1932

Abstract

Cyclic nucleotide phosphodiesterases (PDEs) form an 11-member superfamily comprising 100 different isoforms that regulate the second messengers cyclic adenosine or guanosine 3′,5′-monophosphate (cAMP or cGMP). These PDE isoforms differ with respect to substrate selectivity and their localized control of cAMP and cGMP within nanodomains that target specific cellular pools and synthesis pathways for the cyclic nucleotides. Seven PDE family members are physiologically relevant to regulating cardiac function, disease remodeling of the heart, or both: PDE1 and PDE2, both dual-substrate (cAMP and cGMP) esterases; PDE3, PDE4, and PDE8, which principally hydrolyze cAMP; and PDE5A and PDE9A, which target cGMP. New insights regarding the different roles of PDEs in health and disease and their local signaling control are broadening the potential therapeutic utility for PDE-selective inhibitors. In this review, we discuss these PDEs, focusing on the different mechanisms by which they control cardiac function in health and disease by regulating intracellular nanodomains.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010716-104756
2017-01-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/57/1/annurev-pharmtox-010716-104756.html?itemId=/content/journals/10.1146/annurev-pharmtox-010716-104756&mimeType=html&fmt=ahah

Literature Cited

  1. Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. 1.  2014. Advances in targeting cyclic nucleotide phosphodiesterases. Nat. Rev. Drug Discov. 13:290–314 [Google Scholar]
  2. Francis SH, Blount MA, Corbin JD. 2.  2011. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev. 91:651–90 [Google Scholar]
  3. Bender AT, Beavo JA. 3.  2006. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev. 58:488–520 [Google Scholar]
  4. Ke H, Wang H. 4.  2007. Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr. Top. Med. Chem. 7:391–403 [Google Scholar]
  5. Card GL, England BP, Suzuki Y, Fong D, Powell B. 5.  et al. 2004. Structural basis for the activity of drugs that inhibit phosphodiesterases. Structure 12:2233–47 [Google Scholar]
  6. Meng F, Hou J, Shao Y-X, Wu P-Y, Huang M. 6.  et al. 2012. Structure-based discovery of highly selective phosphodiesterase-9A inhibitors and implications for inhibitor design. J. Med. Chem. 55:8549–58 [Google Scholar]
  7. Claffey MM, Helal CJ, Verhoest PR, Kang Z, Fors KS. 7.  et al. 2012. Application of structure-based drug design and parallel chemistry to identify selective, brain penetrant, in vivo active phosphodiesterase 9A inhibitors. J. Med. Chem. 55:9055–68 [Google Scholar]
  8. Reeves ML, Leigh BK, England PJ. 8.  1987. The identification of a new cyclic nucleotide phosphodiesterase activity in human and guinea-pig cardiac ventricle: implications for the mechanism of action of selective phosphodiesterase inhibitors. Biochem. J. 241:535–41 [Google Scholar]
  9. Conti M, Beavo J. 9.  2007. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu. Rev. Biochem. 76:481–511 [Google Scholar]
  10. Mattick P, Parrington J, Odia E, Simpson A, Collins T, Terrar D. 10.  2007. Ca2+-stimulated adenylyl cyclase isoform AC1 is preferentially expressed in guinea-pig sino-atrial node cells and modulates the If pacemaker current. J. Physiol. 582:1195–203 [Google Scholar]
  11. Zaccolo M. 11.  2009. cAMP signal transduction in the heart: understanding spatial control for the development of novel therapeutic strategies. Br. J. Pharmacol. 158:50–60 [Google Scholar]
  12. Ruiz-Hurtado G, Morel E, Domínguez-Rodríguez A, Llach A, Lezoualc'h F. 12.  et al. 2013. Epac in cardiac calcium signaling. J. Mol. Cell. Cardiol. 58:162–71 [Google Scholar]
  13. Mayr B, Montminy M. 13.  2001. Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat. Rev. Mol. Cell. Biol. 2:599–609 [Google Scholar]
  14. Lolicato M, Bucchi A, Arrigoni C, Zucca S, Nardini M. 14.  et al. 2014. Cyclic dinucleotides bind the C-linker of HCN4 to control channel cAMP responsiveness. Nat. Chem. Biol. 10:457–62 [Google Scholar]
  15. Baruscotti M, Bucchi A, Viscomi C, Mandelli G, Consalez G. 15.  et al. 2011. Deep bradycardia and heart block caused by inducible cardiac-specific knockout of the pacemaker channel gene Hcn4. PNAS 108:1705–10 [Google Scholar]
