1932

Abstract

Aggregates of conjugated polymers exhibit two classes of fundamental electronic interactions: those occurring within a given chain and those occurring between chains. The impact of such excitonic interactions on the photophysics of polymer films can be understood using concepts of J- and H-aggregation originally developed by Kasha and coworkers to treat aggregates of small molecules. In polymer assemblies, intrachain through-bond interactions lead to J-aggregate behavior, whereas interchain Coulombic interactions lead to H-aggregate behavior. The photophysics of common emissive conjugated polymer films are determined by a competition between intrachain, J-favoring interactions and interchain, H-favoring interactions. We review formalisms describing absorption and photoluminescence lineshapes, based on intra- and intermolecular excitonic coupling, electron-vibrational coupling, and correlated energetic disorder. Examples include regioregular polythiophenes, pheneylene-vinylenes, and polydiacetylene.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-040513-103639
2014-04-01
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/physchem/65/1/annurev-physchem-040513-103639.html?itemId=/content/journals/10.1146/annurev-physchem-040513-103639&mimeType=html&fmt=ahah

Literature Cited

  1. Heeger AJ. 1.  2010. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39:2354–71 [Google Scholar]
  2. Bredas J-L, Norton JE, Cornil J, Coropceanu V. 2.  2009. Molecular understanding of organic solar cells: the challenges. Acc. Chem. Res. 42:1691–99 [Google Scholar]
  3. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J. 3.  et al. 2006. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat. Mater. 5:197–203 [Google Scholar]
  4. Kim JY, Lee K, Coates NE, Moses D, Nguyen TQ. 4.  et al. 2007. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317:222–25 [Google Scholar]
  5. Brabec CJ, Dyakonov V, Parisi J, Sariciftci NS. 5.  2003. Organic Photovoltaics: Concepts and Realization New York: Springer
  6. Brabec CJ. 6.  2004. Organic photovoltaics: technology and market. Sol. Energy Mater. Sol. Cells 83:273–92 [Google Scholar]
  7. Erb T, Zhokhavets U, Gobsch G, Raleva S, Stuhn B. 7.  et al. 2005. Correlation between structural and optical properties of composite polymer/fullerene films for organic solar cells. Adv. Funct. Mater. 15:1193–96 [Google Scholar]
  8. Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec CJ. 8.  2005. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem. Mater. 17:2175–80 [Google Scholar]
  9. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AH. 9.  1995. Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270:1789–91 [Google Scholar]
  10. Granstrom M, Petritsch K, Arias AC, Lux A, Andersson MR, Friend RH. 10.  1998. Laminated fabrication of polymeric photovoltaic diodes. Nature 395:257–60 [Google Scholar]
  11. Blom PWM, Mihailetchi VD, Koster LJA, Markov DE. 11.  2007. Device physics of polymer:fullerene bulk heterojunction solar cells. Adv. Mater. 19:1551–66 [Google Scholar]
  12. Gunes S, Neugebauer H, Sariciftci NS. 12.  2007. Conjugated polymer-based organic solar cells. Chem. Rev. 107:1324–38 [Google Scholar]
  13. Yang X, Loos J. 13.  2007. Toward high-performance polymer solar cells: the importance of morphology control. Macromolecules 40:1353–62 [Google Scholar]
