1932

Abstract

Resistance to anticancer drugs is a complex process that results from alterations in drug targets; development of alternative pathways for growth activation; changes in cellular pharmacology, including increased drug efflux; regulatory changes that alter differentiation pathways or pathways for response to environmental adversity; and/or changes in the local physiology of the cancer, such as blood supply, tissue hydrodynamics, behavior of neighboring cells, and immune system response. All of these specific mechanisms are facilitated by the intrinsic hallmarks of cancer, such as tumor cell heterogeneity, redundancy of growth-promoting pathways, increased mutation rate and/or epigenetic alterations, and the dynamic variation of tumor behavior in time and space. Understanding the relative contribution of each of these factors is further complicated by the lack of adequate in vitro models that mimic clinical cancers. Several strategies to use current knowledge of drug resistance to improve treatment of cancer are suggested.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010715-103111
2016-01-06
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/56/1/annurev-pharmtox-010715-103111.html?itemId=/content/journals/10.1146/annurev-pharmtox-010715-103111&mimeType=html&fmt=ahah

Literature Cited

  1. Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan MT. 1.  1984. Nitrogen mustard therapy. Use of methyl-bis(beta-chloroethyl)amine hydrochloride and tris(beta-chloroethyl)amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. JAMA 251:2255–61 [Google Scholar]
  2. Gottesman MM. 2.  2002. Mechanisms of cancer drug resistance. Annu. Rev. Med. 53:615–27 [Google Scholar]
  3. Borst P, Jonkers J, Rottenberg S. 3.  2007. What makes tumors multidrug resistant?. Cell Cycle 6:2782–87 [Google Scholar]
  4. Rabin MS, Gottesman MM. 4.  1979. High frequency of mutation to tubercidin resistance in CHO cells. Somatic Cell Genet. 5:571–83 [Google Scholar]
  5. McDermott M, Eustace AJ, Busschots S, Breen L, Crown J. 5.  et al. 2014. In vitro development of chemotherapy and targeted therapy drug-resistant cancer cell lines: a practical guide with case studies. Front. Oncol. 4:40 [Google Scholar]
  6. Gottesman MM, Fojo T, Bates SE. 6.  2002. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat. Rev. Cancer 2:48–58 [Google Scholar]
  7. Shaffer BC, Gillet JP, Patel C, Baer MR, Bates SE, Gottesman MM. 7.  2012. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist. Updat. 15:62–69 [Google Scholar]
  8. Hanahan D, Weinberg RA. 8.  2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  9. Turtoi A, Blomme A, Castronovo V. 9.  2015. Intratumoral heterogeneity and consequences for targeted therapies. Bull. Cancer 102:17–23 [Google Scholar]
  10. Kemper K, de Goeje PL, Peeper DS, van Amerongen R. 10.  2014. Phenotype switching: tumor cell plasticity as a resistance mechanism and target for therapy. Cancer Res. 74:5937–41 [Google Scholar]
  11. Dean M, Fojo T, Bates S. 11.  2005. Tumour stem cells and drug resistance. Nat. Rev. Cancer 5:275–84 [Google Scholar]
  12. Jain RK. 12.  1988. Determinants of tumor blood flow: a review. Cancer Res. 48:2641–58 [Google Scholar]
  13. Minchinton AI, Tannock IF. 13.  2006. Drug penetration in solid tumours. Nat. Rev. Cancer 6:583–92 [Google Scholar]
  14. Flach EH, Rebecca VW, Herlyn M, Smalley KS, Anderson AR. 14.  2011. Fibroblasts contribute to melanoma tumor growth and drug resistance. Mol. Pharm. 8:2039–49 [Google Scholar]
