Scholar]
  186. Schwartz S, Friedberg I, Ivanov IV, Davidson LA, Goldsby JS. 186.  et al. 2012. A metagenomic study of diet-dependent interaction between gut microbiota and host in infants reveals differences in immune response. Genome Biol. 13:r32 [Google Scholar]
  187. Selhub J. 187.  2002. Folate, vitamin B12 and vitamin B6 and one carbon metabolism. J. Nutr. Health Aging 6:39–42 [Google Scholar]
  188. Sesink AL, Termont DS, Kleibeuker JH, Van der Meer R. 188.  1999. Red meat and colon cancer: the cytotoxic and hyperproliferative effects of dietary heme. Cancer Res. 59:5704–9 [Google Scholar]
  189. Shah MS, Kim E, Davidson LA, Knight JM, Zoh RS. 189.  et al. 2016. Comparative effects of diet and carcinogen on microRNA expression in the stem cell niche of the mouse colonic crypt. Biochim. Biophys. Acta 1862:121–34 [Google Scholar]
  190. Shah MS, Schwartz SL, Zhao C, Davidson LA, Zhou B. 190.  et al. 2011. Integrated microRNA and mRNA expression profiling in a rat colon carcinogenesis model: effect of a chemo-protective diet. Physiol. Genom. 43:640–54 [Google Scholar]
  191. Shao J, Jung C, Liu C, Sheng H. 191.  2005. Prostaglandin E2 stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. J. Biol. Chem. 280:26565–72 [Google Scholar]
  192. Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A. 192.  et al. 2004. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin. Cancer Res. 10:6847–54 [Google Scholar]
  193. Shen J, Xia W, Khotskaya YB, Huo L, Nakanishi K. 193.  et al. 2013. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 497:383–87 [Google Scholar]
  194. Shindou H, Hishikawa D, Harayama T, Eto M, Shimizu T. 194.  2013. Generation of membrane diversity by lysophospholipid acyltransferases. J. Biochem. 154:21–28 [Google Scholar]
  195. Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D. 195.  et al. 2007. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology 72:397–402 [Google Scholar]
  196. Slaby O, Svoboda M, Michalek J, Vyzula R. 196.  2009. MicroRNAs in colorectal cancer: translation of molecular biology into clinical application. Mol. Cancer 8:102 [Google Scholar]
  197. Slagsvold JE, Pettersen CH, Storvold GL, Follestad T, Krokan HE, Schonberg SA. 197.  2010. DHA alters expression of target proteins of cancer therapy in chemotherapy resistant SW620 colon cancer cells. Nutr. Cancer 62:611–21 [Google Scholar]
  198. Sole-Navais P, Cavalle-Busquets P, Fernandez-Ballart JD, Murphy MM. 198.  2016. Early pregnancy B vitamin status, one carbon metabolism, pregnancy outcome and child development. Biochimie In press. doi: 10.1016/j.biochi.2015.12.003
  199. Sorensen HT, Mellemkjaer L, Blot WJ, Nielsen GL, Steffensen FH. 199.  et al. 2000. Risk of upper gastrointestinal bleeding associated with use of low-dose aspirin. Am. J. Gastroenterol. 95:2218–24 [Google Scholar]
  200. Subramaniam D, Ponnurangam S, Ramamoorthy P, Standing D, Battafarano RJ. 200.  et al. 2012. Curcumin induces cell death in esophageal cancer cells through modulating Notch signaling. PLOS ONE 7:e30590 [Google Scholar]
  201. Sugimura T, Wakabayashi K, Nakagama H, Nagao M. 201.  2004. Heterocyclic amines: mutagens/carcinogens produced during cooking of meat and fish. Cancer Sci. 95:290–99 [Google Scholar]
  202. Sun H, Meng X, Han J, Zhang Z, Wang B. 202.  et al. 2013. Anti-cancer activity of DHA on gastric cancer—an in vitro and in vivo study. Tumour Biol. 34:3791–800 [Google Scholar]
  203. Terzic J, Grivennikov S, Karin E, Karin M. 203.  2010. Inflammation and colon cancer. Gastroenterology 138:2101–14.e5 [Google Scholar]
  204. Theodoratou E, McNeill G, Cetnarskyj R, Farrington SM, Tenesa A. 204.  et al. 2007. Dietary fatty acids and colorectal cancer: a case-control study. Am. J. Epidemiol. 166:181–95 [Google Scholar]
  205. Trichopoulou A, Lagiou P, Kuper H, Trichopoulos D. 205.  2000. Cancer and Mediterranean dietary traditions. Cancer Epidemiol. Biomarkers Prev. 9:869–73 [Google Scholar]
  206. Tricker AR. 206.  1997. N-nitroso compounds and man: sources of exposure, endogenous formation and occurrence in body fluids. Eur. J. Cancer Prev. 6:226–68 [Google Scholar]
  207. Triff K, Kim E, Chapkin RS. 207.  2015. Chemoprotective epigenetic mechanisms in a colorectal cancer model: modulation by n-3 PUFA in combination with fermentable fiber. Curr. Pharmacol. Rep. 1:11–20 [Google Scholar]
  208. Triff K, Konganti K, Gaddis S, Zhou B, Ivanov I, Chapkin RS. 208.  2013. Genome-wide analysis of the rat colon reveals proximal-distal differences in histone modifications and proto-oncogene expression. Physiol. Genom. 45:1229–43 [Google Scholar]