  16. Alig J, Marger L, Mesirca P, Ehmke H, Mangoni ME, Isbrandt D. 16.  2009. Control of heart rate by cAMP sensitivity of HCN channels. PNAS 106:12189–94 [Google Scholar]
  17. Liao Z, Lockhead D, Larson ED, Proenza C. 17.  2010. Phosphorylation and modulation of hyperpolarization-activated HCN4 channels by protein kinase A in the mouse sinoatrial node. J. Gen. Physiol. 136:247–58 [Google Scholar]
  18. Tsai EJ, Kass DA. 18.  2009. Cyclic GMP signaling in cardiovascular pathophysiology and therapeutics. Pharmacol. Ther. 122:216–38 [Google Scholar]
  19. Tsai EJ, Liu Y, Koitabashi N, Bedja D, Danner T. 19.  et al. 2012. Pressure-overload-induced subcellular relocalization/oxidation of soluble guanylyl cyclase in the heart modulates enzyme stimulation. Circ. Res. 110:295–303 [Google Scholar]
  20. Zabel U, Kleinschnitz C, Oh P, Nedvetsky P, Smolenski A. 20.  et al. 2002. Calcium-dependent membrane association sensitizes soluble guanylyl cyclase to nitric oxide. Nat. Cell Biol. 4:307–11 [Google Scholar]
  21. Balligand JL. 21.  2013. Beta3-adrenoreceptors in cardiovasular diseases: new roles for an “old” receptor. Curr. Drug Deliv. 10:64–66 [Google Scholar]
  22. Belge C, Hammond J, Dubois-Deruy E, Manoury B, Hamelet J. 22.  et al. 2014. Enhanced expression of β3-adrenoceptors in cardiac myocytes attenuates neurohormone-induced hypertrophic remodeling through nitric oxide synthase. Circulation 129:451–62 [Google Scholar]
  23. Lee DI, Vahebi S, Tocchetti CG, Barouch LA, Solaro RJ. 23.  et al. 2010. PDE5A suppression of acute β-adrenergic activation requires modulation of myocyte beta-3 signaling coupled to PKG-mediated troponin I phosphorylation. Basic Res. Cardiol. 105:337–47 [Google Scholar]
  24. Kinoshita H, Kuwahara K, Nishida M, Jian Z, Rong X. 24.  et al. 2010. Inhibition of TRPC6 channel activity contributes to the antihypertrophic effects of natriuretic peptides-guanylyl cyclase-A signaling in the heart. Circ. Res. 106:1849–60 [Google Scholar]
  25. Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M. 25.  et al. 2010. Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation: novel mechanism of cardiac stress modulation by PDE5 inhibition. J. Mol. Cell Cardiol. 48:713–24 [Google Scholar]
  26. Takimoto E, Koitabashi N, Hsu S, Ketner EA, Zhang M. 26.  et al. 2009. Regulator of G protein signaling 2 mediates cardiac compensation to pressure overload and antihypertrophic effects of PDE5 inhibition in mice. J. Clin. Investig. 119:408–20 [Google Scholar]
  27. Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M. 27.  et al. 2003. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat. Med. 9:1506–12 [Google Scholar]
  28. Tokudome T, Kishimoto I, Horio T, Arai Y, Schwenke DO. 28.  et al. 2008. Regulator of G-protein signaling subtype 4 mediates antihypertrophic effect of locally secreted natriuretic peptides in the heart. Circulation 117:2329–39 [Google Scholar]
  29. Layland J, Solaro RJ, Shah AM. 29.  2005. Regulation of cardiac contractile function by troponin I phosphorylation. Cardiovasc. Res. 66:12–21 [Google Scholar]
  30. Thoonen R, Giovanni S, Govindan S, Lee DI, Wang GR. 30.  et al. 2015. Molecular screen identifies cardiac myosin–binding protein-C as a protein kinase G-Iα substrate. Circ. Heart Fail. 8:1115–22 [Google Scholar]
  31. Corbin JD, Turko IV, Beasley A, Francis SH. 31.  2000. Phosphorylation of phosphodiesterase-5 by cyclic nucleotide-dependent protein kinase alters its catalytic and allosteric cGMP-binding activities. Eur. J. Biochem. 267:2760–67 [Google Scholar]
  32. Ranek MJ, Terpstra EJM, Li J, Kass DA, Wang X. 32.  2013. Protein kinase G positively regulates proteasome-mediated degradation of misfolded proteins. Circulation 128:365–76 [Google Scholar]
  33. Lee DI, Kass DA. 33.  2012. Phosphodiesterases and cyclic GMP regulation in heart muscle. Physiology 27:248–58 [Google Scholar]
  34. McConnachie G, Langeberg LK, Scott JD. 34.  2006. AKAP signaling complexes: getting to the heart of the matter. Trends Mol. Med. 12:317–23 [Google Scholar]
  35. Reger AS, Yang MP, Koide-Yoshida S, Guo E, Mehta S. 35.  et al. 2014. Crystal structure of the cGMP-dependent protein kinase II leucine zipper and Rab11b protein complex reveals molecular details of G-kinase-specific interactions. J. Biol. Chem. 289:25393–403 [Google Scholar]
