1932

Abstract

Exosomes are nanosized membrane particles that are secreted by cells that transmit information from cell to cell. The information within exosomes prominently includes their protein and RNA payloads. Exosomal microRNAs in particular can potently and fundamentally alter the transcriptome of recipient cells. Here we summarize what is known about exosome biogenesis, content, and transmission, with a focus on cardiovascular physiology and pathophysiology. We also highlight some of the questions currently under active investigation regarding these extracellular membrane vesicles and their potential in diagnostic and therapeutic applications.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021115-104929
2016-02-10
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/physiol/78/1/annurev-physiol-021115-104929.html?itemId=/content/journals/10.1146/annurev-physiol-021115-104929&mimeType=html&fmt=ahah

Literature Cited

  1. Thakur BK, Zhang H, Becker A, Matei I, Huang Y. 1.  et al. 2014. Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 24:766–69 [Google Scholar]
  2. Chargaff E, West R. 2.  1946. The biological significance of the thromboplastic protein of blood. J. Biol. Chem. 166:189–97 [Google Scholar]
  3. Wolf P. 3.  1967. The nature and significance of platelet products in human plasma. Br. J. Haematol. 13:269–88 [Google Scholar]
  4. Johnstone RM. 4.  2006. Exosomes biological significance: a concise review. Blood Cells Mol. Dis. 36:315–21 [Google Scholar]
  5. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 5.  1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262:9412–20 [Google Scholar]
  6. Kriebel PW, Barr VA, Rericha EC, Zhang G, Parent CA. 6.  2008. Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge. J. Cell Biol. 183:949–61 [Google Scholar]
  7. Albuquerque PC, Nakayasu ES, Rodrigues ML, Frases S, Casadevall A. 7.  et al. 2008. Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans–cell wall transfer of proteins and lipids in ascomycetes. Cell. Microbiol. 10:1695–710 [Google Scholar]
  8. An Q, van Bel AJ, Huckelhoven R. 8.  2007. Do plant cells secrete exosomes derived from multivesicular bodies?. Plant Signal. Behav. 2:4–7 [Google Scholar]
  9. Korkut C, Ataman B, Ramachandran P, Ashley J, Barria R. 9.  et al. 2009. Trans-synaptic transmission of vesicular Wnt signals through Evi/Wntless. Cell 139:393–404 [Google Scholar]
  10. Liégeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. 10.  2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173:949–61 [Google Scholar]
  11. Raposo G, Stoorvogel W. 11.  2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83 [Google Scholar]
  12. Street JM, Barran PE, Mackay CL, Weidt S, Balmforth C. 12.  et al. 2012. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J. Transl. Med. 10:5 [Google Scholar]
  13. Reinhardt TA, Lippolis JD, Nonnecke BJ, Sacco RE. 13.  2012. Bovine milk exosome proteome. J. Proteom. 75:1486–92 [Google Scholar]
  14. Taylor DD, Gercel-Taylor C. 14.  2005. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92:305–11 [Google Scholar]
  15. Runz S, Keller S, Rupp C, Stoeck A, Issa Y. 15.  et al. 2007. Malignant ascites-derived exosomes of ovarian carcinoma patients contain CD24 and EPCAM. Gynecol. Oncol. 107:563–71 [Google Scholar]
  16. Fernandez-Llama P, Khositseth S, Gonzales PA, Star RA, Pisitkun T, Knepper MA. 16.  2010. Tamm-Horsfall protein and urinary exosome isolation. Kidney Int. 77:736–42 [Google Scholar]
  17. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L. 17.  et al. 2010. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–11 [Google Scholar]
  18. Admyre C, Johansson SM, Qazi KR, Filen JJ, Lahesmaa R. 18.  et al. 2007. Exosomes with immune modulatory features are present in human breast milk. J. Immunol. 179:1969–78 [Google Scholar]
  19. Levanen B, Bhakta NR, Torregrosa Paredes P, Barbeau R, Hiltbrunner S. 19.  et al. 2013. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J. Allergy Clin. Immunol. 131:894–903 [Google Scholar]
  20. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. 20.  2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59 [Google Scholar]
  21. Record M, Carayon K, Poirot M, Silvente-Poirot S. 21.  2014. Exosomes as new vesicular lipid transporters involved in cell-cell communication and various pathophysiologies. Biochim. Biophys. Acta 1841:108–20 [Google Scholar]