  15. Shchors K, Nozawa H, Xu J, Rostker F, Swigart-Brown L. 15.  et al. 2013. Increased invasiveness of MMP-9-deficient tumors in two mouse models of neuroendocrine tumorigenesis. Oncogene 32:502–13 [Google Scholar]
  16. Straussman R, Morikawa T, Shee K, Barzily-Rokni M, Qian ZR. 16.  et al. 2012. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 487:500–4 [Google Scholar]
  17. Sun Y, Campisi J, Higano C, Beer TM, Porter P. 17.  et al. 2012. Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat. Med. 18:1359–68 [Google Scholar]
  18. Makkouk A, Weiner GJ. 18.  2015. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res. 75:5–10 [Google Scholar]
  19. van Beijnum JR, Nowak-Sliwinska P, Huijbers EJM, Thijssen VL, Griffioen AW. 19.  2015. The great escape; the hallmarks of resistance to antiangiogenic therapy. Pharmacol. Rev. 67:441–61 [Google Scholar]
  20. Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X. 20.  et al. 2014. Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 346:256–59 [Google Scholar]
  21. Baccarani M, Castagnetti F, Gugliotta G, Palandri F, Rosti G. 21.  2014. Definition and treatment of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia. Expert Rev. Hematol. 7:397–406 [Google Scholar]
  22. Yang K, Fu LW. 22.  2015. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: a review. Crit. Rev. Oncol. Hematol. 93:277–92 [Google Scholar]
  23. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E. 23.  et al. 2001. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med. 344:1031–37 [Google Scholar]
  24. Galaverna F, Ghiggi C, Guolo F, Beltrami G, Dellepiane C. 24.  et al. 2013. Management of early stage chronic myeloid leukemia: state-of-the-art approach and future perspectives. Curr. Cancer Drug Targets 13:749–54 [Google Scholar]
  25. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW. 25.  et al. 2005. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–41 [Google Scholar]
  26. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ. 26.  et al. 2012. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N. Engl. J. Med. 367:2075–88 [Google Scholar]
  27. Dohse M, Scharenberg C, Shukla S, Robey RW, Volkmann T. 27.  et al. 2010. Comparison of ATP-binding cassette transporter interactions with the tyrosine kinase inhibitors imatinib, nilotinib, and dasatinib. Drug Metab. Dispos. 38:1371–80 [Google Scholar]
  28. Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C. 28.  et al. 2011. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature 480:387–90 [Google Scholar]
  29. Davies H, Bignell GR, Cox C, Stephens P, Edkins S. 29.  et al. 2002. Mutations of the BRAF gene in human cancer. Nature 417:949–54 [Google Scholar]
  30. Nazarian R, Shi H, Wang Q, Kong X, Koya RC. 30.  et al. 2010. Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–77 [Google Scholar]
  31. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L. 31.  et al. 2010. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–72 [Google Scholar]
  32. Johannessen CM, Johnson LA, Piccioni F, Townes A, Frederick DT. 32.  et al. 2013. A melanocyte lineage program confers resistance to MAP kinase pathway inhibition. Nature 504:138–42 [Google Scholar]
  33. Larkin J, Ascierto PA, Dréno B, Atkinson V, Liszkay G. 33.  et al. 2014. Combined vemurafenib and cobimetinib in BRAF-mutated melanoma. N. Engl. J. Med. 371:1867–76 [Google Scholar]
  34. Long GV, Stroyakovskiy D, Gogas H, Levchenko E, de Braud F. 34.  et al. 2014. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 371:1877–88 [Google Scholar]
