1932

Abstract

For more than 20 years, we have known that Ca2+/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation. In this review, we highlight recent developments that have shaped our current thinking about the molecular mechanisms underlying LTP and discuss important questions that remain in the field.

Keyword(s): LTPmemoryplasticityspinesynapse
Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021014-071753
2016-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021014-071753.html?itemId=/content/journals/10.1146/annurev-physiol-021014-071753&mimeType=html&fmt=ahah

Literature Cited

  1. Cajal SR. 1.  1911. Histologie du systeme nerveux de l'homme et des vertebres transl. N Swanson, LW Swanson New York: Oxford Univ. Press
  2. Lømo T. 2.  1966. Frequency potentiation of excitatory synaptic activity in the dentate area of the hippocampal formation. Acta Physiol. Scand. 68:128 [Google Scholar]
  3. Bliss TV, Lømo T. 3.  1973. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232:331–56 [Google Scholar]
  4. Abraham WC. 4.  2003. How long will long-term potentiation last?. Philos. Trans. R. Soc. B 358:735–44 [Google Scholar]
  5. Bekkers JM, Stevens CF. 5.  1990. Presynaptic mechanism for long-term potentiation in the hippocampus. Nature 346:724–29 [Google Scholar]
  6. Malinow R, Tsien RW. 6.  1990. Presynaptic enhancement shown by whole-cell recordings of long-term potentiation in hippocampal slices. Nature 346:177–80 [Google Scholar]
  7. Isaac JT, Nicoll RA, Malenka RC. 7.  1995. Evidence for silent synapses: implications for the expression of LTP. Neuron 15:427–34 [Google Scholar]
  8. Liao D, Hessler NA, Malinow R. 8.  1995. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice. Nature 375:400–4 [Google Scholar]
  9. Kerchner GA, Nicoll RA. 9.  2008. Silent synapses and the emergence of a postsynaptic mechanism for LTP. Nat. Rev. Neurosci. 9:813–25 [Google Scholar]
  10. Collingridge GL, Kehl SJ, McLennan H. 10.  1983. Excitatory amino acids in synaptic transmission in the Schaffer collateral–commissural pathway of the rat hippocampus. J. Physiol. 334:33–46 [Google Scholar]
  11. Lisman J, Yasuda R, Raghavachari S. 11.  2012. Mechanisms of CaMKII action in long-term potentiation. Nat. Rev. Neurosci. 13:169–82 [Google Scholar]
  12. Patterson MA, Szatmari EM, Yasuda R. 12.  2010. AMPA receptors are exocytosed in stimulated spines and adjacent dendrites in a Ras-ERK-dependent manner during long-term potentiation. PNAS 107:15951–56 [Google Scholar]
  13. Nicoll RA, Roche KW. 13.  2013. Long-term potentiation: peeling the onion. Neuropharmacology 74:18–22 [Google Scholar]
  14. Malinow R, Mainen ZF, Hayashi Y. 14.  2000. LTP mechanisms: from silence to four-lane traffic. Curr. Opin. Neurobiol. 10:352–57 [Google Scholar]
  15. Huganir RL, Nicoll RA. 15.  2013. AMPARs and synaptic plasticity: the last 25 years. Neuron 80:704–17 [Google Scholar]
  16. Colgan LA, Yasuda R. 16.  2014. Plasticity of dendritic spines: subcompartmentalization of signaling. Annu. Rev. Physiol. 76:365–85 [Google Scholar]
  17. Bliss TV, Collingridge GL. 17.  2013. Expression of NMDA receptor–dependent LTP in the hippocampus: bridging the divide. Mol. Brain 6:5 [Google Scholar]
  18. Soderling TR, Derkach VA. 18.  2000. Postsynaptic protein phosphorylation and LTP. Trends Neurosci. 23:75–80 [Google Scholar]
  19. Silva AJ, Stevens CF, Tonegawa S, Wang Y. 19.  1992. Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257:201–6 [Google Scholar]
  20. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA. 20.  1995. Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. PNAS 92:11175–79 [Google Scholar]
  21. Pettit DL, Perlman S, Malinow R. 21.  1994. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266:1881–85 [Google Scholar]
  22. Giese KP, Fedorov NB, Filipkowski RK, Silva AJ. 22.  1998. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870–73 [Google Scholar]
  23. McGlade-McCulloh E, Yamamoto H, Tan SE, Brickey DA, Soderling TR. 23.  1993. Phosphorylation and regulation of glutamate receptors by calcium calmodulin-dependent protein kinase-II. Nature 362:640–42 [Google Scholar]
  24. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. 24.  1997. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science 276:2042–45 [Google Scholar]