  14. Groves C, Reid OG, Ginger DS. 14.  2010. Heterogeneity in polymer solar cells: local morphology and performance in organic photovoltaics studied with scanning probe microscopy. Acc. Chem. Res. 43:612–20 [Google Scholar]
  15. Liang YY, Yu LP. 15.  2010. A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc. Chem. Res. 43:1227–36 [Google Scholar]
  16. van Bavel S, Veenstra S, Loos J. 16.  2010. On the importance of morphology control in polymer solar cells. Macromol. Rapid Commun. 31:1835–45 [Google Scholar]
  17. Clarke TM, Durrant JR. 17.  2010. Charge photogeneration in organic solar cells. Chem. Rev. 110:6736–67 [Google Scholar]
  18. Brabec CJ, Gowrisanker S, Halls JJM, Laird D, Jia SJ, Williams SP. 18.  2010. Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 22:3839–56 [Google Scholar]
  19. Mullen K, Scherf U. 19.  2006. Organic Light Emitting Devices: Synthesis, Properties and Applications New York: Wiley
  20. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K. 20.  et al. 1990. Light-emitting diodes based on conjugated polymers. Nature 347:539–41 [Google Scholar]
  21. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN. 21.  et al. 1999. Electroluminescence in conjugated polymers. Nature 397:121–28 [Google Scholar]
  22. Kafafi ZH. 22.  2002. Organic Light-Emitting Materials and Devices V Washington, DC: SPIE
  23. Adachi C, Baldo MA, Thompson ME, Forrest SR. 23.  2001. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90:5048–52 [Google Scholar]
  24. Spano FC. 24.  2005. Modeling disorder in polymer aggregates: the optical spectroscopy of regioregular poly(3-hexylthiophene) thin films. J. Chem. Phys. 122:234701Erratum 2007. J. Chem. Phys. 126:159901 [Google Scholar]
  25. Clark J, Silva C, Friend RH, Spano FC. 25.  2007. Role of intermolecular coupling in the photophysics of disordered organic semiconductors: aggregate emission in regioregular polythiophene. Phys. Rev. Lett. 98:206406 [Google Scholar]
  26. Clark J, Chang JF, Spano FC, Friend RH, Silva C. 26.  2009. Determining exciton bandwidth and film microstructure in polythiophene films using linear absorption spectroscopy. Appl. Phys. Lett. 94:163306 [Google Scholar]
  27. Spano FC, Clark J, Silva C, Friend RH. 27.  2009. Determining exciton coherence from the photoluminescence spectral line shape in poly(3-hexylthiophene) thin films. J. Chem. Phys. 130:074904 [Google Scholar]
  28. Yamagata H, Spano FC. 28.  2011. Vibronic coupling in quantum wires: application to polydiacetylene. J. Chem. Phys. 135:054906 [Google Scholar]
  29. Hochstrasser RM, Kasha M. 29.  1964. Application of the exciton model to monomolecular lamellar systems. Photochem. Photobiol. 3:317–31 [Google Scholar]
  30. Kasha M. 30.  1963. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat. Res. 20:55–70 [Google Scholar]
  31. McRae EG, Kasha M. 31.  1958. Enhancement of phosphorescence ability upon aggregation of dye molecules. J. Chem. Phys. 28:721–22 [Google Scholar]
  32. Yan M, Rothberg LJ, Papadimitrakopoulos F, Galvin ME, Miller TM. 32.  1994. Spatially indirect excitons as primary photoexcitations in conjugated polymers. Phys. Rev. Lett. 72:1104–7 [Google Scholar]
  33. Yan M, Rothberg LJ, Kwock EW, Miller TM. 33.  1995. Interchain excitations in conjugated polymers. Phys. Rev. Lett. 75:1992–95 [Google Scholar]
  34. Spano FC. 34.  2006. Absorption in regioregular poly(3-hexylthiophene) thin films: Fermi resonances, interband coupling and disorder. Chem. Phys. 325:22–35 [Google Scholar]
