1932

Abstract

Cardiac developmental disorders represent the most common of human birth defects, and anomalies in cardiomyocyte proliferation drive many of these disorders. This review highlights the molecular mechanisms of prenatal cardiac growth. Trabeculation represents the initial ventricular growth phase and is necessary for embryonic survival. Later in development, the bulk of the ventricular wall derives from the compaction process, yet the arrest of this process can still be compatible with life. Cardiomyocyte proliferation and growth form the basis of both trabeculation and compaction, and mouse models indicate that cardiomyocyte interactions with the surrounding environment are critical for these proliferative processes. The human genetics of left ventricular noncompaction cardiomyopathy suggest that cardiomyocyte cell-autonomous mechanisms contribute to the compaction process. Understanding the determinants of prenatal or early postnatal cardiomyocyte proliferation and growth provides critical information that identifies risk factors for cardiovascular disease, including heart failure and its associated complications of arrhythmias and thromboembolic events.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathol-012615-044336
2016-05-23
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pathol/11/1/annurev-pathol-012615-044336.html?itemId=/content/journals/10.1146/annurev-pathol-012615-044336&mimeType=html&fmt=ahah

Literature Cited

  1. Hoffman JI, Kaplan S. 1.  2002. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39:1890–900 [Google Scholar]
  2. Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D. 2.  et al. 2006. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–16 [Google Scholar]
  3. Srivastava D. 3.  2006. Genetic regulation of cardiogenesis and congenital heart disease. Annu. Rev. Pathol. 1:199–213 [Google Scholar]
  4. Harvey RP. 4.  2002. Patterning the vertebrate heart. Nat. Rev. Genet. 3:544–56 [Google Scholar]
  5. Van Vliet P, Wu SM, Zaffran S, Puceat M. 5.  2012. Early cardiac development: a view from stem cells to embryos. Cardiovasc. Res. 96:352–62 [Google Scholar]
  6. Sylva M, van den Hoff MJ, Moorman AF. 6.  2014. Development of the human heart. Am. J. Med. Genet. A 164A:1347–71 [Google Scholar]
  7. Citri A, Yarden Y. 7.  2006. EGF-ERBB signalling: Towards the systems level. Nat. Rev. Mol. Cell Biol. 7:505–16 [Google Scholar]
  8. Zhao YY, Feron O, Dessy C, Han X, Marchionni MA, Kelly RA. 8.  1999. Neuregulin signaling in the heart. Dynamic targeting of erbB4 to caveolar microdomains in cardiac myocytes. Circ. Res. 84:1380–87 [Google Scholar]
  9. Kang J-O, Sucov HM. 9.  2005. Convergent proliferative response and divergent morphogenic pathways induced by epicardial and endocardial signaling in fetal heart development. Mech. Dev. 122:57–65 [Google Scholar]
  10. Hertig CM, Kubalak SW, Wang Y, Chien KR. 10.  1999. Synergistic roles of neuregulin-1 and insulin-like growth factor-I in activation of the phosphatidylinositol 3-kinase pathway and cardiac chamber morphogenesis. J. Biol. Chem. 274:37362–69 [Google Scholar]
  11. Grego-Bessa J, Luna-Zurita L, del Monte G, Bolós V, Melgar P. 11.  et al. 2007. Notch signaling is essential for ventricular chamber development. Dev. Cell 12:415–29 [Google Scholar]
  12. Gassmann M, Casagranda F, Orioli D, Simon H, Lai C. 12.  et al. 1995. Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378:390–94 [Google Scholar]
  13. Lee KF, Simon H, Chen H, Bates B, Hung MC, Hauser C. 13.  1995. Requirement for neuregulin receptor erbB2 in neural and cardiac development. Nature 378:394–98 [Google Scholar]