  209. Turk HF, Barhoumi R, Chapkin RS. 209.  2012. Alteration of EGFR spatiotemporal dynamics suppresses signal transduction. PLOS ONE 7:e39682 [Google Scholar]
  210. Turk HF, Kolar SS, Fan YY, Cozby CA, Lupton JR, Chapkin RS. 210.  2011. Linoleic acid and butyrate synergize to increase Bcl-2 levels in colonocytes. Int. J. Cancer 128:63–71 [Google Scholar]
  211. Vanamala J, Glagolenko A, Yang P, Carroll RJ, Murphy ME. 211.  et al. 2008. Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARδ/PGE2 and elevation of PGE3. Carcinogenesis 29:790–96 [Google Scholar]
  212. Verhaar MC, Stroes E, Rabelink TJ. 212.  2002. Folates and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 22:6–13 [Google Scholar]
  213. Vijayaraghavalu S, Peetla C, Lu S, Labhasetwar V. 213.  2012. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions. Mol. Pharm. 9:2730–42 [Google Scholar]
  214. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J. 214.  et al. 2013. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. Lancet 381:1029–36 [Google Scholar]
  215. Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G. 215.  et al. 2011. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5:220–30 [Google Scholar]
  216. Wang P, Zou F, Zhang X, Li H, Dulak A. 216.  et al. 2009. microRNA-21 negatively regulates Cdc25A and cell cycle progression in colon cancer cells. Cancer Res. 69:8157–65 [Google Scholar]
  217. Weber C, Erl W, Pietsch A, Danesch U, Weber PC. 217.  1995. Docosahexaenoic acid selectively attenuates induction of vascular cell adhesion molecule-1 and subsequent monocytic cell adhesion to human endothelial cells stimulated by tumor necrosis factor-alpha. Arterioscler. Thromb. Vasc. Biol. 15:622–28 [Google Scholar]
  218. West NJ, Clark SK, Phillips RK, Hutchinson JM, Leicester RJ. 218.  et al. 2010. Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut 59:918–25 [Google Scholar]
  219. Williams J, Mai CT, Mulinare J, Isenburg J, Flood TJ. 219.  et al. 2015. Updated estimates of neural tube defects prevented by mandatory folic acid fortification—United States, 1995–2011. MMWR Morb. Mortal. Wkly. Rep. 64:1–5 [Google Scholar]
  220. Willis ND, Przyborski SA, Hutchison CJ, Wilson RG. 220.  2008. Colonic and colorectal cancer stem cells: progress in the search for putative biomarkers. J. Anat. 213:59–65 [Google Scholar]
  221. Wu K, Platz EA, Willett WC, Fuchs CS, Selhub J. 221.  et al. 2009. A randomized trial on folic acid supplementation and risk of recurrent colorectal adenoma. Am. J. Clin. Nutr. 90:1623–31 [Google Scholar]
  222. Yang CS, Lambert JD, Hou Z, Ju J, Lu G, Hao X. 222.  2006. Molecular targets for the cancer preventive activity of tea polyphenols. Mol. Carcinog. 45:431–35 [Google Scholar]
  223. Yang Y, Chaerkady R, Beer MA, Mendell JT, Pandey A. 223.  2009. Identification of miR-21 targets in breast cancer cells using a quantitative proteomic approach. Proteomics 9:1374–84 [Google Scholar]
  224. Yi JS, Mun DG, Lee H, Park JS, Lee JW. 224.  et al. 2013. PTRF/cavin-1 is essential for multidrug resistance in cancer cells. J. Proteome Res. 12:605–14 [Google Scholar]
  225. Young GP, Rose IS, St John DJ. 225.  1989. Haem in the gut. I. Fate of haemoproteins and the absorption of haem. J. Gastroenterol. Hepatol. 4:537–45 [Google Scholar]
  226. Yu HN, Zhu J, Pan WS, Shen SR, Shan WG, Das UN. 226.  2014. Effects of fish oil with a high content of n-3 polyunsaturated fatty acids on mouse gut microbiota. Arch. Med. Res. 45:195–202 [Google Scholar]
  227. Zand H, Rahimipour A, Salimi S, Shafiee SM. 227.  2008. Docosahexaenoic acid sensitizes Ramos cells to Gamma-irradiation-induced apoptosis through involvement of PPAR-γ activation and NF-κB suppression. Mol. Cell. Biochem. 317:113–20 [Google Scholar]
  228. Zhang X, Zhao XW, Liu DB, Han CZ, Du LL. 228.  et al. 2014. Lipid levels in serum and cancerous tissues of colorectal cancer patients. World J. Gastroenterol. 20:8646–52 [Google Scholar]
  229. Zhu Y, Wang PP, Zhao J, Green R, Sun Z. 229.  et al. 2014. Dietary N-nitroso compounds and risk of colorectal cancer: a case-control study in Newfoundland and Labrador and Ontario, Canada. Br. J. Nutr. 111:1109–17 [Google Scholar]
/content/journals/10.1146/annurev-nutr-071715-051039
Loading
/content/journals/10.1146/annurev-nutr-071715-051039
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error