  35. Spano FC. 35.  2010. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  36. Spano FC, Yamagata H. 36.  2011. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J. Phys. Chem. B 115:5133–43 [Google Scholar]
  37. Brown PJ, Thomas SD, Köhler A, Wilson JS, Kim J-S. 37.  et al. 2003. Effect of interchain interactions on the absorption and emission of poly(3-hexylthiophene). Phys. Rev. B 67:064203 [Google Scholar]
  38. Barford W. 38.  2013. Excitons in conjugated polymers: a tale of two particles. J. Phys. Chem. A 117:2665–71 [Google Scholar]
  39. Barisien T, Legrand L, Weiser G, Deschamps J, Balog M. 39.  et al. 2007. Exciton spectroscopy of red polydiacetylene chains in single crystals. Chem. Phys. Lett. 444:309–13 [Google Scholar]
  40. Dubin F, Berréhar J, Grousson R, Guillet T, Lapersonne-Meyer C. 40.  et al. 2002. Optical evidence of a purely one-dimensional exciton density of states in a single conjugated polymer chain. Phys. Rev. B 66:113202 [Google Scholar]
  41. Dubin F, Berréhar J, Grousson R, Schott M, Voliotis V. 41.  2006. Evidence of polariton-induced transparency in a single organic quantum wire. Phys. Rev. B 73:121302 [Google Scholar]
  42. Dubin F, Melet R, Barisien T, Grousson R, Legrand L. 42.  et al. 2006. Macroscopic coherence of a single exciton state in an organic quantum wire. Nat. Phys. 2:32–35 [Google Scholar]
  43. Horvath A, Weiser G, Lapersonne-Meyer C, Schott M, Spagnoli S. 43.  1996. Wannier excitons and Franz-Keldysh effect of polydiacetylene chains diluted in their single crystal monomer matrix. Phys. Rev. B 53:13507–14 [Google Scholar]
  44. Lecuiller R, Berréhar J, Ganière JD, Lapersonne-Meyer C, Lavallard P, Schott M. 44.  2002. Fluorescence yield and lifetime of isolated polydiacetylene chains: evidence for a one-dimensional exciton band in a conjugated polymer. Phys. Rev. B 66:125205 [Google Scholar]
  45. Lecuiller R, Berréhar J, Lapersonne-Meyer C, Schott M, Ganière JD. 45.  1999. Fluorescence quantum yield and lifetime of ‘red’ polydiacetylene chains isolated in their crystalline monomer matrix. Chem. Phys. Lett. 314:255–60 [Google Scholar]
  46. Schott M. 46.  2006. Optical properties of single conjugated polymer chains (polydiacetylenes). Photophysics of Molecular Materials: From Single Molecules to Single Crystals G Lanzani 49–145 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  47. Yamagata H, Spano FC. 47.  2012. Interplay between intrachain and interchain interactions in semiconducting polymer assemblies: the HJ-aggregate model. J. Chem. Phys. 136:184901Erratum 2012. J. Chem. Phys. 137:249901 [Google Scholar]
  48. Soos ZG, Hayden GW, McWilliams PCM, Etemad S. 48.  1990. Excitation shifts of parallel conjugated polymers due to π-electron dispersion forces. J. Chem. Phys. 93:7439–48 [Google Scholar]
  49. Manas ES, Spano FC. 49.  1998. Absorption and spontaneous emission in aggregates of π-conjugated molecules. J. Chem. Phys. 109:8087–101 [Google Scholar]
  50. Cornil J, dos Santos DA, Crispin X, Silbey R, Bredas JL. 50.  1998. Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum mechanical characterization. J. Am. Chem. Soc. 120:1289–99 [Google Scholar]
  51. Gierschner J, Huang YS, Van Averbeke B, Cornil J, Friend RH, Beljonne D. 51.  2009. Excitonic versus electronic couplings in molecular assemblies: the importance of non-nearest neighbor interactions. J. Chem. Phys. 130:044105 [Google Scholar]