  25. Barria A, Derkach V, Soderling T. 25.  1997. Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J. Biol. Chem. 272:32727–30 [Google Scholar]
  26. Mammen AL, Kameyama K, Roche KW, Huganir RL. 26.  1997. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J. Biol. Chem. 272:32528–33 [Google Scholar]
  27. Lee HK, Takamiya K, Han JS, Man H, Kim CH. 27.  2003. Phosphorylation of the AMPA receptor GluR1 subunit is required for synaptic plasticity and retention of spatial memory. Cell 112:631–43 [Google Scholar]
  28. Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. 28.  2003. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat. Neurosci. 6:136–43 [Google Scholar]
  29. Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R. 29.  2006. Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–25 [Google Scholar]
  30. Derkach VA. 30.  2003. Silence analysis of AMPA receptor mutated at the CaM-kinase II phosphorylation site. Biophys. J. 84:1701–8 [Google Scholar]
  31. Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y. 31.  et al. 2011. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat. Neurosci. 14:727–35 [Google Scholar]
  32. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R. 32.  2000. Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–67 [Google Scholar]
  33. Shi S, Hayashi Y, Esteban JA, Malinow R. 33.  2001. Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–43 [Google Scholar]
  34. Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N. 34.  et al. 1999. Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805–11 [Google Scholar]
  35. Meng Y, Zhang Y, Jia Z. 35.  2003. Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39:163–76 [Google Scholar]
  36. Jackson AC, Nicoll RA. 36.  2011. The expanding social network of ionotropic glutamate receptors: TARPs and other transmembrane auxiliary subunits. Neuron 70:178–99 [Google Scholar]
  37. Straub C, Tomita S. 37.  2012. The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr. Opin. Neurobiol. 22:488–95 [Google Scholar]
  38. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS. 38.  2005. Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–77 [Google Scholar]
  39. Sumioka A, Yan D, Tomita S. 39.  2010. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers. Neuron 66:755–67 [Google Scholar]
  40. Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA. 40.  2013. LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493:495–500 [Google Scholar]
  41. Chen L, El-Husseini A, Tomita S, Bredt DS, Nicoll RA. 41.  2003. Stargazin differentially controls the trafficking of alpha-amino-3-hydroxyl-5-methyl-4-isoxazolepropionate and kainate receptors. Mol. Pharmacol. 64:703–6 [Google Scholar]
  42. Opazo P, Sainlos M, Choquet D. 42.  2012. Regulation of AMPA receptor surface diffusion by PSD-95 slots. Curr. Opin. Neurobiol. 22:453–60 [Google Scholar]
  43. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H. 43.  2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–66 [Google Scholar]
  44. Harvey CD, Svoboda K. 44.  2007. Locally dynamic synaptic learning rules in pyramidal neuron dendrites. Nature 450:1195–200 [Google Scholar]
  45. Lee SJ, Escobedo-Lozoya Y, Szatmari EM, Yasuda R. 45.  2009. Activation of CaMKII in single dendritic spines during long-term potentiation. Nature 458:299–304 [Google Scholar]
  46. Okamoto K, Nagai T, Miyawaki A, Hayashi Y. 46.  2004. Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat. Neurosci. 7:1104–12 [Google Scholar]
  47. Kopec CD, Li B, Wei W, Boehm J, Malinow R. 47.  2006. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J. Neurosci. 26:2000–9 [Google Scholar]
  48. Tönnesen J, Katona G, Rózsa B, Nägerl UV. 48.  2014. Spine neck plasticity regulates compartmentalization of synapses. Nat. Neurosci. 17:678–85 [Google Scholar]
  49. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y. 49.  2014. Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–59 [Google Scholar]
  50. Stein V, House DR, Bredt DS, Nicoll RA. 50.  2003. Postsynaptic density-95 mimics and occludes hippocampal long-term potentiation and enhances long-term depression. J. Neurosci. 23:5503–6 [Google Scholar]