  36. Kato M, Blanton R, Wang G-R, Judson TJ, Abe Y. 36.  et al. 2012. Direct binding and regulation of RhoA protein by cyclic GMP-dependent protein kinase Iα. J. Biol. Chem. 287:41342–51 [Google Scholar]
  37. Lee E, Hayes DB, Langsetmo K, Sundberg EJ, Tao TC. 37.  2007. Interactions between the leucine-zipper motif of cGMP-dependent protein kinase and the C-terminal region of the targeting subunit of myosin light chain phosphatase. J. Mol. Biol. 373:1198–212 [Google Scholar]
  38. Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE, Maier LS. 38.  et al. 2015. In vivo model with targeted cAMP biosensor reveals changes in receptor-microdomain communication in cardiac disease. Nat. Commun. 6:6965 [Google Scholar]
  39. Thunemann M, Wen L, Hillenbrand M, Vachaviolos A, Feil S. 39.  et al. 2013. Transgenic mice for cGMP imaging. Circ. Res. 113:365–71 [Google Scholar]
  40. Götz KR, Sprenger JU, Perera RK, Steinbrecher JH, Lehnart SE. 40.  et al. 2014. Transgenic mice for real-time visualization of cGMP in intact adult cardiomyocytes. Circ. Res. 114:1235–45 [Google Scholar]
  41. Perera RK, Sprenger JU, Steinbrecher JH, Hübscher D, Lehnart SE. 41.  et al. 2015. Microdomain switch of cGMP-regulated phosphodiesterases leads to ANP-induced augmentation of β-adrenoceptor-stimulated contractility in early cardiac hypertrophy. Circ. Res. 116:1304–11 [Google Scholar]
  42. Götz KR, Nikolaev VO. 42.  2013. Advances and techniques to measure cGMP in intact cardiomyocytes. Guanylate Cyclase and Cyclic GMP: Methods and Protocols T Krieg, R Lukowski 121–29 Totowa, NJ: Humana Press [Google Scholar]
  43. Niino Y, Hotta K, Oka K. 43.  2009. Simultaneous live cell imaging using dual FRET sensors with a single excitation light. PLOS ONE 4:e6036 [Google Scholar]
  44. Calamera G, Ulsund AH, Manfra O, Kim JJ, Kim C. 44.  et al. 2015. Construction of novel cGMP FRET-sensors based on PKG from Plasmodium falciparum. BMC Pharmacol. Toxicol. 16:A34 [Google Scholar]
  45. Nausch LWM, Ledoux J, Bonev AD, Nelson MT, Dostmann WR. 45.  2008. Differential patterning of cGMP in vascular smooth muscle cells revealed by single GFP-linked biosensors. PNAS 105:365–70 [Google Scholar]
  46. Lee DI, Zhu G, Sasaki T, Cho GS, Hamdani N. 46.  et al. 2015. Phosphodiesterase 9A controls nitric-oxide-independent cGMP and hypertrophic heart disease. Nature 519:472–76 [Google Scholar]
  47. Bhargava Y, Hampden-Smith K, Chachlaki K, Wood K, Vernon J. 47.  et al. 2013. Improved genetically-encoded, FlincG-type fluorescent biosensors for neural cGMP imaging. Front. Mol. Neurosci. 6:26 [Google Scholar]
  48. Di Benedetto G, Zoccarato A, Lissandron V, Terrin A, Li X. 48.  et al. 2008. Protein kinase A type I and type II define distinct intracellular signaling compartments. Circ. Res. 103:836–44 [Google Scholar]
  49. Stangherlin A, Gesellchen F, Zoccarato A, Terrin A, Fields LA. 49.  et al. 2011. cGMP signals modulate cAMP levels in a compartment-specific manner to regulate catecholamine-dependent signaling in cardiac myocytes. Circ. Res. 108:929–39 [Google Scholar]
  50. Sroubek J, McDonald TV. 50.  2011. Protein kinase A activity at the endoplasmic reticulum surface is responsible for augmentation of human ether-a-go-go-related gene product (HERG). J. Biol. Chem. 286:21927–36 [Google Scholar]
  51. Castro LR, Verde I, Cooper DM, Fischmeister R. 51.  2006. Cyclic guanosine monophosphate compartmentation in rat cardiac myocytes. Circulation 113:2221–28 [Google Scholar]
  52. Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA. 52.  1995. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J. Biol. Chem. 270:30989–1000 [Google Scholar]
  53. Nagel DJ, Aizawa T, Jeon K-I, Liu W, Mohan A. 53.  et al. 2006. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ. Res. 98:777–84 [Google Scholar]
  54. Yan C, Zhao AZ, Bentley JK, Beavo JA. 54.  1996. The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J. Biol. Chem. 271:25699–706 [Google Scholar]
  55. Knight W, Yan C. 55.  2013. Therapeutic potential of PDE modulation in treating heart disease. Future Med. Chem. 5:1607–20 [Google Scholar]