  35. Robert C, Karaszewska B, Schachter J, Rutkowski P, Mackiewicz A. 35.  et al. 2015. Improved overall survival in melanoma with combined dabrafenib and trametinib. N. Engl. J. Med. 372:30–39 [Google Scholar]
  36. Hirsch FR, Varella-Garcia M, Bunn PA Jr., Franklin WA, Dziadziuszko R. 36.  et al. 2006. Molecular predictors of outcome with gefitinib in a Phase III placebo-controlled study in advanced non-small-cell lung cancer. J. Clin. Oncol. 24:5034–42 [Google Scholar]
  37. Spaans JN, Goss GD. 37.  2014. Drug resistance to molecular targeted therapy and its consequences for treatment decisions in non-small-cell lung cancer. Front. Oncol. 4:190 [Google Scholar]
  38. Zhu CQ, da Cunha Santos G, Ding K, Sakurada A, Cutz JC. 38.  et al. 2008. Role of KRAS and EGFR as biomarkers of response to erlotinib in National Cancer Institute of Canada Clinical Trials Group Study BR.21. J. Clin. Oncol. 26:4268–75 [Google Scholar]
  39. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y. 39.  et al. 2007. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–66 [Google Scholar]
  40. Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J. 40.  et al. 2010. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N. Engl. J. Med. 363:1734–39 [Google Scholar]
  41. Rosell R, Karachaliou N, Wolf J, Ou SH. 41.  2014. ALK and ROS1 non-small-cell lung cancer: two molecular subgroups sensitive to targeted therapy. Lancet Respir. Med. 2:966–68 [Google Scholar]
  42. Lovly CM, McDonald NT, Chen H, Ortiz-Cuaran S, Heukamp LC. 42.  et al. 2014. Rationale for co-targeting IGF-1R and ALK in ALK fusion–positive lung cancer. Nat. Med. 20:1027–34 [Google Scholar]
  43. Shaw AT, Engelman JA. 43.  2014. Ceritinib in ALK-rearranged non–small-cell lung cancer. N. Engl. J. Med. 370:2537–39 [Google Scholar]
  44. Rader RA. 44.  2008. (Re)defining biopharmaceutical. Nat. Biotechnol. 26:743–51 [Google Scholar]
  45. Newman DJ, Cragg GM. 45.  2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:311–35 [Google Scholar]
  46. Juliano RL, Ling V. 46.  1976. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–62 [Google Scholar]
  47. Ling V, Thompson LH. 47.  1974. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J. Cell Physiol. 83:103–16 [Google Scholar]
  48. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. 48.  1981. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:1967–72 [Google Scholar]
  49. Gillet JP, Varma S, Gottesman MM. 49.  2013. The clinical relevance of cancer cell lines. J. Natl. Cancer Inst. 105:452–58 [Google Scholar]
  50. Annereau JP, Szakacs G, Tucker CJ, Arciello A, Cardarelli C. 50.  et al. 2004. Analysis of ATP-binding cassette transporter expression in drug-selected cell lines by a microarray dedicated to multidrug resistance. Mol. Pharmacol. 66:1397–405 [Google Scholar]
  51. Gillet JP, Efferth T, Steinbach D, Hamels J, de Longueville F. 51.  et al. 2004. Microarray-based detection of multidrug resistance in human tumor cells by expression profiling of ATP-binding cassette transporter genes. Cancer Res. 64:8987–93 [Google Scholar]
  52. Szakacs G, Annereau JP, Lababidi S, Shankavaram U, Arciello A. 52.  et al. 2004. Predicting drug sensitivity and resistance: profiling ABC transporter genes in cancer cells. Cancer Cell 6:129–37 [Google Scholar]
  53. Szakacs G, Hall MD, Gottesman MM, Boumendjel A, Kachadourian R. 53.  et al. 2014. Targeting the Achilles heel of multidrug-resistant cancer by exploiting the fitness cost of resistance. Chem. Rev. 114:5753–74 [Google Scholar]