  14. Meyer D, Birchmeier C. 14.  1995. Multiple essential functions of neuregulin in development. Nature 378:386–90 [Google Scholar]
  15. Kramer R, Bucay N, Kane DJ, Martin LE, Tarpley JE, Theill LE. 15.  1996. Neuregulins with an Ig-like domain are essential for mouse myocardial and neuronal development. PNAS 93:4833–38 [Google Scholar]
  16. Shawber CJ, Kitajewski J. 16.  2004. Notch function in the vasculature: insights from zebrafish, mouse and man. Bioessays 26:225–34 [Google Scholar]
  17. Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. 17.  1995. Signalling downstream of activated mammalian Notch. Nature 377:355–58 [Google Scholar]
  18. Chen H, Zhang W, Sun X, Yoshimoto M, Chen Z. 18.  et al. 2013. Fkbp1a controls ventricular myocardium trabeculation and compaction by regulating endocardial Notch1 activity. Development 140:1946–57 [Google Scholar]
  19. Shou W, Aghdasi B, Armstrong DL, Guo Q, Bao S. 19.  et al. 1998. Cardiac defects and altered ryanodine receptor function in mice lacking FKBP12. Nature 391:489–92 [Google Scholar]
  20. Luxán G, Casanova JC, Martínez-Poveda B, Prados B, D'Amato G. 20.  et al. 2013. Mutations in the NOTCH pathway regulator MIB1 cause left ventricular noncompaction cardiomyopathy. Nat. Med. 19:193–201 [Google Scholar]
  21. Shi W, Chen H, Sun J, Buckley S, Zhao J. 21.  et al. 2003. TACE is required for fetal murine cardiac development and modeling. Dev. Biol. 261:371–80 [Google Scholar]
  22. Yang J, Bücker S, Jungblut B, Böttger T, Cinnamon Y. 22.  et al. 2012. Inhibition of Notch2 by Numb/Numblike controls myocardial compaction in the heart. Cardiovasc. Res. 96:276–85 [Google Scholar]
  23. McCright B, Gao X, Shen L, Lozier J, Lan Y. 23.  et al. 2001. Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. Development 128:491–502 [Google Scholar]
  24. Huang J, Elicker J, Bowens N, Liu X, Cheng L. 24.  et al. 2012. Myocardin regulates BMP10 expression and is required for heart development. J. Clin. Investig. 122:3678–91 [Google Scholar]
  25. Galfré E, Pitt SJ, Venturi E, Sitsapesan M, Zaccai NR. 25.  et al. 2012. FKBP12 activates the cardiac ryanodine receptor Ca2+-release channel and is antagonised by FKBP12.6. PLOS ONE 7:e31956 [Google Scholar]
  26. Pashmforoush M, Lu JT, Chen H, Amand TS, Kondo R. 26.  et al. 2004. Nkx2-5 pathways and congenital heart disease; loss of ventricular myocyte lineage specification leads to progressive cardiomyopathy and complete heart block. Cell 117:373–86 [Google Scholar]
  27. Chen H, Shi S, Acosta L, Li W, Lu J. 27.  et al. 2004. BMP10 is essential for maintaining cardiac growth during murine cardiogenesis. Development 131:2219–31 [Google Scholar]
  28. Zhang W, Chen H, Wang Y, Yong W, Zhu W. 28.  et al. 2011. Tbx20 transcription factor is a downstream mediator for bone morphogenetic protein-10 in regulating cardiac ventricular wall development and function. J. Biol. Chem. 286:36820–29 [Google Scholar]
  29. Shen T, Aneas I, Sakabe N, Dirschinger RJ, Wang G. 29.  et al. 2011. Tbx20 regulates a genetic program essential to adult mouse cardiomyocyte function. J. Clin. Investig. 121:4640–54 [Google Scholar]
  30. Kraus F, Haenig B, Kispert A. 30.  2001. Cloning and expression analysis of the mouse T-box gene Tbx20. Mech. Dev. 100:87–91 [Google Scholar]
  31. Kirk EP, Sunde M, Costa MW, Rankin SA, Wolstein O. 31.  et al. 2007. Mutations in cardiac T-box factor gene TBX20 are associated with diverse cardiac pathologies, including defects of septation and valvulogenesis and cardiomyopathy. Am. J. Hum. Genet. 81:280–91 [Google Scholar]