  52. Barford W. 52.  2007. Exciton transfer integrals between polymer chains. J. Chem. Phys. 126:134905 [Google Scholar]
  53. Banerji N, Cowan S, Vauthey E, Heeger AJ. 53.  2011. Ultrafast relaxation of the poly(3-hexylthiophene) emission spectrum. J. Phys. Chem. C 115:9726–39 [Google Scholar]
  54. Parkinson P, Mueller C, Stingelin N, Johnston MB, Herz LM. 54.  2010. Role of ultrafast torsional relaxation in the emission from polythiophene aggregates. J. Phys. Chem. Lett. 1:2788–92 [Google Scholar]
  55. Banerji N. 55.  2013. Sub-picosecond delocalization in the excited state of conjugated homopolymers and donor-acceptor copolymers. J. Mater. Chem. C 1:3052–66 [Google Scholar]
  56. Niles ET, Roehling JD, Yamagata H, Wise AJ, Spano FC. 56.  et al. 2012. J-aggregate behavior in poly-3-hexylthiophene nanofibers. J. Phys. Chem. Lett. 3:259–63 [Google Scholar]
  57. Pichler K, Halliday DA, Bradley DDC, Burns PL, Friend RH, Holmes AB. 57.  1993. Optical spectroscopy of highly ordered poly(p-phenylene vinylene). J. Phys. Condens. Matter 5:7155–72 [Google Scholar]
  58. da Silva MAT, Dias IFL, Duarte JL, Laureto E, Silvestre I. 58.  et al. 2008. Identification of the optically active vibrational modes in the photoluminescence of MEH-PPV films. J. Chem. Phys. 128:094902 [Google Scholar]
  59. Chang R, Hsu JH, Fann WS, Yu J, Lin SH. 59.  et al. 2000. Aggregated states of luminescent conjugated polymers in solutions. Chem. Phys. Lett. 317:153–58 [Google Scholar]
  60. Zeng QG, Ding ZJ. 60.  2004. Photoluminescence and Raman spectra study of para-phenylenevinylene at low temperatures. J. Phys. Condens. Matter 16:5171–78 [Google Scholar]
  61. Ho PKH, Kim J-S, Tessler N, Friend RH. 61.  2001. Photoluminescence of poly(p-phenylenevinylene)-silica nanocomposites: evidence of duel emission by Franck-Condon analysis. J. Chem. Phys. 115:2709–20 [Google Scholar]
  62. Hagler TW, Pakbaz K, Voss KF, Heeger AJ. 62.  1991. Enhanced order and electronic delocalization in conjugated polymers oriented by gel processing in polyethylene. Phys. Rev. B 44:8652–66 [Google Scholar]
  63. Rauscher U, Bässler H, Bradley DDC, Hennecke M. 63.  1990. Exciton versus band description of the absorption and luminescence spectra in PPV. Phys. Rev. B 42:9830–36 [Google Scholar]
  64. Hayes GR, Samuel IDW, Phillips RT. 64.  1997. Polarization dependence of the ultrafast photoluminescence of oriented PPV. Phys. Rev. B 56:3838–43 [Google Scholar]
  65. Soci C, Comoretto D, Marabelli F, Moses D. 65.  2007. Anisotropic photoluminescence properties of oriented poly(p-phenylene-vinylene) films: effects of dispersion of optical constants. Phys. Rev. B 75:075204 [Google Scholar]
  66. Ho PKH, Friend RH. 66.  2002. π-Electronic and electrical transport properties of conjugated polymer nanocomposites: poly(p-phenylenevinylene) with homogeneously dispersed silica nanoparticles. J. Chem. Phys. 116:6782–94 [Google Scholar]
  67. Köhler A, Hoffmann ST, Bässler H. 67.  2012. An order-disorder transition in the conjugated polymer MEH-PPV. J. Am. Chem. Soc. 134:11594–601 [Google Scholar]
  68. Yu ZH, Barbara PF. 68.  2004. Low-temperature single-molecule spectroscopy of MEH-PPV conjugated polymer molecules. J. Phys. Chem. B 108:11321–26 [Google Scholar]