  54. Gillet JP, Gottesman MM. 54.  2010. Mechanisms of multidrug resistance in cancer. Methods Mol. Biol. 596:47–76 [Google Scholar]
  55. Orina JN, Calcagno AM, Wu CP, Varma S, Shih J. 55.  et al. 2009. Evaluation of current methods used to analyze the expression profiles of ATP-binding cassette transporters yields an improved drug-discovery database. Mol. Cancer Ther. 8:2057–66 [Google Scholar]
  56. Gillet JP, Calcagno AM, Varma S, Davidson B, Bunkholt Elstrand M. 56.  et al. 2012. Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin. Cancer Res. 18:3197–206 [Google Scholar]
  57. Gillet JP, Wang J, Calcagno AM, Green LJ, Varma S. 57.  et al. 2011. Clinical relevance of multidrug resistance gene expression in ovarian serous carcinoma effusions. Mol. Pharm. 8:2080–88 [Google Scholar]
  58. Gillet JP, Calcagno AM, Varma S, Marino M, Green LJ. 58.  et al. 2011. Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. PNAS 108:18708–13 [Google Scholar]
  59. Pluchino KM, Hall MD, Goldsborough AS, Callaghan R, Gottesman MM. 59.  2012. Collateral sensitivity as a strategy against cancer multidrug resistance. Drug Resist. Updat. 15:98–105 [Google Scholar]
  60. Imamovic L, Sommer MO. 60.  2013. Use of collateral sensitivity networks to design drug cycling protocols that avoid resistance development. Sci. Transl. Med. 5:204ra132 [Google Scholar]
  61. Szybalski W, Bryson V. 61.  1952. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64:489–99 [Google Scholar]
  62. Koster R, van Vugt MA, Timmer-Bosscha H, Gietema JA, de Jong S. 62.  2013. Unravelling mechanisms of cisplatin sensitivity and resistance in testicular cancer. Expert Rev. Mol. Med. 15:e12 [Google Scholar]
  63. Eastman A. 63.  1999. The mechanism of action of cisplatin: from adducts to apoptosis. Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug B Lippert 111–34 Zurich: Helvetica Chim. Acta [Google Scholar]
  64. Johnson SW, Shen D, Pastan I, Gottesman MM, Hamilton TC. 64.  1996. Cross-resistance, cisplatin accumulation, and platinum-DNA adduct formation and removal in cisplatin-sensitive and -resistant human hepatoma cell lines. Exp. Cell Res. 226:133–39 [Google Scholar]
  65. Shen DW, Akiyama S, Schoenlein P, Pastan I, Gottesman MM. 65.  1995. Characterisation of high-level cisplatin-resistant cell lines established from a human hepatoma cell line and human KB adenocarcinoma cells: cross-resistance and protein changes. Br. J. Cancer 71:676–83 [Google Scholar]
  66. Gately DP, Howell SB. 66.  1993. Cellular accumulation of the anticancer agent cisplatin: a review. Br. J. Cancer 67:1171–76 [Google Scholar]
  67. Hall MD, Okabe M, Shen DW, Liang XJ, Gottesman MM. 67.  2008. The role of cellular accumulation in determining sensitivity to platinum-based chemotherapy. Annu. Rev. Pharmacol. Toxicol. 48:495–535 [Google Scholar]
  68. Andrews PA, Jones JA, Varki NM, Howell SB. 68.  1990. Rapid emergence of acquired cis-diamminedichloroplatinum(II) resistance in an in vivo model of human ovarian carcinoma. Cancer Commun. 2:93–100 [Google Scholar]
  69. Kim ES, Lee JJ, He G, Chow CW, Fujimoto J. 69.  et al. 2012. Tissue platinum concentration and tumor response in non-small-cell lung cancer. J. Clin. Oncol. 30:3345–52 [Google Scholar]
  70. Shani J, Bertram J, Russell C, Dahalan R, Chen DC. 70.  et al. 1989. Noninvasive monitoring of drug biodistribution and metabolism: studies with intraarterial Pt-195m-cisplatin in humans. Cancer Res. 49:1877–81 [Google Scholar]