  51. Nakagawa T, Futai K, Lashuel HA, Lo I, Okamoto K. 51.  et al. 2004. Quaternary structure, protein dynamics, and synaptic function of SAP97 controlled by L27 domain interactions. Neuron 44:453–67 [Google Scholar]
  52. Ehrlich I, Klein M, Rumpel S, Malinow R. 52.  2007. PSD-95 is required for activity-driven synapse stabilization. PNAS 104:4176–81 [Google Scholar]
  53. Honkura N, Matsuzaki M, Noguchi J, Ellis-Davies GCR, Kasai H. 53.  2008. The subspine organization of actin fibers regulates the structure and plasticity of dendritic spines. Neuron 57:719–29 [Google Scholar]
  54. Bosch M, Hayashi Y. 54.  2012. Structural plasticity of dendritic spines. Curr. Opin. Neurobiol. 22:383–88 [Google Scholar]
  55. Nimchinsky EA, Sabatini BL, Svoboda K. 55.  2002. Structure and function of dendritic spines. Annu. Rev. Physiol. 64:313–53 [Google Scholar]
  56. Fortin DA, Srivastava T, Soderling TR. 56.  2012. Structural modulation of dendritic spines during synaptic plasticity. Neuroscientist 18:326–41 [Google Scholar]
  57. Harvey CD, Yasuda R, Zhong HN, Svoboda K. 57.  2008. The spread of Ras activity triggered by activation of a single dendritic spine. Science 321:136–40 [Google Scholar]
  58. Kim CH, Lisman JE. 58.  1999. A role of actin filament in synaptic transmission and long-term potentiation. J. Neurosci. 19:4314–24 [Google Scholar]
  59. Murakoshi H, Wang H, Yasuda R. 59.  2011. Local, persistent activation of Rho GTPases during plasticity of single dendritic spines. Nature 472:100–4 [Google Scholar]
  60. Nakayama AY, Harms MB, Luo LQ. 60.  2000. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20:5329–38 [Google Scholar]
  61. Sheng M, Hoogenraad CC. 61.  2007. The postsynaptic architecture of excitatory synapses: a more quantitative view. Annu. Rev. Biochem. 76:823–47 [Google Scholar]
  62. Santamaria F, Gonzalez J, Augustine GJ, Raghavachari S. 62.  2010. Quantifying the effects of elastic collisions and non-covalent binding on glutamate receptor trafficking in the post-synaptic density. PLOS Comput. Biol. 6:e1000780 [Google Scholar]
  63. Ehlers MD, Heine M, Groc L, Lee MC, Choquet D. 63.  2007. Diffusional trapping of GluR1 AMPA receptors by input-specific synaptic activity. Neuron 54:447–60 [Google Scholar]
  64. Allison DW, Gelfand VI, Spector I, Craig AM. 64.  1998. Role of actin in anchoring postsynaptic receptors in cultured hippocampal neurons: differential attachment of NMDA versus AMPA receptors. J. Neurosci. 18:2423–36 [Google Scholar]
  65. Zhou Q, Xiao M, Nicoll RA. 65.  2001. Contribution of cytoskeleton to the internalization of AMPA receptors. PNAS 98:1261–66 [Google Scholar]
  66. Charrier C, Ehrensperger MV, Dahan M, Levi S, Triller A. 66.  2006. Cytoskeleton regulation of glycine receptor number at synapses and diffusion in the plasma membrane. J. Neurosci. 26:8502–11 [Google Scholar]
  67. Lledo PM, Zhang X, Südhof TC, Malenka RC, Nicoll RA. 67.  1998. Postsynaptic membrane fusion and long-term potentiation. Science 279:399–403 [Google Scholar]
  68. Lu W, Man H, Ju W, Trimble WS, MacDonald JF, Wang YT. 68.  2001. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29:243–54 [Google Scholar]
  69. Kennedy MJ, Davison IG, Robinson CG, Ehlers MD. 69.  2010. Syntaxin-4 defines a domain for activity-dependent exocytosis in dendritic spines. Cell 141:524–35 [Google Scholar]
  70. Kelly EE, Horgan CP, McCaffrey MW, Young P. 70.  2011. The role of endosomal-recycling in long-term potentiation. Cell. Mol. Life Sci. 68:185–94 [Google Scholar]
  71. Jurado S, Goswami D, Zhang YS, Molina AJM, Südhof TC, Malenka RC. 71.  2013. LTP requires a unique postsynaptic SNARE fusion machinery. Neuron 77:542–58 [Google Scholar]
  72. Ahmad M, Polepalli JS, Goswami D, Yang X, Kaeser-Woo YJ. 72.  et al. 2012. Postsynaptic complexin controls AMPA receptor exocytosis during LTP. Neuron 73:260–67 [Google Scholar]
  73. Bader MF, Doussau F, Chasserot-Golaz S, Vitale N, Gasman S. 73.  2004. Coupling actin and membrane dynamics during calcium-regulated exocytosis: a role for Rho and ARF GTPases. Biochim. Biophys. Acta Mol. Cell Res. 1742:37–49 [Google Scholar]
  74. Papadopulos A, Martin S, Tomatis VM, Gormal RS, Meunier FA. 74.  2013. Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites. J. Neurosci. 33:19143–53 [Google Scholar]