  22. EL Andaloussi S, Mäger I, Breakefield XO, Wood MJ. 22.  2013. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat. Rev. Drug Discov. 12:347–57 [Google Scholar]
  23. Xu L, Yang BF, Ai J. 23.  2013. MicroRNA transport: a new way in cell communication. J. Cell Physiol. 228:1713–19 [Google Scholar]
  24. Wittmann J, Jack HM. 24.  2010. Serum microRNAs as powerful cancer biomarkers. Biochim. Biophys. Acta 1806:200–7 [Google Scholar]
  25. Rao P, Benito E, Fischer A. 25.  2013. MicroRNAs as biomarkers for CNS disease. Front. Mol. Neurosci. 6:39 [Google Scholar]
  26. Oikonomou E, Siasos G, Tousoulis D, Kokkou E, Genimata V. 26.  et al. 2013. Diagnostic and therapeutic potentials of microRNAs in heart failure. Curr. Top. Med. Chem. 13:1548–58 [Google Scholar]
  27. Schageman J, Zeringer E, Li M, Barta T, Lea K. 27.  et al. 2013. The complete exosome workflow solution: from isolation to characterization of RNA cargo. Biomed Res. Int. 2013:253957 [Google Scholar]
  28. Pant S, Hilton H, Burczynski ME. 28.  2012. The multifaceted exosome: biogenesis, role in normal and aberrant cellular function, and frontiers for pharmacological and biomarker opportunities. Biochem. Pharmacol. 83:1484–94 [Google Scholar]
  29. Hanson PI, Shim S, Merrill SA. 29.  2009. Cell biology of the ESCRT machinery. Curr. Opin. Cell Biol. 21:568–74 [Google Scholar]
  30. Mayers JR, Audhya A. 30.  2012. Vesicle formation within endosomes: An ESCRT marks the spot. Commun. Integr. Biol. 5:50–56 [Google Scholar]
  31. Alcazar O, Hawkridge AM, Collier TS, Cousins SW, Bhattacharya SK. 31.  et al. 2009. Proteomics characterization of cell membrane blebs in human retinal pigment epithelium cells. Mol. Cell. Proteom. 8:2201–11 [Google Scholar]
  32. Eskelinen EL. 32.  2006. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 27:495–502 [Google Scholar]
  33. 33. NIH Office of Strategic Coordination 2011. Extracellular RNA communication https://commonfund.nih.gov/Exrna/index
  34. Futter CE, Pearse A, Hewlett LJ, Hopkins CR. 34.  1996. Multivesicular endosomes containing internalized EGF-EGF receptor complexes mature and then fuse directly with lysosomes. J. Cell Biol. 132:1011–23 [Google Scholar]
  35. Möbius W, Ohno-Iwashita Y, van Donselaar EG, Oorschot VM. 35.  et al. 2002. Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J. Histochem. Cytochem. 50:43–55 [Google Scholar]
  36. Raiborg C, Stenmark H. 36.  2009. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–52 [Google Scholar]
  37. Hurley JH. 37.  2010. The ESCRT complexes. Crit. Rev. Biochem. Mol. Biol. 45:463–87 [Google Scholar]
  38. Hurley JH, Hanson PI. 38.  2010. Membrane budding and scission by the ESCRT machinery: It's all in the neck. Nat. Rev. Mol. Cell Biol. 11:556–66 [Google Scholar]
  39. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. 39.  2006. EGF stimulates annexin 1–dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25:1–12 [Google Scholar]
  40. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. 40.  2012. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40:D1241–44 [Google Scholar]
  41. Subra C, Grand D, Laulagnier K, Stella A, Lambeau G. 41.  et al. 2010. Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J. Lipid Res. 51:2105–20 [Google Scholar]
  42. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D. 42.  et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–47 [Google Scholar]
  43. Zakharova L, Svetlova M, Fomina AF. 43.  2007. T cell exosomes induce cholesterol accumulation in human monocytes via phosphatidylserine receptor. J. Cell. Physiol. 212:174–81 [Google Scholar]
  44. Henderson MC, Azorsa DO. 44.  2012. The genomic and proteomic content of cancer cell–derived exosomes. Front. Oncol. 2:38 [Google Scholar]
  45. Huang X, Yuan T, Tschannen M, Sun Z, Jacob H. 45.  et al. 2013. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics 14:319 [Google Scholar]
  46. Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R. 46.  et al. 2007. Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131:1340–53 [Google Scholar]
  47. Lotvall J, Valadi H. 47.  2007. Cell to cell signalling via exosomes through esRNA. Cell Adh. Migr. 1:156–58 [Google Scholar]
  48. Mittelbrunn M, Gutierrez-Vazquez C, Villarroya-Beltri C, Gonzalez S, Sanchez-Cabo F. 48.  et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282 [Google Scholar]