  56. Vandeput F, Wolda SL, Krall J, Hambleton R, Uher L. 56.  et al. 2007. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J. Biol. Chem. 282:32749–57 [Google Scholar]
  57. Florio VA, Sonnenburg WK, Johnson R, Kwak KS, Jensen GS. 57.  et al. 1994. Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry 33:8948–54 [Google Scholar]
  58. Hashimoto Y, Sharma RK, Soderling TR. 58.  1989. Regulation of Ca2+/calmodulin-dependent cyclic nucleotide phosphodiesterase by the autophosphorylated form of Ca2+/calmodulin-dependent protein kinase II. J. Biol. Chem. 264:10884–87 [Google Scholar]
  59. Miller CL, Oikawa M, Cai Y, Wojtovich AP, Nagel DJ. 59.  et al. 2009. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ. Res. 105:956–64 [Google Scholar]
  60. Miller CL, Cai Y, Oikawa M, Thomas T, Dostmann WR. 60.  et al. 2011. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res. Cardiol. 106:1023–39 [Google Scholar]
  61. Insel PA, Murray F, Yokoyama U, Romano S, Yun H. 61.  et al. 2012. cAMP and Epac in the regulation of tissue fibrosis. Br. J. Pharmacol. 166:447–56 [Google Scholar]
  62. Lu D, Aroonsakool N, Yokoyama U, Patel HH, Insel PA. 62.  2013. Increase in cellular cyclic AMP concentrations reverses the profibrogenic phenotype of cardiac myofibroblasts: a novel therapeutic approach for cardiac fibrosis. Mol. Pharmacol. 84:787–93 [Google Scholar]
  63. Beyer C, Zenzmaier C, Palumbo-Zerr K, Mancuso R, Distler A. 63.  et al. 2015. Stimulation of the soluble guanylate cyclase (sGC) inhibits fibrosis by blocking non-canonical TGFβ signalling. Ann. Rheum. Dis. 74:1408–16 [Google Scholar]
  64. Li P, Wang D, Lucas J, Oparil S, Xing D. 64.  et al. 2008. Atrial natriuretic peptide inhibits transforming growth factor β–induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ. Res. 102:185–92 [Google Scholar]
  65. Iwase M, Bishop SP, Uechi M, Vatner DE, Shannon RP. 65.  et al. 1996. Adverse effects of chronic endogenous sympathetic drive induced by cardiac G overexpression. Circ. Res. 78:517–24 [Google Scholar]
  66. Rosman GJ, Martins TJ, Sonnenburg WK, Beavo JA, Ferguson K, Loughney K. 66.  1997. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191:89–95 [Google Scholar]
  67. Martinez SE, Wu AY, Glavas NA, Tang X-B, Turley S. 67.  et al. 2002. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. PNAS 99:13260–65 [Google Scholar]
  68. Zaccolo M, Movsesian MA. 68.  2007. cAMP and cGMP signaling cross-talk: role of phosphodiesterases and implications for cardiac pathophysiology. Circ. Res. 100:1569–78 [Google Scholar]
  69. Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung Y-F. 69.  et al. 2006. Compartmentalized phosphodiesterase-2 activity blunts β-adrenergic cardiac inotropy via an NO/cGMP-dependent pathway. Circ. Res. 98:226–34 [Google Scholar]
  70. Geoffroy V, Fouque F, Nivet V, Clot J-P, Lugnier C. 70.  et al. 1999. Activation of a cGMP-stimulated cAMP phosphodiesterase by protein kinase C in a liver Golgi–endosomal fraction. Eur. J. Biochem. 259:892–900 [Google Scholar]
  71. Lugnier C, Keravis T, Le Bec A, Pauvert O, Proteau S, Rousseau E. 71.  1999. Characterization of cyclic nucleotide phosphodiesterase isoforms associated to isolated cardiac nuclei. Biochim. Biophys. Acta (BBA) Gen. Subj. 1472:431–46 [Google Scholar]
  72. Mehel H, Emons J, Vettel C, Wittköpper K, Seppelt D. 72.  et al. 2013. Phosphodiesterase-2 is up-regulated in human failing hearts and blunts β-adrenergic responses in cardiomyocytes. J. Am. Coll. Cardiol. 62:1596–606 [Google Scholar]
  73. Vettel C, Lämmle S, Ewens S, Cervirgen C, Emons J. 73.  et al. 2014. PDE2-mediated cAMP hydrolysis accelerates cardiac fibroblast to myofibroblast conversion and is antagonized by exogenous activation of cGMP signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 306:H1246–52 [Google Scholar]
  74. Sassi Y, Ahles A, Truong DJ, Baqi Y, Lee SY. 74.  et al. 2014. Cardiac myocyte-secreted cAMP exerts paracrine action via adenosine receptor activation. J. Clin. Investig. 124:5385–97 [Google Scholar]
  75. Zoccarato A, Surdo NC, Aronsen JM, Fields LA, Mancuso L. 75.  et al. 2015. Cardiac hypertrophy is inhibited by a local pool of cAMP regulated by phosphodiesterase 2. Circ. Res. 117:707–19 [Google Scholar]