  32. Cai CL, Zhou W, Yang L, Bu L, Qyang Y. 32.  et al. 2005. T-box genes coordinate regional rates of proliferation and regional specification during cardiogenesis. Development 132:2475–87 [Google Scholar]
  33. Gitler AD, Zhu Y, Ismat FA, Lu MM, Yamauchi Y. 33.  et al. 2003. Nf1 has an essential role in endothelial cells. Nat. Genet. 33:75–79 [Google Scholar]
  34. Brannan CI, Perkins AS, Vogel KS, Ratner N, Nordlund ML. 34.  et al. 1994. Targeted disruption of the neurofibromatosis type-1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev. 8:1019–29 [Google Scholar]
  35. Suri C, Jones PF, Patan S, Bartunkova S, Maisonpierre PC. 35.  et al. 1996. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87:1171–80 [Google Scholar]
  36. Jeansson M, Gawlik A, Anderson G, Li C, Kerjaschki D. 36.  et al. 2011. Angiopoietin-1 is essential in mouse vasculature during development and in response to injury. J. Clin. Investig. 121:2278–89 [Google Scholar]
  37. Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M. 37.  et al. 1994. Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev. 8:1897–909 [Google Scholar]
  38. Ferrara N, Gerber HP, LeCouter J. 38.  2003. The biology of VEGF and its receptors. Nat. Med. 9:669–76 [Google Scholar]
  39. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS. 39.  et al. 1996. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–42 [Google Scholar]
  40. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L. 40.  et al. 1996. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–39 [Google Scholar]
  41. Miquerol L, Langille BL, Nagy A. 41.  2000. Embryonic development is disrupted by modest increases in vascular endothelial growth factor gene expression. Development 127:3941–46 [Google Scholar]
  42. Hallaq H, Pinter E, Enciso J, McGrath J, Zeiss C. 42.  et al. 2004. A null mutation of Hhex results in abnormal cardiac development, defective vasculogenesis and elevated Vegfa levels. Development 131:5197–209 [Google Scholar]
  43. Mass E, Wachten D, Aschenbrenner AC, Voelzmann A, Hoch M. 43.  2014. Murine Creld1 controls cardiac development through activation of calcineurin/NFATc1 signaling. Dev. Cell 28:711–26 [Google Scholar]
  44. Jenkins SJ, Hutson DR, Kubalak SW. 44.  2005. Analysis of the proepicardium-epicardium transition during the malformation of the RXRα/− epicardium. Dev. Dyn. 233:1091–101 [Google Scholar]
  45. Pennisi DJ, Ballard VLT, Mikawa T. 45.  2003. Epicardium is required for the full rate of myocyte proliferation and levels of expression of myocyte mitogenic factors FGF2 and its receptor, FGFR-1, but not for transmural myocardial patterning in the embryonic chick heart. Dev. Dyn. 228:161–72 [Google Scholar]
  46. Kwee L, Baldwin HS, Shen HM, Stewart CL, Buck C. 46.  et al. 1995. Defective development of the embryonic and extraembryonic circulatory systems in vascular cell adhesion molecule (VCAM-1) deficient mice. Development 121:489–503 [Google Scholar]
  47. Germain P, Chambon P, Eichele G, Evans RM, Lazar MA. 47.  et al. 2006. International Union of Pharmacology. LXIII. Retinoid X receptors. Pharmacol. Rev. 58:760–72 [Google Scholar]
  48. Kastner P, Grondona JM, Mark M, Gansmuller A, LeMeur M. 48.  et al. 1994. Genetic analysis of RXRα developmental function: convergence of RXR and RAR signaling pathways in heart and eye morphogenesis. Cell 78:987–1003 [Google Scholar]
  49. Sucov HM, Dyson E, Gumeringer CL, Price J, Chien KR, Evans RM. 49.  1994. RXRα mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis. Genes Dev. 8:1007–18 [Google Scholar]
  50. Mendelsohn C, Lohnes D, Decimo D, Lufkin T, LeMeur M. 50.  et al. 1994. Function of the retinoic acid receptors (RARs) during development (II). Multiple abnormalities at various stages of organogenesis in RAR double mutants. Development 120:2749–71 [Google Scholar]