  69. Barbara PF, Gesquiere AJ, Park S-J, Lee YJ. 69.  2005. Single-molecule spectroscopy of conjugated polymers. Acc. Chem. Res. 38:602–10 [Google Scholar]
  70. Peet J, Brocker E, Xu YH, Bazan GC. 70.  2008. Controlled β-phase formation in poly(9,9-di-n-octylfluorene) by processing with alkyl additives. Adv. Mater. 20:1882–85 [Google Scholar]
  71. Khan ALT, Sreearunothai P, Herz LM, Banach MJ, Köhler A. 71.  2004. Morphology-dependent energy transfer within polyfluorene thin films. Phys. Rev. B 69:085201 [Google Scholar]
  72. Hwang I, Scholes GD. 72.  2011. Electronic energy transfer and quantum-coherence in π-conjugated polymers. Chem. Mater. 23:610–20 [Google Scholar]
  73. Collini E, Scholes GD. 73.  2009. Coherent intrachain energy migration in a conjugated polymer at room temperature. Science 323:369–73 [Google Scholar]
  74. Engel GS, Calhoun TR, Read EL, Ahn TK, Mancal T. 74.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  75. Panitchayangkoon G, Hayes D, Fransted KA, Caram JR, Harel E. 75.  et al. 2010. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. Proc. Natl. Acad. Sci. USA 107:12766–70 [Google Scholar]
  76. Paquin F, Yamagata H, Hestand NJ, Sakowicz M, Bérubé N. 76.  et al. 2013. Two-dimensional spatial coherence of excitons in semicrystalline polymeric semiconductors: the effect of molecular weight. Phys. Rev. B 88:155202 [Google Scholar]
  77. Kobayashi T, Hamazaki J, Kunugita H, Ema K, Endo T. 77.  et al. 2003. Coexistence of photoluminescence from two intrachain states in polythiophene films. Phys. Rev. B 67:205214 [Google Scholar]
  78. Jiang XM, Osterbacka R, Korovyanko O, An CP, Horovitz B. 78.  et al. 2002. Spectroscopic studies of photoexcitations in regioregular and regiorandom polythiophene films. Adv. Funct. Mater. 12:587–97 [Google Scholar]
  79. Koren AB, Curtis MD, Francis AH, Kampf JW. 79.  2003. Intermolecular interactions in π-stacked conjugated molecules: synthesis, structure, and spectral characterization of alkyl bithiazole oligomers. J. Am. Chem. Soc. 125:5040–50 [Google Scholar]
  80. Holstein T. 80.  1959. Polaron motion. I. Molecular-crystal model. Ann. Phys. 8:325–42 [Google Scholar]
  81. Beljonne D, Cornil J, Silbey R, Millie P, Bredas JL. 81.  2000. Interchain interactions in conjugated materials: the exciton model versus the supermolecular approach. J. Chem. Phys. 112:4749–58 [Google Scholar]
  82. Westenhoff S, Abrusci A, Feast WJ, Henze O, Kilbinger AFM. 82.  et al. 2006. Supramolecular electronic coupling in chiral oligothiophene nanostructures. Adv. Mater. 18:1281–85 [Google Scholar]
  83. Scharsich C, Lohwasser RH, Sommer M, Asawapirom U, Scherf U. 83.  et al. 2012. Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B 50:442–53 [Google Scholar]
  84. Meskers SCJ, Janssen RAJ, Haverkort JEM, Wolter JH. 84.  2000. Relaxation of photo-excitations in films of oligo- and poly-(para-phenylene vinylene) derivatives. Chem. Phys. 260:415–39 [Google Scholar]
  85. Knapp EW. 85.  1984. Lineshapes of molecular aggregates: exchange narrowing and intersite correlation. Chem. Phys. 85:73–82 [Google Scholar]
  86. Spano FC, Meskers SCJ, Hennebicq E, Beljonne D. 86.  2007. Probing excitation delocalization in supramolecular chiral stacks by means of circularly polarized light: experiment and modeling. J. Am. Chem. Soc. 129:7044–54 [Google Scholar]
  87. Dahlbom M, Pullerits T, Mukamel S, Sundström V. 87.  2001. Exciton delocalization in the B850 light-harvesting complex: comparison of different measures. J. Phys. Chem. B 105:5515–24 [Google Scholar]