  49. Hessvik NP, Phuyal S, Brech A, Sandvig K, Llorente A. 49.  2012. Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim. Biophys. Acta 1819:1154–63 [Google Scholar]
  50. Bellingham SA, Coleman BM, Hill AF. 50.  2012. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40:10937–49 [Google Scholar]
  51. Villarroya-Beltri C, Gutierrez-Vazquez C, Sanchez-Madrid F, Mittelbrunn M. 51.  2013. Analysis of microRNA and protein transfer by exosomes during an immune synapse. Meth. Mol. Biol. 1024:41–51 [Google Scholar]
  52. Jaiswal R, Gong J, Sambasivam S, Combes V, Mathys JM. 52.  et al. 2012. Microparticle-associated nucleic acids mediate trait dominance in cancer. FASEB J. 26:420–29 [Google Scholar]
  53. Turturici G, Tinnirello R, Sconzo G, Geraci F. 53.  2014. Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol. 306:C621–33 [Google Scholar]
  54. Smyth T, Kullberg M, Malik N, Smith-Jones P, Graner MW, Anchordoquy TJ. 54.  2015. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes. J. Control. Release 199:145–55 [Google Scholar]
  55. Wiklander OP, Nordin JZ, O'Loughlin A, Gustafsson Y, Corso G. 55.  et al. 2015. Extracellular vesicle in vivo biodistribution is determined by cell source, route of administration and targeting. J. Extracell. Vesicles 4:26316 [Google Scholar]
  56. Roma-Rodrigues C, Fernandes AR, Baptista PV. 56.  2014. Exosome in tumour microenvironment: overview of the crosstalk between normal and cancer cells. BioMed. Res. Int. 2014:179486 [Google Scholar]
  57. Lopez-Verrilli MA, Court FA. 57.  2013. Exosomes: mediators of communication in eukaryotes. Biol. Res. 46:5–11 [Google Scholar]
  58. Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. 58.  2007. Exosomes released from macrophages infected with intracellular pathogens stimulate a proinflammatory response in vitro and in vivo. Blood 110:3234–44 [Google Scholar]
  59. Sahoo S, Losordo DW. 59.  2014. Exosomes and cardiac repair after myocardial infarction. Circ. Res. 114:333–44 [Google Scholar]
  60. Molkentin JD, Dorn GW 2nd. 60.  2001. Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annu. Rev. Physiol. 63:391–426 [Google Scholar]
  61. Tian J, Guo X, Liu XM, Liu L, Weng QF. 61.  et al. 2013. Extracellular HSP60 induces inflammation through activating and up-regulating TLRs in cardiomyocytes. Cardiovasc. Res. 98:391–401 [Google Scholar]
  62. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A. 62.  et al. 2014. Cardiac fibroblast–derived microRNA passenger strand–enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 124:2136–46 [Google Scholar]
  63. Fredj S, Bescond J, Louault C, Potreau D. 63.  2005. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. J. Cell. Physiol. 202:891–99 [Google Scholar]
  64. Bang C, Batkai S, Dangwal S, Gupta SK, Foinquinos A. 64.  et al. 2014. Cardiac fibroblast–derived microRNA passenger strand–enriched exosomes mediate cardiomyocyte hypertrophy. J. Clin. Investig. 124:2136–46 [Google Scholar]
  65. Queiros AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E. 65.  et al. 2013. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int. J. Cardiol. 169:331–38 [Google Scholar]
  66. Borges FT, Melo SA, Ozdemir BC, Kato N, Revuelta I. 66.  et al. 2013. TGF-β1-containing exosomes from injured epithelial cells activate fibroblasts to initiate tissue regenerative responses and fibrosis. J. Am. Soc. Nephrol. 24:385–92 [Google Scholar]
  67. Xu C, Lu Y, Pan Z, Chu W, Luo X. 67.  et al. 2007. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J. Cell Sci. 120:3045–52 [Google Scholar]
  68. Belevych AE, Sansom SE, Terentyeva R, Ho HT, Nishijima Y. 68.  et al. 2011. Microrna-1 and -133 increase arrhythmogenesis in heart failure by dissociating phosphatase activity from RyR2 complex. PLOS ONE 6:e28324 [Google Scholar]
  69. Elton TS, Martin MM, Sansom SE, Belevych AE, Gyorke S, Terentyev D. 69.  2011. MiRNAs got rhythm. Life Sci. 88:373–83 [Google Scholar]
  70. Dempsey E, Feidhlim D, Maguire PB. 70.  2014. Platelet derived exosomes are enriched for specific microRNAs which regulate Wnt signalling in endothelial cells Presented at Am. Soc. Hematol. Annu. Meet., San Francisco, CA, Dec 6–9
  71. Neppl RL, Wang DZ. 71.  2014. The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes Dis. 1:18–39 [Google Scholar]
  72. Lu Y, Zhang Y, Wang N, Pan Z, Gao X. 72.  et al. 2010. MicroRNA-328 contributes to adverse electrical remodeling in atrial fibrillation. Circulation 122:2378–87 [Google Scholar]