  51. Kastner P, Messaddeq N, Mark M, Wendling O, Grondona JM. 51.  et al. 1997. Vitamin A deficiency and mutations of RXRα, RXRβ and RARα lead to early differentiation of embryonic ventricular cardiomyocytes. Development 124:4749–58 [Google Scholar]
  52. Stuckmann I, Evans S, Lassar AB. 52.  2003. Erythropoietin and retinoic acid, secreted from the epicardium, are required for cardiac myocyte proliferation. Dev. Biol. 255:334–49 [Google Scholar]
  53. Brade T, Kumar S, Cunningham TJ, Chatzi C, Zhao X. 53.  et al. 2011. Retinoic acid stimulates myocardial expansion by induction of hepatic erythropoietin which activates epicardial Igf2. Development 138:139–48 [Google Scholar]
  54. Merki E, Zamora M, Raya A, Kawakami Y, Wang J. 54.  et al. 2005. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. PNAS 102:18455–60 [Google Scholar]
  55. Ackerman KG, Greer JJ. 55.  2007. Development of the diaphragm and genetic mouse models of diaphragmatic defects. Am. J. Med. Genet. C Semin. Med. Genet. 145C:109–16 [Google Scholar]
  56. Wu H, Lee SH, Gao J, Liu X, Iruela-Arispe ML. 56.  1999. Inactivation of erythropoietin leads to defects in cardiac morphogenesis. Development 126:3597–605 [Google Scholar]
  57. Li P, Cavallero S, Gu Y, Chen THP, Hughes J. 57.  et al. 2011. IGF signaling directs ventricular cardiomyocyte proliferation during embryonic heart development. Development 138:1795–805 [Google Scholar]
  58. Lavine KJ, Yu K, White AC, Zhang X, Smith C. 58.  et al. 2005. Endocardial and epicardial derived FGF signals regulate myocardial proliferation and differentiation in vivo. Dev. Cell 8:85–95 [Google Scholar]
  59. Lu SY, Sheikh F, Sheppard PC, Fresnoza A, Duckworth ML. 59.  et al. 2008. FGF-16 is required for embryonic heart development. Biochem. Biophys. Res. Commun. 373:270–74 [Google Scholar]
  60. Hotta Y, Sasaki S, Konishi M, Kinoshita H, Kuwahara K. 60.  et al. 2008. Fgf16 is required for cardiomyocyte proliferation in the mouse embryonic heart. Dev. Dyn. 237:2947–54 [Google Scholar]
  61. Hayashi T, Ray CA, Bermingham-McDonogh O. 61.  2008. Fgf20 is required for sensory epithelial specification in the developing cochlea. J. Neurosci. 28:5991–99 [Google Scholar]
  62. Kern CB, Twal WO, Mjaatvedt CH, Fairey SE, Toole BP. 62.  et al. 2006. Proteolytic cleavage of versican during cardiac cushion morphogenesis. Dev. Dyn. 235:2238–47 [Google Scholar]
  63. Yamamura H, Zhang M, Markwald RR, Mjaatvedt CH. 63.  1997. A heart segmental defect in the anterior-posterior axis of a transgenic mutant mouse. Dev. Biol. 186:58–72 [Google Scholar]
  64. Mjaatvedt CH, Yamamura H, Capehart AA, Turner D, Markwald RR. 64.  1998. The Cspg2 gene, disrupted in the hdf mutant, is required for right cardiac chamber and endocardial cushion formation. Dev. Biol. 202:56–66 [Google Scholar]
  65. Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML. 65.  et al. 2000. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Investig. 106:349–60 [Google Scholar]
  66. Cooley MA, Fresco VM, Dorlon ME, Twal WO, Lee NV. 66.  et al. 2012. Fibulin-1 is required during cardiac ventricular morphogenesis for versican cleavage, suppression of ErbB2 and Erk1/2 activation, and to attenuate trabecular cardiomyocyte proliferation. Dev. Dyn. 241:303–14 [Google Scholar]
  67. Stankunas K, Hang CT, Tsun ZY, Chen H, Lee NV. 67.  et al. 2008. Endocardial Brg1 represses ADAMTS1 to maintain the microenvironment for myocardial morphogenesis. Dev. Cell 14:298–311 [Google Scholar]