  76. Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH. 76.  et al. 2014. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 130:496–507 [Google Scholar]
  77. Manganiello VC, Degerman E. 77.  1999. Cyclic nucleotide phosphodiesterases (PDEs): diverse regulators of cyclic nucleotide signals and inviting molecular targets for novel therapeutic agents. Thromb. Haemost. 82:407–11 [Google Scholar]
  78. Kenan Y, Murata T, Shakur Y, Degerman E, Manganiello VC. 78.  2000. Functions of the N-terminal region of cyclic nucleotide phosphodiesterase 3 (PDE 3) isoforms. J. Biol. Chem. 275:12331–38 [Google Scholar]
  79. Shakur Y, Holst LS, Landstrom TR, Movsesian M, Degerman E, Manganiello V. 79.  2000. Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Progress in Nucleic Acid Research and Molecular Biology 66 K Moldave 241–77 San Diego: Acad. Press [Google Scholar]
  80. Liu H, Maurice DH. 80.  1998. Expression of cyclic GMP-inhibited phosphodiesterases 3A and 3B (PDE3A and PDE3B) in rat tissues: differential subcellular localization and regulated expression by cyclic AMP. Br. J. Pharmacol. 125:1501–10 [Google Scholar]
  81. Ding B, Abe J-I, Wei H, Huang Q, Walsh RA. 81.  et al. 2005. Functional role of phosphodiesterase 3 in cardiomyocyte apoptosis: implication in heart failure. Circulation 111:2469–76 [Google Scholar]
  82. Smith CJ, Huang R, Sun D, Ricketts S, Hoegler C. 82.  et al. 1997. Development of decompensated dilated cardiomyopathy is associated with decreased gene expression and activity of the milrinone-sensitive cAMP phosphodiesterase PDE3A. Circulation 96:3116–23 [Google Scholar]
  83. Packer M, Carver JR, Rodeheffer RJ, Ivanhoe RJ, DiBianco R. 83.  et al. 1991. Effect of oral milrinone on mortality in severe chronic heart failure. N. Engl. J. Med. 325:1468–75 [Google Scholar]
  84. Beca S, Ahmad F, Shen W, Liu J, Makary S. 84.  et al. 2013. Phosphodiesterase type 3A regulates basal myocardial contractility through interacting with sarcoplasmic reticulum calcium ATPase type 2a signaling complexes in mouse heart. Circ. Res. 112:289–97 [Google Scholar]
  85. Ahmad F, Shen W, Vandeput F, Szabo-Fresnais N, Krall J. 85.  et al. 2015. Regulation of sarcoplasmic reticulum Ca2+ ATPase 2 (SERCA2) activity by phosphodiesterase 3A (PDE3A) in human myocardium: phosphorylation-dependent interaction of PDE3A1 with SERCA2. J. Biol. Chem. 290:6763–76 [Google Scholar]
  86. Tomita H, Nazmy M, Kajimoto K, Yehia G, Molina CA, Sadoshima J. 86.  2003. Inducible cAMP early repressor (ICER) is a negative-feedback regulator of cardiac hypertrophy and an important mediator of cardiac myocyte apoptosis in response to β-adrenergic receptor stimulation. Circ. Res. 93:12–22 [Google Scholar]
  87. Ding B, Abe J-I, Wei H, Xu H, Che W. 87.  et al. 2005. A positive feedback loop of phosphodiesterase 3 (PDE3) and inducible cAMP early repressor (ICER) leads to cardiomyocyte apoptosis. PNAS 102:14771–76 [Google Scholar]
  88. Yan C, Miller CL, Abe J-I. 88.  2007. Regulation of phosphodiesterase 3 and inducible cAMP early repressor in the heart. Circ. Res. 100:489–501 [Google Scholar]
  89. Vandeput F, Szabo-Fresnais N, Ahmad F, Kho C, Lee A. 89.  et al. 2013. Selective regulation of cyclic nucleotide phosphodiesterase PDE3A isoforms. PNAS 110:19778–83 [Google Scholar]
  90. Pozuelo RM, Campbell DG, Morrice NA, Mackintosh C. 90.  2005. Phosphodiesterase 3A binds to 14-3-3 proteins in response to PMA-induced phosphorylation of Ser428. Biochem. J. 392:163–72 [Google Scholar]
  91. Maass PG, Aydin A, Luft FC, Schächterle C, Weise A. 91.  et al. 2015. PDE3A mutations cause autosomal dominant hypertension with brachydactyly. Nat. Genet. 47:647–53 [Google Scholar]
  92. Richter W, Xie M, Scheitrum C, Krall J, Movsesian MA, Conti M. 92.  2010. Conserved expression and functions of PDE4 in rodent and human heart. Basic Res. Cardiol. 106:249–62 [Google Scholar]
  93. Haworth RS, Cuello F, Avkiran M. 93.  2010. Regulation by phosphodiesterase isoforms of protein kinase A-mediated attenuation of myocardial protein kinase D activation. Basic Res. Cardiol. 106:51–63 [Google Scholar]