  75. Nevins AK, Thurmond DC. 75.  2005. A direct interaction between Cdc42 and vesicle-associated membrane protein 2 regulates SNARE-dependent insulin exocytosis. J. Biol. Chem. 280:1944–52 [Google Scholar]
  76. Rosenmund C, Stevens CF. 76.  1996. Definition of the readily releasable pool of vesicles at hippocampal synapses. Neuron 16:1197–207 [Google Scholar]
  77. Correia SS, Bassani S, Brown TC, Lise MF, Backos DS. 77.  et al. 2008. Motor protein–dependent transport of AMPA receptors into spines during long-term potentiation. Nat. Neurosci. 11:457–66 [Google Scholar]
  78. Wang ZP, Edwards JG, Riley N, Provance DW, Karcher R. 78.  et al. 2008. Myosin Vb mobilizes recycling endosomes and AMPA receptors for postsynaptic plasticity. Cell 135:535–48 [Google Scholar]
  79. Schnell E, Nicoll RA. 79.  2001. Hippocampal synaptic transmission and plasticity are preserved in myosin Va mutant mice. J. Neurophysiol. 85:1498–501 [Google Scholar]
  80. Spacek J, Harris KM. 80.  1997. Three-dimensional organization of smooth endoplasmic reticulum in hippocampal CA1 dendrites and dendritic spines of the immature and mature rat. J. Neurosci. 17:190–203 [Google Scholar]
  81. Baude A, Nuzzer Z, Molnar E, McIlhinney RAJ, Somogyi P. 81.  1995. High-resolution immunogold localization of AMPA type glutamate receptor subunits at synaptic and non-synaptic sites in rat hippocampus. Neuroscience 69:1031–55 [Google Scholar]
  82. Tao-Cheng JH, Crocker VT, Winters CA, Azzam R, Chludzinski J, Reese TS. 82.  2011. Trafficking of AMPA receptors at plasma membranes of hippocampal neurons. J. Neurosci. 31:4834–43 [Google Scholar]
  83. Makino H, Malinow R. 83.  2009. AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis. Neuron 64:381–90 [Google Scholar]
  84. Lin DT, Makino Y, Sharma K, Hayashi T, Neve R. 84.  et al. 2009. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation. Nat. Neurosci. 12:879–87 [Google Scholar]
  85. Yudowski GA, Puthenveedu MA, Leonoudakis D, Panicker S, Thorn KS. 85.  et al. 2007. Real-time imaging of discrete exocytic events mediating surface delivery of AMPA receptors. J. Neurosci. 27:11112–21 [Google Scholar]
  86. Araki Y, Zeng ML, Zhang MJ, Huganir RL. 86.  2015. Rapid dispersion of SynGAP from synaptic spines triggers AMPA receptor insertion and spine enlargement during LTP. Neuron 85:173–89 [Google Scholar]
  87. Miller MB, Yan Y, Eipper BA, Mains RE. 87.  2013. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 19:255–73 [Google Scholar]
  88. Schwechter B, Rosenmund C, Tolias KF. 88.  2013. RasGRF2 Rac-GEF activity couples NMDA receptor calcium flux to enhanced synaptic transmission. PNAS 110:14462–67 [Google Scholar]
  89. Jin SX, Feig LA. 89.  2010. Long-term potentiation in the CA1 hippocampus induced by NR2A subunit–containing NMDA glutamate receptors is mediated by Ras-GRF2/Erk MAP kinase signaling. PLOS ONE 5:e11732 [Google Scholar]
  90. Xie Z, Srivastava DP, Photowala H, Kai L, Cahill ME. 90.  et al. 2007. Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56:640–56 [Google Scholar]
  91. Ma XM, Kiraly DD, Gaier ED, Wang Y, Kim EJ. 91.  et al. 2008. Kalirin-7 is required for synaptic structure and function. J. Neurosci. 28:12368–82 [Google Scholar]
  92. Kiraly DD, Lemtiri-Chlieh F, Levine ES, Mains RE, Eipper BA. 92.  2011. Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function. J. Neurosci. 31:12554–65 [Google Scholar]
  93. Xie Z, Cahill ME, Radulovic J, Wang J, Campbell SL. 93.  et al. 2011. Hippocampal phenotypes in kalirin-deficient mice. Mol. Cell. Neurosci. 46:45–54 [Google Scholar]
  94. Liu M, Bi F, Zhou X, Zheng Y. 94.  2012. Rho GTPase regulation by miRNAs and covalent modifications. Trends Cell Biol. 22:365–73 [Google Scholar]
  95. Mandela P, Ma XM. 95.  2012. Kalirin, a key player in synapse formation, is implicated in human diseases. Neural Plast. 2012:728161 [Google Scholar]
  96. Volk L, Chiu SL, Sharma K, Huganir RL. 96.  2015. Glutamate synapses in human cognitive disorders. Annu. Rev. Neurosci. 38:127–49 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021014-071753
Loading
/content/journals/10.1146/annurev-physiol-021014-071753
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error