  68. Takada Y, Ye X, Simon S. 68.  2007. The integrins. Genome Biol. 8:215 [Google Scholar]
  69. Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong T-T. 69.  et al. 2009. Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev. Cell 16:233–44 [Google Scholar]
  70. DiMichele LA, Hakim ZS, Sayers RL, Rojas M, Schwartz RJ. 70.  et al. 2009. Transient expression of FRNK reveals stage-specific requirement for focal adhesion kinase activity in cardiac growth. Circ. Res. 104:1201–8 [Google Scholar]
  71. Peng X, Wu X, Druso JE, Wei H, Park AY-J. 71.  et al. 2008. Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. PNAS 105:6638–43 [Google Scholar]
  72. Zhao B, Li L, Lei Q, Guan KL. 72.  2010. The Hippo-YAP pathway in organ size control and tumorigenesis: An updated version. Genes Dev. 24:862–74 [Google Scholar]
  73. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM. 73.  et al. 2012. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. PNAS 109:2394–99 [Google Scholar]
  74. Reamon-Buettner SM, Borlak J. 74.  2010. NKX2-5: an update on this hypermutable homeodomain protein and its role in human congenital heart disease (CHD). Hum. Mutat. 31:1185–94 [Google Scholar]
  75. Ashraf H, Pradhan L, Chang EI, Terada R, Ryan NJ. 75.  et al. 2014. A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation. Circ. Cardiovasc. Genet. 7:423–33 [Google Scholar]
  76. Ouyang P, Saarel E, Bai Y, Luo C, Lv Q. 76.  et al. 2011. A de novo mutation in NKX2.5 associated with atrial septal defects, ventricular noncompaction, syncope and sudden death. Clin. Chim. Acta 412:170–75 [Google Scholar]
  77. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH. 77.  et al. 2000. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 101:729–39 [Google Scholar]
  78. Svensson EC, Huggins GS, Lin H, Clendenin C, Jiang F. 78.  et al. 2000. A syndrome of tricuspid atresia in mice with a targeted mutation of the gene encoding Fog-2. Nat. Genet. 25:353–56 [Google Scholar]
  79. Zhou B, Ma Q, Kong SW, Hu Y, Campbell PH. 79.  et al. 2009. Fog2 is critical for cardiac function and maintenance of coronary vasculature in the adult mouse heart. J. Clin. Investig. 119:1462–76 [Google Scholar]
  80. Garnatz AS, Gao Z, Broman M, Martens S, Earley JU, Svensson EC. 80.  2014. FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development. Dev. Biol. 395:50–61 [Google Scholar]
  81. Healy S, Khan DH, Davie JR. 81.  2011. Gene expression regulation through 14-3-3 interactions with histones and HDACs. Discov. Med. 11:349–58 [Google Scholar]
  82. Kosaka Y, Cieslik KA, Li L, Lezin G, Maguire CT. 82.  et al. 2012. 14-3-3ε plays a role in cardiac ventricular compaction by regulating the cardiomyocyte cell cycle. Mol. Cell. Biol. 32:5089–102 [Google Scholar]
  83. Wang B, Weidenfeld J, Lu MM, Maika S, Kuziel WA. 83.  et al. 2004. Foxp1 regulates cardiac outflow tract, endocardial cushion morphogenesis and myocyte proliferation and maturation. Development 131:4477–87 [Google Scholar]
  84. Habas R, Kato Y, He X. 84.  2001. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–54 [Google Scholar]
  85. Li D, Hallett MA, Zhu W, Rubart M, Liu Y. 85.  et al. 2010. Dishevelled-associated activator of morphogenesis 1 (Daam1) is required for heart morphogenesis. Development 138:303–15 [Google Scholar]
  86. Mesaeli N, Nakamura K, Zvaritch E, Dickie P, Dziak E. 86.  et al. 1999. Calreticulin is essential for cardiac development. J. Cell Biol. 144:857–68 [Google Scholar]
  87. Caron KM, Smithies O. 87.  2001. Extreme hydrops fetalis and cardiovascular abnormalities in mice lacking a functional Adrenomedullin gene. PNAS 98:615–19 [Google Scholar]