  88. Meier T, Chernyak V, Mukamel S. 88.  1997. Multiple exciton coherence sizes in photosynthetic antenna complexes viewed by pump-probe spectroscopy. J. Phys. Chem. B 101:7332–42 [Google Scholar]
  89. Meier T, Zhao Y, Chernyak V, Mukamel S. 89.  1997. Polarons, localization, and excitonic coherence in superradiance of biological antenna complexes. J. Chem. Phys. 107:3876–93 [Google Scholar]
  90. Kuhn O, Sundström V. 90.  1997. Pump-probe spectroscopy of dissipative energy transfer dynamics in photosynthetic antenna complexes: a density matrix approach. J. Chem. Phys. 107:4154–64 [Google Scholar]
  91. Kohler BE, Schilke DE. 91.  1987. Low-lying singlet states of a short polydiacetylene oligomer. J. Chem. Phys. 86:5214–15 [Google Scholar]
  92. Citrin DS. 92.  1992. Long intrinsic radiative lifetimes of excitons in quantum wires. Phys. Rev. Lett. 69:3393–96 [Google Scholar]
  93. Deboer S, Wiersma DA. 93.  1990. Dephasing-induced damping of superradiant emission in J-aggregates. Chem. Phys. Lett. 165:45–53 [Google Scholar]
  94. Fidder H, Knoester J, Wiersma DA. 94.  1990. Superradiant emission and optical dephasing in J-aggregates. Chem. Phys. Lett. 171:529–36 [Google Scholar]
  95. Khachatryan B, Nguyen TD, Vardeny ZV, Ehrenfreund E. 95.  2012. Phosphorescence superradiance in a Pt-containing π-conjugated polymer. Phys. Rev. B 86:195203 [Google Scholar]
  96. Burn PL, Bradley DDC, Friend RH, Halliday DA, Holmes AB. 96.  et al. 1992. Precursor route chemistry and electronic properties of poly(p-phenylene-vinylene), poly(2,5-dimethyl-p-phenylene)vinylene and poly(2,5-dimethoxy-p-phenylene)vinylene. J. Chem. Soc. Perkin Trans. 1:3225–31 [Google Scholar]
  97. Schwartz BJ. 97.  2003. Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54:141–72 [Google Scholar]
  98. Nguyen T-Q, Martini IB, Liu J, Schwartz BJ. 98.  2000. Controlling interchain interactions in conjugated polymers: the effects of chain morphology on exciton-exciton annihilation and aggregation in MEH-PPV films. J. Phys. Chem. B 104:237–55 [Google Scholar]
  99. Collison CJ, Rothberg LJ, Treemaneekarn V, Li Y. 99.  2001. Conformational effects on the photophysics of conjugated polymers: a two species model for MEH-PPV spectroscopy and dynamics. Macromolecules 34:2346–52 [Google Scholar]
  100. Grey JK, Kim DY, Norris BC, Miller WL, Barbara PF. 100.  2006. Size-dependent spectroscopic properties of conjugated polymer nanoparticles. J. Phys. Chem. B 110:25568–72 [Google Scholar]
  101. Lin HZ, Hania RP, Bloem R, Mirzov O, Thomsson D, Scheblykin IG. 101.  2010. Single chain versus single aggregate spectroscopy of conjugated polymers: Where is the border?. Phys. Chem. Chem. Phys. 12:11770–77 [Google Scholar]
  102. Mirzov O, Scheblykin IG. 102.  2006. Photoluminescence spectra of a conjugated polymer: from films and solutions to single molecules. Phys. Chem. Chem. Phys. 8:5569–76 [Google Scholar]
  103. Chang R, Hsu JH, Fann WS, Liang KK, Chiang CH. 103.  et al. 2000. Experimental and theoretical investigations of absorption and emission spectra of the light-emitting polymer MEH-PPV in solution. Chem. Phys. Lett. 317:142–52 [Google Scholar]
  104. Yamagata H, Hestand NJ, Spano FC, Köhler A, Scharsich C. 104.  et al. 2013. The red phase of poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV): a disordered HJ-aggregate. J. Chem. Phys. 139:114903 [Google Scholar]