  94. Houslay MD, Baillie GS, Maurice DH. 94.  2007. cAMP-specific phosphodiesterase-4 enzymes in the cardiovascular system: a molecular toolbox for generating compartmentalized cAMP signaling. Circ. Res. 100:950–66 [Google Scholar]
  95. Kerfant B-G, Zhao D, Lorenzen-Schmidt I, Wilson LS, Cai S. 95.  et al. 2007. PI3Kγ is required for PDE4, not PDE3, activity in subcellular microdomains containing the sarcoplasmic reticular calcium ATPase in cardiomyocytes. Circ. Res. 101:400–8 [Google Scholar]
  96. Lehnart SE, Wehrens XHT, Reiken S, Warrier S, Belevych AE. 96.  et al. 2005. Phosphodiesterase 4D deficiency in the ryanodine-receptor complex promotes heart failure and arrhythmias. Cell 123:25–35 [Google Scholar]
  97. Perry SJ, Baillie GS, Kohout TA, McPhee I, Magiera MM. 97.  et al. 2002. Targeting of cyclic AMP degradation to β2-adrenergic receptors by β-arrestins. Science 298:834–36 [Google Scholar]
  98. Richter W, Day P, Agrawal R, Bruss MD, Granier S. 98.  et al. 2008. Signaling from β1- and β2-adrenergic receptors is defined by differential interactions with PDE4. EMBO J 27:384–93 [Google Scholar]
  99. Xiang Y, Naro F, Zoudilova M, Jin SLC, Conti M, Kobilka B. 99.  2005. Phosphodiesterase 4D is required for β2 adrenoceptor subtype-specific signaling in cardiac myocytes. PNAS 102:909–14 [Google Scholar]
  100. Beca S, Helli PB, Simpson JA, Zhao D, Farman GP. 100.  et al. 2011. Phosphodiesterase 4D regulates baseline sarcoplasmic reticulum Ca2+ release and cardiac contractility, independently of L-type Ca2+ current. Circ. Res. 109:1024–30 [Google Scholar]
  101. Jørgensen C, Yasmeen S, Iversen HK, Kruuse C. 101.  2015. Phosphodiesterase4D (PDE4D)—a risk factor for atrial fibrillation and stroke?. J. Neurol. Sci. 359:266–74 [Google Scholar]
  102. Baillie GS, Sood A, McPhee I, Gall I, Perry SJ. 102.  et al. 2003. β-Arrestin-mediated PDE4 cAMP phosphodiesterase recruitment regulates β-adrenoceptor switching from Gs to Gi. PNAS 100:940–45 [Google Scholar]
  103. Zheng X, Zu L, Becker L, Cai ZP. 103.  2014. Ischemic preconditioning inhibits mitochondrial permeability transition pore opening through the PTEN/PDE4 signaling pathway. Cardiology 129:163–73 [Google Scholar]
  104. Wang L, Burmeister BT, Johnson KR, Baillie GS, Karginov AV. 104.  et al. 2015. UCR1C is a novel activator of phosphodiesterase 4 (PDE4) long isoforms and attenuates cardiomyocyte hypertrophy. Cell. Signal. 27:908–22 [Google Scholar]
  105. Bobin P, Varin A, Lefebvre F, Fischmeister R, Vandecasteele G, Leroy J. 105.  2016. Calmodulin kinase II inhibition limits the pro-arrhythmic Ca2+ waves induced by cAMP-phosphodiesterase inhibitors. Cardiovasc. Res. 110:151–61 [Google Scholar]
  106. Leroy J, Richter W, Mika D, Castro LRV, Abi-Gerges A. 106.  et al. 2011. Phosphodiesterase 4B in the cardiac L-type Ca2+ channel complex regulates Ca2+ current and protects against ventricular arrhythmias in mice. J. Clin. Investig. 121:2651–61 [Google Scholar]
  107. Farrell SR, Ross JL, Howlett SE. 107.  2010. Sex differences in mechanisms of cardiac excitation-contraction coupling in rat ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 299:H36–45 [Google Scholar]
  108. Lin C-S, Lau A, Tu R, Lue TF. 108.  2000. Expression of three isoforms of cGMP-binding cGMP-specific phosphodiesterase (PDE5A) in human penile cavernosum. Biochem. Biophys. Res. Commun. 268:628–35 [Google Scholar]
  109. Thomas MK, Francis SH, Corbin JD. 109.  1990. Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J. Biol. Chem. 265:14964–70 [Google Scholar]
  110. Kass D. 110.  2012. Cardiac role of cyclic-GMP hydrolyzing phosphodiesterase type 5: from experimental models to clinical trials. Curr. Heart Fail. Rep. 9:192–99 [Google Scholar]
  111. Takimoto E, Belardi D, Tocchetti CG, Vahebi S, Cormaci G. 111.  et al. 2007. Compartmentalization of cardiac β-adrenergic inotropy modulation by phosphodiesterase type 5. Circulation 115:2159–67 [Google Scholar]
  112. Takimoto E, Champion HC, Belardi D, Moslehi J, Mongillo M. 112.  et al. 2005. cGMP catabolism by phosphodiesterase 5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ. Res. 96:100–9 [Google Scholar]
  113. Takimoto E, Champion HC, Li M, Belardi D, Ren S. 113.  et al. 2005. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat. Med. 11:214–22 [Google Scholar]