  88. Dackor RT, Fritz-Six K, Dunworth WP, Gibbons CL, Smithies O, Caron KM. 88.  2006. Hydrops fetalis, cardiovascular defects, and embryonic lethality in mice lacking the calcitonin receptor-like receptor gene. Mol. Cell. Biol. 26:2511–18 [Google Scholar]
  89. Klein KR, Karpinich NO, Espenschied ST, Willcockson HH, Dunworth WP. 89.  et al. 2014. Decoy receptor CXCR7 modulates adrenomedullin-mediated cardiac and lymphatic vascular development. Dev. Cell 30:528–40 [Google Scholar]
  90. Dawson DK, Maceira AM, Raj VJ, Graham C, Pennell DJ, Kilner PJ. 90.  2011. Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ. Cardiovasc. Imaging 4:139–46 [Google Scholar]
  91. Tizon-Marcos H, de la Paz Ricapito M, Pibarot P, Bertrand O, Bibeau K. 91.  et al. 2014. Characteristics of trabeculated myocardium burden in young and apparently healthy adults. Am. J. Cardiol. 114:1094–99 [Google Scholar]
  92. Sasse-Klaassen S, Gerull B, Oechslin E, Jenni R, Thierfelder L. 92.  2003. Isolated noncompaction of the left ventricular myocardium in the adult is an autosomal dominant disorder in the majority of patients. Am. J. Med. Genet. A 119A:162–67 [Google Scholar]
  93. Caliskan K, Michels M, Geleijnse ML, van Domburg RT, van der Boon R. 93.  et al. 2012. Frequency of asymptomatic disease among family members with noncompaction cardiomyopathy. Am. J. Cardiol. 110:1512–17 [Google Scholar]
  94. Puckelwartz MJ, McNally EM. 94.  2014. Genetic profiling for risk reduction in human cardiovascular disease. Genes (Basel) 5:214–34 [Google Scholar]
  95. Golbus JR, Puckelwartz MJ, Dellefave-Castillo L, Fahrenbach JP, Nelakuditi V. 95.  et al. 2014. Targeted analysis of whole genome sequence data to diagnose genetic cardiomyopathy. Circ. Cardiovasc. Genet. 7:751–59 [Google Scholar]
  96. Zaidi S, Choi M, Wakimoto H, Ma L, Jiang J. 96.  et al. 2013. De novo mutations in histone-modifying genes in congenital heart disease. Nature 498:220–23 [Google Scholar]
  97. Hoedemaekers YM, Caliskan K, Majoor-Krakauer D, van de Laar I, Michels M. 97.  et al. 2007. Cardiac β-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur. Heart J. 28:2732–37 [Google Scholar]
  98. Budde BS, Binner P, Waldmuller S, Hohne W, Blankenfeldt W. 98.  et al. 2007. Noncompaction of the ventricular myocardium is associated with a de novo mutation in the β-myosin heavy chain gene. PLOS ONE 2:e1362 [Google Scholar]
  99. Klaassen S, Probst S, Oechslin E, Gerull B, Krings G. 99.  et al. 2008. Mutations in sarcomere protein genes in left ventricular noncompaction. Circulation 117:2893–901 [Google Scholar]
  100. Dellefave LM, Pytel P, Mewborn S, Mora B, Guris DL. 100.  et al. 2009. Sarcomere mutations in cardiomyopathy with left ventricular hypertrabeculation. Circ. Cardiovasc. Genet. 2:442–49 [Google Scholar]
  101. Basu R, Hazra S, Shanks M, Paterson DI, Oudit GY. 101.  2014. Novel mutation in exon 14 of the sarcomere gene MYH7 in familial left ventricular noncompaction with bicuspid aortic valve. Circ. Heart Fail. 7:1059–62 [Google Scholar]
  102. Finsterer J, Stollberger C, Brandau O, Laccone F, Bichler K, Laing NG. 102.  2014. Novel MYH7 mutation associated with mild myopathy but life-threatening ventricular arrhythmias and noncompaction. Int. J. Cardiol. 173:532–35 [Google Scholar]
  103. Hirono K, Hata Y, Ibuki K, Yoshimura N. 103.  2014. Familial Ebstein's anomaly, left ventricular noncompaction, and ventricular septal defect associated with an MYH7 mutation. J. Thorac. Cardiovasc. Surg. 148:e223–26 [Google Scholar]
  104. Nomura Y, Momoi N, Hirono K, Hata Y, Takasaki A. 104.  et al. 2015. A novel MYH7 gene mutation in a fetus with left ventricular noncompaction. Can. J. Cardiol. 31:103 e1–3 [Google Scholar]