  105. Cadby AJ, Lane PA, Mellor H, Martin SJ, Grell M. 105.  et al. 2000. Film morphology and photophysics of polyfluorene. Phys. Rev. B 62:15604–9 [Google Scholar]
  106. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Fréchet JMJ, Toney MF. 106.  2005. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules 38:3312–19 [Google Scholar]
  107. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Fréchet JMJ. 107.  2003. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15:1519–22 [Google Scholar]
  108. Goh C, Kline RJ, McGehee MD, Kadnikova EN, Fréchet JMJ. 108.  2005. Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl. Phys. Lett. 86:122110 [Google Scholar]
  109. Zhang R, Li B, Iovu MC, Jeffries-EL M, Sauve G. 109.  et al. 2006. Nanostructure dependence of field-effect mobility in regioregular poly(3-hexylthiophene) thin film field effect transistors. J. Am. Chem. Soc. 128:3480–81 [Google Scholar]
  110. Koch FPV, Rivnay J, Foster S, Müller C, Downing J. 110.  et al. 2013. Microstructure development with molecular weight in semicrystalline polymer semiconductors and its influence on charge transport: poly(3-hexylthiophene), a model study. Prog. Polym. Sci. In press
  111. Ballantyne AM, Chen L, Dane J, Hammant T, Braun FM. 111.  et al. 2008. The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer:fullerene solar cells. Adv. Funct. Mater. 18:2373–80 [Google Scholar]
  112. Noriega R, Rivnay J, Vandewal K, Koch FPV, Stingelin N. 112.  et al. 2013. A general relationship between disorder, aggregation, and charge transport in conjugated polymers. Nat. Mater 121038–44
  113. Hellmann C, Paquin F, Treat ND, Bruno A, Reynolds LX. 113.  et al. 2013. Controlling the interaction of light with polymer semiconductors. Adv. Mater. 25:4906–11 [Google Scholar]
  114. Wunderlich B. 114.  1976. Macromolecular Physics 2 Crystal Nucleation, Growth, Annealing San Diego: Academic
  115. Yamagata H, Pochas CM, Spano FC. 115.  2012. Designing J- and H-aggregates through wave function overlap engineering: applications to poly(3-hexylthiophene). J. Phys. Chem. B 116:14494–503 [Google Scholar]
  116. Paquin F, Latini G, Sakowicz M, Karsenti P-L, Wang L. 116.  et al. 2011. Charge separation in semicrystalline polymeric semiconductors by photoexcitation: Is the mechanism intrinsic or extrinsic?. Phys. Rev. Lett. 106:197401 [Google Scholar]
  117. Paquin F, Rivnay J, Salleo A, Stingelin N, Silva C. 117.  2013. Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors. Phys. Rev. X Manuscript submitted
  118. Clark J. 118.  2009. Intermolecular interactions in π-conjugated molecules: optical probes of chain conformation. PhD Diss., Univ. Cambridge, Cambridge, UK
  119. Baghgar M, Labastide J, Bokel F, Dujovne I, McKenna A. 119.  et al. 2012. Probing inter- and intrachain exciton coupling in isolated poly(3-hexylthiophene) nanofibers: effect of solvation and regioregularity. J. Phys. Chem. Lett. 31674–79
  120. Baghgar M, Pentzer E, Wise AJ, Labastide JA, Emrick T, Barnes MD. 120.  2013. Cross-linked functionalized poly(3-hexylthiophene) nanofibers with tunable excitonic coupling. ACS Nano 78917–23
/content/journals/10.1146/annurev-physchem-040513-103639
Loading
/content/journals/10.1146/annurev-physchem-040513-103639
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error