  71. Sathekge M, Wagener J, Smith SV, Soni N, Marjanovic-Painter B. 71.  et al. 2013. Biodistribution and dosimetry of 195mPt-cisplatin in normal volunteers. Imaging agent for single photon emission computed tomography. Nuklearmedizin 52:222–27 [Google Scholar]
  72. Pastan I, Gottesman MM, Ueda K, Lovelace E, Rutherford AV, Willingham MC. 72.  1988. A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells. PNAS 85:4486–90 [Google Scholar]
  73. Mickisch GH, Merlino GT, Galski H, Gottesman MM, Pastan I. 73.  1991. Transgenic mice that express the human multidrug-resistance gene in bone marrow enable a rapid identification of agents that reverse drug resistance. PNAS 88:547–51 [Google Scholar]
  74. Howell SB, Safaei R, Larson CA, Sailor MJ. 74.  2010. Copper transporters and the cellular pharmacology of the platinum-containing cancer drugs. Mol. Pharmacol. 77:887–94 [Google Scholar]
  75. Kalayda GV, Wagner CH, Jaehde U. 75.  2012. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J. Inorg. Biochem. 116:1–10 [Google Scholar]
  76. Crider SE, Holbrook RJ, Franz KJ. 76.  2010. Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1. Metallomics 2:74–83 [Google Scholar]
  77. Ivy KD, Kaplan JH. 77.  2013. A re-evaluation of the role of hCTR1, the human high-affinity copper transporter, in platinum-drug entry into human cells. Mol. Pharmacol. 83:1237–46 [Google Scholar]
  78. Kim ES, Tang X, Peterson DR, Kilari D, Chow CW. 78.  et al. 2014. Copper transporter CTR1 expression and tissue platinum concentration in non-small cell lung cancer. Lung Cancer 85:88–93 [Google Scholar]
  79. Fu S, Naing A, Fu C, Kuo MT, Kurzrock R. 79.  2012. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther. 11:1221–25 [Google Scholar]
  80. Chauhan SS, Liang XJ, Su AW, Pai-Panandiker A, Shen DW. 80.  et al. 2003. Reduced endocytosis and altered lysosome function in cisplatin-resistant cell lines. Br. J. Cancer 88:1327–34 [Google Scholar]
  81. Liang XJ, Shen DW, Garfield S, Gottesman MM. 81.  2003. Mislocalization of membrane proteins associated with multidrug resistance in cisplatin-resistant cancer cell lines. Cancer Res. 63:5909–16 [Google Scholar]
  82. Liang XJ, Mukherjee S, Shen DW, Maxfield FR, Gottesman MM. 82.  2006. Endocytic recycling compartments altered in cisplatin-resistant cancer cells. Cancer Res. 66:2346–53 [Google Scholar]
  83. Shen DW, Su A, Liang XJ, Pai-Panandiker A, Gottesman MM. 83.  2004. Reduced expression of small GTPases and hypermethylation of the folate binding protein gene in cisplatin-resistant cells. Br. J. Cancer 91:270–76 [Google Scholar]
  84. Shen DW, Pouliot LM, Gillet JP, Ma W, Johnson AC. 84.  et al. 2012. The transcription factor GCF2 is an upstream repressor of the small GTPAse RhoA, regulating membrane protein trafficking, sensitivity to doxorubicin, and resistance to cisplatin. Mol. Pharm. 9:1822–33 [Google Scholar]
  85. Calvert P, Yao KS, Hamilton TC, O'Dwyer PJ. 85.  1998. Clinical studies of reversal of drug resistance based on glutathione. Chem. Biol. Interact. 111–112:213–24 [Google Scholar]
  86. Godwin AK, Meister A, O'Dwyer PJ, Huang CS, Hamilton TC, Anderson ME. 86.  1992. High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. PNAS 89:3070–74 [Google Scholar]
  87. Ishikawa T, Wright CD, Ishizuka H. 87.  1994. GS-X pump is functionally overexpressed in cis-diamminedichloroplatinum (II)-resistant human leukemia HL-60 cells and down-regulated by cell differentiation. J. Biol. Chem. 269:29085–93 [Google Scholar]