  105. Yang J, Zhu M, Wang Y, Hou X, Wu H. 105.  et al. 2015. Whole-exome sequencing identify a new mutation of MYH7 in a Chinese family with left ventricular noncompaction. Gene 558:138–42 [Google Scholar]
  106. Arad M, Penas-Lado M, Monserrat L, Maron BJ, Sherrid M. 106.  et al. 2005. Gene mutations in apical hypertrophic cardiomyopathy. Circulation 112:2805–11 [Google Scholar]
  107. Stelzer JE, Dunning SB, Moss RL. 107.  2006. Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ. Res. 98:1212–18 [Google Scholar]
  108. Probst S, Oechslin E, Schuler P, Greutmann M, Boye P. 108.  et al. 2011. Sarcomere gene mutations in isolated left ventricular noncompaction cardiomyopathy do not predict clinical phenotype. Circ. Cardiovasc. Genet. 4:367–74 [Google Scholar]
  109. Schaefer E, Helms P, Marcellin L, Desprez P, Billaud P. 109.  et al. 2014. Next-generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene. Eur. J. Med. Genet. 57:129–32 [Google Scholar]
  110. Wessels MW, Herkert JC, Frohn-Mulder IM, Dalinghaus M, van den Wijngaard A. 110.  et al. 2014. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects. Eur. J. Hum. Genet. 23:922–28 [Google Scholar]
  111. Zahka K, Kalidas K, Simpson MA, Cross H, Keller BB. 111.  et al. 2008. Homozygous mutation of MYBPC3 associated with severe infantile hypertrophic cardiomyopathy at high frequency among the Amish.. Heart 94:1326–30 [Google Scholar]
  112. McConnell BK, Jones KA, Fatkin D, Arroyo LH, Lee RT. 112.  et al. 1999. Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J. Clin. Investig. 104:1235–44 [Google Scholar]
  113. Monserrat L, Hermida-Prieto M, Fernandez X, Rodriguez I, Dumont C. 113.  et al. 2007. Mutation in the alpha-cardiac actin gene associated with apical hypertrophic cardiomyopathy, left ventricular non-compaction, and septal defects. Eur. Heart J. 28:1953–61 [Google Scholar]
  114. Luedde M, Ehlermann P, Weichenhan D, Will R, Zeller R. 114.  et al. 2010. Severe familial left ventricular non-compaction cardiomyopathy due to a novel troponin T (TNNT2) mutation. Cardiovasc. Res. 86:452–60 [Google Scholar]
  115. Bagnall RD, Molloy LK, Kalman JM, Semsarian C. 115.  2014. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med. Genet. 15:99 [Google Scholar]
  116. Mogensen J, Murphy RT, Shaw T, Bahl A, Redwood C. 116.  et al. 2004. Severe disease expression of cardiac troponin C and T mutations in patients with idiopathic dilated cardiomyopathy. J. Am. Coll. Cardiol. 44:2033–40 [Google Scholar]
  117. Liu Z, Li W, Ma X, Ding N, Spallotta F. 117.  et al. 2014. Essential role of the zinc finger transcription factor Casz1 for mammalian cardiac morphogenesis and development. J. Biol. Chem. 289:29801–16 [Google Scholar]
  118. Xi Y, Ai T, De Lange E, Li Z, Wu G. 118.  et al. 2012. Loss of function of hNav1.5 by a ZASP1 mutation associated with intraventricular conduction disturbances in left ventricular noncompaction. Circ. Arrhythm. Electrophysiol. 5:1017–26 [Google Scholar]
  119. Vatta M, Mohapatra B, Jimenez S, Sanchez X, Faulkner G. 119.  et al. 2003. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 42:2014–27 [Google Scholar]
  120. Zhou Q, Chu PH, Huang C, Cheng CF, Martone ME. 120.  et al. 2001. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol. 155:605–12 [Google Scholar]
  121. Ichida F, Tsubata S, Bowles KR, Haneda N, Uese K. 121.  et al. 2001. Novel gene mutations in patients with left ventricular noncompaction or Barth syndrome. Circulation 103:1256–63 [Google Scholar]