  114. Salloum FN, Abbate A, Das A, Houser J-E, Mudrick CA. 114.  et al. 2008. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am. J. Physiol. Heart Circ. Physiol. 294:H1398–406 [Google Scholar]
  115. Kass DA, Champion HC, Beavo JA. 115.  2007. Phosphodiesterase type 5: expanding roles in cardiovascular regulation. Circ. Res. 101:1084–95 [Google Scholar]
  116. Ockaili R, Salloum F, Hawkins J, Kukreja RC. 116.  2002. Sildenafil (Viagra) induces powerful cardioprotective effect via opening of mitochondrial KATP channels in rabbits. Am. J. Physiol. Heart Circ. Physiol. 283:H1263–69 [Google Scholar]
  117. Salloum FN, Ockaili RA, Wittkamp M, Marwaha VR, Kukreja RC. 117.  2006. Vardenafil: A novel type 5 phosphodiesterase inhibitor reduces myocardial infarct size following ischemia/reperfusion injury via opening of mitochondrial KATP channels in rabbits. J. Mol. Cell. Cardiol. 40:405–11 [Google Scholar]
  118. Das A, Smolenski A, Lohmann SM, Kukreja RC. 118.  2006. Cyclic GMP-dependent protein kinase Ia attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J. Biol. Chem. 281:38644–52 [Google Scholar]
  119. Zhang M, Koitabashi N, Nagayama T, Rambaran R, Feng N. 119.  et al. 2008. Expression, activity, and pro-hypertrophic effects of PDE5A in cardiac myocytes. Cell. Signal. 20:2231–36 [Google Scholar]
  120. Senzaki H, Smith CJ, Juang GJ, Isoda T, Mayer SP. 120.  et al. 2001. Cardiac phosphodiesterase 5 (cGMP-specific) modulates β-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J 15:1718–26 [Google Scholar]
  121. Zhang M, Takimoto E, Lee DI, Santos CX, Nakamura T. 121.  et al. 2012. Pathological cardiac hypertrophy alters intracellular targeting of phosphodiesterase type 5 from nitric oxide synthase-3 to natriuretic peptide signaling. Circulation 126:942–51 [Google Scholar]
  122. Koka S, Das A, Zhu SG, Durrant D, Xi L, Kukreja RC. 122.  2010. Long-acting phosphodiesterase-5 inhibitor tadalafil attenuates doxorubicin-induced cardiomyopathy without interfering with chemotherapeutic effect. J. Pharmacol. Exp. Ther. 334:1023–30 [Google Scholar]
  123. Guazzi M, Vicenzi M, Arena R. 123.  2012. Phosphodiesterase 5 inhibition with sildenafil reverses exercise oscillatory breathing in chronic heart failure: a long-term cardiopulmonary exercise testing placebo-controlled study. Eur. J. Heart Fail. 14:82–90 [Google Scholar]
  124. Guazzi M, Vicenzi M, Arena R, Guazzi MD. 124.  2011. PDE5A inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ. Heart Fail. 4:8–17 [Google Scholar]
  125. Redfield MM, Chen HH, Borlaug BA, Semigran MJ, Lee KL. 125.  et al. 2013. Effect of phosphodiesterase-5 inhibition on exercise capacity and clinical status in heart failure with preserved ejection fraction: a randomized clinical trial. JAMA 309:1268–77 [Google Scholar]
  126. Moens AL, Takimoto E, Tocchetti CG, Chakir K, Bedja D. 126.  et al. 2008. Reversal of cardiac hypertrophy and fibrosis from pressure overload by tetrahydrobiopterin: efficacy of recoupling nitric oxide synthase as a therapeutic strategy. Circulation 117:2626–36 [Google Scholar]
  127. Takimoto E, Champion HC, Li M, Ren S, Rodriguez ER. 127.  et al. 2005. Oxidant stress from nitric oxide synthase-3 uncoupling stimulates cardiac pathologic remodeling from chronic pressure load. J. Clin. Investig. 115:1221–31 [Google Scholar]
  128. Neo BH, Kandhi S, Wolin MS. 128.  2011. Roles for redox mechanisms controlling protein kinase G in pulmonary and coronary artery responses to hypoxia. Am. J. Physiol. Heart Circ. Physiol. 301:H2295–304 [Google Scholar]
  129. Karbach S, Wenzel P, Waisman A, Munzel T, Daiber A. 129.  2014. eNOS uncoupling in cardiovascular diseases - the role of oxidative stress and inflammation. Curr. Pharm. Des. 20:3579–94 [Google Scholar]
  130. Carnicer R, Crabtree MJ, Sivakumaran V, Casadei B, Kass DA. 130.  2013. Nitric oxide synthases in heart failure. Antioxid. Redox Signal. 18:1078–99 [Google Scholar]
  131. Sasaki H, Nagayama T, Blanton RM, Seo K, Zhang M. 131.  et al. 2014. PDE5A inhibitor efficacy is estrogen dependent in female heart disease. J. Clin. Investig. 124:2464–71 [Google Scholar]