  88. Peklak-Scott C, Smitherman PK, Townsend AJ, Morrow CS. 88.  2008. Role of glutathione S-transferase P1-1 in the cellular detoxification of cisplatin. Mol. Cancer Ther. 7:3247–55 [Google Scholar]
  89. Gamcsik MP, Kasibhatla MS, Teeter SD, Colvin OM. 89.  2012. Glutathione levels in human tumors. Biomarkers 17:671–91 [Google Scholar]
  90. Tanner B, Hengstler JG, Dietrich B, Henrich M, Steinberg P. 90.  et al. 1997. Glutathione, glutathione S-transferase α and π, and aldehyde dehydrogenase content in relationship to drug resistance in ovarian cancer. Gynecol. Oncol. 65:54–62 [Google Scholar]
  91. Kigawa J, Minagawa Y, Kanamori Y, Itamochi H, Cheng X. 91.  et al. 1998. Glutathione concentration may be a useful predictor of response to second-line chemotherapy in patients with ovarian cancer. Cancer 82:697–702 [Google Scholar]
  92. Britten RA, Green JA, Warenius HM. 92.  1992. Cellular glutathione (GSH) and glutathione S-transferase (GST) activity in human ovarian tumor biopsies following exposure to alkylating agents. Int. J. Radiat. Oncol. Biol. Phys. 24:527–31 [Google Scholar]
  93. Hamilton TC, Winker MA, Louie KG, Batist G, Behrens BC. 93.  et al. 1985. Augmentation of adriamycin, melphalan, and cisplatin cytotoxicity in drug-resistant and -sensitive human ovarian carcinoma cell lines by buthionine sulfoximine mediated glutathione depletion. Biochem. Pharmacol. 34:2583–86 [Google Scholar]
  94. Ahmad S. 94.  2010. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem. Biodivers. 7:543–66 [Google Scholar]
  95. Pouliot LM, Chen YC, Bai J, Guha R, Martin SE. 95.  et al. 2012. Cisplatin sensitivity mediated by WEE1 and CHK1 is mediated by miR-155 and the miR-15 family. Cancer Res. 72:5945–55 [Google Scholar]
  96. Bellmunt J, Pons F, Orsola A. 96.  2013. Molecular determinants of response to cisplatin-based neoadjuvant chemotherapy. Curr. Opin. Urol. 23:466–71 [Google Scholar]
  97. Wang D, Lippard SJ. 97.  2005. Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4:307–20 [Google Scholar]
  98. Dhillon KK, Swisher EM, Taniguchi T. 98.  2011. Secondary mutations of BRCA1/2 and drug resistance. Cancer Sci 102:663–69 [Google Scholar]
  99. Sakai W, Swisher EM, Jacquemont C, Chandramohan KV, Couch FJ. 99.  et al. 2009. Functional restoration of BRCA2 protein by secondary BRCA2 mutations in BRCA2-mutated ovarian carcinoma. Cancer Res. 69:6381–86 [Google Scholar]
  100. Rottenberg S, Nygren AO, Pajic M, van Leeuwen FW, van der Heijden I. 100.  et al. 2007. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. PNAS 104:12117–22 [Google Scholar]
  101. Rottenberg S, Vollebergh MA, de Hoon B, de Ronde J, Schouten PC. 101.  et al. 2012. Impact of intertumoral heterogeneity on predicting chemotherapy response of BRCA1-deficient mammary tumors. Cancer Res. 72:2350–61 [Google Scholar]
  102. Lavi O, Greene JM, Levy D, Gottesman MM. 102.  2014. Simplifying the complexity of resistance heterogeneity in metastasis. Trends Mol. Med. 20:129–36 [Google Scholar]
  103. Rejniak KA, Anderson AR. 103.  2011. Hybrid models of tumor growth. Wiley Interdiscip. Rev. Syst. Biol. Med. 3:115–25 [Google Scholar]
  104. Benzekry S, Lamont C, Beheshti A, Tracz A, Ebos JM. 104.  et al. 2014. Classical mathematical models for description and prediction of experimental tumor growth. PLOS Comput. Biol. 10:e1003800 [Google Scholar]