  122. Kenton AB, Sanchez X, Coveler KJ, Makar KA, Jimenez S. 122.  et al. 2004. Isolated left ventricular noncompaction is rarely caused by mutations in G4.5, alpha-dystrobrevin and FK Binding Protein-12. Mol. Genet. Metab. 82:162–66 [Google Scholar]
  123. Phoon CK, Acehan D, Schlame M, Stokes DL, Edelman-Novemsky I. 123.  et al. 2012. Tafazzin knockdown in mice leads to a developmental cardiomyopathy with early diastolic dysfunction preceding myocardial noncompaction. J. Am. Heart Assoc. 1jah3–e000455
  124. Milano A, Vermeer AM, Lodder EM, Barc J, Verkerk AO. 124.  et al. 2014. HCN4 mutations in multiple families with bradycardia and left ventricular noncompaction cardiomyopathy.. J. Am. Coll. Cardiol. 64:745–56 [Google Scholar]
  125. Schweizer PA, Schroter J, Greiner S, Haas J, Yampolsky P. 125.  et al. 2014. The symptom complex of familial sinus node dysfunction and myocardial noncompaction is associated with mutations in the HCN4 channel. J. Am. Coll. Cardiol. 64:757–67 [Google Scholar]
  126. Carboni N, Politano L, Floris M, Mateddu A, Solla E. 126.  et al. 2013. Overlapping syndromes in laminopathies: a meta-analysis of the reported literature. Acta Myol. 32:7–17 [Google Scholar]
  127. Bonne G, Quijano-Roy S. 127.  2013. Emery-Dreifuss muscular dystrophy, laminopathies, and other nuclear envelopathies. Handb. Clin. Neurol. 113:1367–76 [Google Scholar]
  128. Mewborn SK, Puckelwartz MJ, Abuisneineh F, Fahrenbach JP, Zhang Y. 128.  et al. 2010. Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLOS ONE 5:e14342 [Google Scholar]
  129. Hermida-Prieto M, Monserrat L, Castro-Beiras A, Laredo R, Soler R. 129.  et al. 2004. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am. J. Cardiol. 94:50–54 [Google Scholar]
  130. van Berlo JH, de Voogt WG, van der Kooi AJ, van Tintelen JP, Bonne G. 130.  et al. 2005. Meta-analysis of clinical characteristics of 299 carriers of LMNA gene mutations: Do lamin A/C mutations portend a high risk of sudden death?. J. Mol. Med. (Berl.) 83:79–83 [Google Scholar]
  131. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM. 131.  et al. 2010. A map of human genome variation from population-scale sequencing. Nature 467:1061–73 [Google Scholar]
  132. Tennessen JA, Bigham AW, O'Connor TD, Fu W, Kenny EE. 132.  et al. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337:64–69 [Google Scholar]
  133. Chang CP, Bruneau BG. 133.  2012. Epigenetics and cardiovascular development. Annu. Rev. Physiol. 74:41–68 [Google Scholar]
  134. Shirato H, Ogawa S, Nakajima K, Inagawa M, Kojima M. 134.  et al. 2009. A jumonji (Jarid2) protein complex represses cyclin D1 expression by methylation of histone H3-K9. J. Biol. Chem. 284:733–39 [Google Scholar]
  135. Lee Y, Song AJ, Baker R, Micales B, Conway SJ, Lyons GE. 135.  2000. Jumonji, a nuclear protein that is necessary for normal heart development. Circ. Res. 86:932–38 [Google Scholar]
  136. Toyoda M, Shirato H, Nakajima K, Kojima M, Takahashi M. 136.  et al. 2003. jumonji downregulates cardiac cell proliferation by repressing cyclin D1 expression. Dev. Cell 5:85–97 [Google Scholar]
  137. Mysliwiec MR, Bresnick EH, Lee Y. 137.  2011. Endothelial Jarid2/Jumonji is required for normal cardiac development and proper Notch1 expression. J. Biol. Chem. 286:17193–204 [Google Scholar]
  138. Wang X, Haswell JR, Roberts CW. 138.  2014. Molecular pathways: SWI/SNF (BAF) complexes are frequently mutated in cancer—mechanisms and potential therapeutic insights. Clin. Cancer Res. 20:21–27 [Google Scholar]
/content/journals/10.1146/annurev-pathol-012615-044336
Loading
/content/journals/10.1146/annurev-pathol-012615-044336
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error