  132. van Veldhuisen DJ, Linssen GCM, Jaarsma T, van Gilst WH, Hoes AW. 132.  et al. 2013. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J. Am. Coll. Cardiol. 61:1498–506 [Google Scholar]
  133. van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MPV. 133.  et al. 2012. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation 126:830–39 [Google Scholar]
  134. Soderling SH, Bayuga SJ, Beavo JA. 134.  1998. Cloning and characterization of a cAMP-specific cyclic nucleotide phosphodiesterase. PNAS 95:8991–96 [Google Scholar]
  135. Patrucco E, Albergine MS, Santana LF, Beavo JA. 135.  2010. Phosphodiesterase 8A (PDE8A) regulates excitation–contraction coupling in ventricular myocytes. J. Mol. Cell. Cardiol. 49:330–33 [Google Scholar]
  136. Jorde R, Schirmer H, Wilsgaard T, Joakimsen RM, Mathiesen EB. 136.  et al. 2013. The phosphodiesterase 8B gene rs4704397 is associated with thyroid function, risk of myocardial infarction, and body height: the Tromsø study. Thyroid 24:215–22 [Google Scholar]
  137. Shimizu-Albergine M, Tsai L-CL, Patrucco E, Beavo JA. 137.  2012. cAMP-specific phosphodiesterases 8A and 8B, essential regulators of Leydig cell steroidogenesis. Mol. Pharmacol. 81:556–66 [Google Scholar]
  138. Tsai LC, Shimizu-Albergine M, Beavo JA. 138.  2011. The high-affinity cAMP-specific phosphodiesterase 8B controls steroidogenesis in the mouse adrenal gland. Mol. Pharmacol. 79:639–48 [Google Scholar]
  139. Tsai LC, Beavo JA. 139.  2012. Regulation of adrenal steroidogenesis by the high-affinity phosphodiesterase 8 family. Horm. Metab. Res. 44:790–94 [Google Scholar]
  140. Fisher DA, Smith JF, Pillar JS, St. Denis SH, Cheng JB. 140.  1998. Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J. Biol. Chem. 273:15559–64 [Google Scholar]
  141. Soderling SH, Bayuga SJ, Beavo JA. 141.  1998. Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J. Biol. Chem. 273:15553–58 [Google Scholar]
  142. Hoendermis ES, Liu LC, Hummel YM, van der Meer P, de Boer RA. 142.  et al. 2015. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur. Heart J. 36:2565–73 [Google Scholar]
  143. Heineke J, Auger-Messier M, Xu J, Oka T, Sargent MA. 143.  et al. 2007. Cardiomyocyte GATA4 functions as a stress-responsive regulator of angiogenesis in the murine heart. J. Clin. Investig. 117:3198–210 [Google Scholar]
  144. Su T, Zhang T, Xie S, Yan J, Wu Y. 144.  et al. 2016. Discovery of novel PDE9 inhibitors capable of inhibiting Aβ aggregation as potential candidates for the treatment of Alzheimer's disease. Sci. Rep. 6:21826 [Google Scholar]
  145. Heckman PRA, Wouters C, Prickaerts J. 145.  2015. Phosphodiesterase inhibitors as a target for cognition enhancement in aging and Alzheimer's disease: a translational overview. Curr. Pharm. Des. 21:317–31 [Google Scholar]
  146. Hutson PH, Finger EN, Magliaro BC, Smith SM, Converso A. 146.  et al. 2011. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 (6-[(3S,4S)-4-methyl-1-(pyrimidin-2-ylmethyl)pyrrolidin-3-yl]-1-(tetrahydro-2H-pyran-4-yl)-1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin-4-one) enhances synaptic plasticity and cognitive function in rodents. Neuropharmacology 61:665–76 [Google Scholar]
  147. Vardigan JD, Converso A, Hutson PH, Uslaner JM. 147.  2011. The selective phosphodiesterase 9 (PDE9) inhibitor PF-04447943 attenuates a scopolamine-induced deficit in a novel rodent attention task. J. Neurogenet. 25:120–26 [Google Scholar]
  148. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP. 148.  et al. 2014. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N. Engl. J. Med. 371:993–1004 [Google Scholar]
  149. Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I. 149.  et al. 2000. Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. PNAS 97:3702–7 [Google Scholar]
  150. Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. 150.  2009. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. PNAS 106:18225–30 [Google Scholar]
  151. Houslay MD. 151.  2010. Underpinning compartmentalised cAMP signalling through targeted cAMP breakdown. Trends Biochem. Sci. 35:91–100 [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010716-104756
Loading
/content/journals/10.1146/annurev-pharmtox-010716-104756
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error