  105. Beerenwinkel N, Schwarz RF, Gerstung M, Markowetz F. 105.  2015. Cancer evolution: mathematical models and computational inference. Syst. Biol. 64:e1–25 [Google Scholar]
  106. Lavi O, Gottesman MM, Levy D. 106.  2012. The dynamics of drug resistance: a mathematical perspective. Drug Resist. Updat. 15:90–97 [Google Scholar]
  107. Archetti M, Ferraro DA, Christofori G. 107.  2015. Heterogeneity for IGF-II production maintained by public goods dynamics in neuroendocrine pancreatic cancer. PNAS 112:1833–38 [Google Scholar]
  108. Lavi O. 108.  2015. Redundancy: a critical obstacle to improving cancer therapy. Cancer Res. 75:808–12 [Google Scholar]
  109. Robertson-Tessi M, Anderson AR. 109.  2015. Big Bang and context-driven collapse. Nat. Genet. 47:196–97 [Google Scholar]
  110. Lavi O, Greene JM, Levy D, Gottesman MM. 110.  2013. The role of cell density and intratumoral heterogeneity in multidrug resistance. Cancer Res. 73:7168–75 [Google Scholar]
  111. Bozic I, Allen B, Nowak MA. 111.  2012. Dynamics of targeted cancer therapy. Trends Mol. Med. 18:311–16 [Google Scholar]
  112. Komarova N. 112.  2006. Stochastic modeling of drug resistance in cancer. J. Theor. Biol. 239:351–66 [Google Scholar]
  113. Lorz A, Lorenzi T, Hochberg ME, Clairambault J, Perthame B. 113.  2013. Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies. ESAIM: Math. Model. Numer. Anal. 47:377–403 [Google Scholar]
  114. Komarova NL, Wodarz D. 114.  2005. Drug resistance in cancer: principles of emergence and prevention. PNAS 102:9714–19 [Google Scholar]
  115. Greene J, Lavi O, Gottesman MM, Levy D. 115.  2014. The impact of cell density and mutations in a model of multidrug resistance in solid tumors. Bull. Math. Biol. 76:627–53 [Google Scholar]
  116. Liu X, Ory V, Chapman S, Yuan H, Albanese C. 116.  et al. 2012. ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am. J. Pathol. 180:599–607 [Google Scholar]
  117. Jaeger AA, Das CK, Morgan NY, Pursley RH, McQueen PG. 117.  et al. 2013. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture. Biomaterials 34:8301–13 [Google Scholar]
  118. Butler EB, Zhao Y, Munoz-Pinedo C, Lu J, Tan M. 118.  2013. Stalling the engine of resistance: targeting cancer metabolism to overcome therapeutic resistance. Cancer Res. 73:2709–17 [Google Scholar]
  119. Mathews Griner LA, Guha R, Shinn P, Young RM, Keller JM. 119.  et al. 2014. High-throughput combinatorial screening identifies drugs that cooperate with ibrutinib to kill activated B-cell-like diffuse large B-cell lymphoma cells. PNAS 111:2349–54 [Google Scholar]
  120. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ. 120.  et al. 2014. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science 346:1480–86 [Google Scholar]
  121. Fojo T. 121.  2007. Commentary: novel therapies for cancer: why dirty might be better. Oncologist 13:277–83 [Google Scholar]
  122. Harvey AL, Edrada-Ebel R, Quinn RJ. 122.  2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14:111–29 [Google Scholar]
  123. Jiang H, Pritchard JR, Williams RT, Lauffenburger DA, Hemann MT. 123.  2011. A mammalian functional-genetic approach to characterizing cancer therapeutics. Nat. Chem. Biol. 7:92–100 [Google Scholar]
  124. Milshteyn A, Schneider JS, Brady SF. 124.  2014. Mining the metabiome: identifying novel natural products from microbial communities. Chem. Biol. 21:1211–23 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010715-103111
Loading
/content/journals/10.1146/annurev-pharmtox-010715-103111
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error