  73. Gambim MH, do Carmo Ade O, Marti L, Verissimo-Filho S, Lopes LR, Janiszewski M. 73.  2007. Platelet-derived exosomes induce endothelial cell apoptosis through peroxynitrite generation: experimental evidence for a novel mechanism of septic vascular dysfunction. Crit. Care 11:R107 [Google Scholar]
  74. Wang X, Huang W, Liu G, Cai W, Millard RW. 74.  et al. 2014. Cardiomyocytes mediate anti-angiogenesis in type 2 diabetic rats through the exosomal transfer of miR-320 into endothelial cells. J. Mol. Cell. Cardiol. 74:139–50 [Google Scholar]
  75. 75. CDC 2011. FastStats: leading causes of death http://www.cdc.gov/nchs/fastats/leading-causes-of-death.htm
  76. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD. 76.  2012. Third universal definition of myocardial infarction. Nat. Rev. Cardiol. 9:620–33 [Google Scholar]
  77. Jhund PS, McMurray JJV. 77.  2008. Heart failure after acute myocardial infarction: a lost battle in the war on heart failure?. Circulation 118:2019–21 [Google Scholar]
  78. Gerbin KA, Murry CE. 78.  2015. The winding road to regenerating the human heart. Cardiovasc. Pathol. 24:133–40 [Google Scholar]
  79. Kim J, Shapiro L, Flynn A. 79.  2015. The clinical application of mesenchymal stem cells and cardiac stem cells as a therapy for cardiovascular disease. Pharmacol. Ther. 151:8–15 [Google Scholar]
  80. Wegener M, Bader A, Giri S. 80.  2015. How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration. Drug Discov. Today 20:667–85 [Google Scholar]
  81. Lai RC, Arslan F, Lee MM, Sze NS, Choo A. 81.  et al. 2010. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4:214–22 [Google Scholar]
  82. Arslan F, Lai RC, Smeets MB, Akeroyd L, Choo A. 82.  et al. 2013. Mesenchymal stem cell–derived exosomes increase ATP levels, decrease oxidative stress and activate PI3K/Akt pathway to enhance myocardial viability and prevent adverse remodeling after myocardial ischemia/reperfusion injury. Stem Cell Res. 10:301–12 [Google Scholar]
  83. Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E. 83.  et al. 2012. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation 126:2601–11 [Google Scholar]
  84. Balmer GM, Riley PR. 84.  2012. Harnessing the potential of adult cardiac stem cells: lessons from haematopoiesis, the embryo and the niche. J. Cardiovasc. Transl. Res. 5:631–40 [Google Scholar]
  85. Sahoo S, Klychko E, Thorne T, Misener S, Schultz KM. 85.  et al. 2011. Exosomes from human CD34+ stem cells mediate their proangiogenic paracrine activity. Circ. Res. 109:724–28 [Google Scholar]
  86. Jakob P, Doerries C, Briand S, Mocharla P, Krankel N. 86.  et al. 2012. Loss of angiomiR-126 and 130a in angiogenic early outgrowth cells from patients with chronic heart failure: role for impaired in vivo neovascularization and cardiac repair capacity. Circulation 126:2962–75 [Google Scholar]
  87. Mocharla P, Briand S, Giannotti G, Dorries C, Jakob P. 87.  et al. 2013. AngiomiR-126 expression and secretion from circulating CD34+ and CD14+ PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood 121:226–36 [Google Scholar]
  88. Li TS, Kubo M, Ueda K, Murakami M, Mikamo A, Hamano K. 88.  2010. Impaired angiogenic potency of bone marrow cells from patients with advanced age, anemia, and renal failure. J. Thorac. Cardiovasc. Surg. 139:459–65 [Google Scholar]
  89. Renault MA, Roncalli J, Tongers J, Thorne T, Klyachko E. 89.  et al. 2010. Sonic hedgehog induces angiogenesis via Rho kinase–dependent signaling in endothelial cells. J. Mol. Cell. Cardiol. 49:490–98 [Google Scholar]
  90. Mackie AR, Klyachko E, Thorne T, Schultz KM, Millay M. 90.  et al. 2012. Sonic hedgehog–modified human CD34+ cells preserve cardiac function after acute myocardial infarction. Circ. Res. 111:312–21 [Google Scholar]
  91. Marban E. 91.  2014. Breakthroughs in cell therapy for heart disease: focus on cardiosphere-derived cells. Mayo Clin. Proc. 89:850–58 [Google Scholar]
  92. Song L, Su M, Wang S, Zou Y, Wang X. 92.  et al. 2014. Mir-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J. Cell. Mol. Med. 18:2266–74 [Google Scholar]
  93. Vrijsen KR, Sluijter JP, Schuchardt MW, van Balkom BW, Noort WA. 93.  et al. 2010. Cardiomyocyte progenitor cell–derived exosomes stimulate migration of endothelial cells. J. Cell. Mol. Med. 14:1064–70 [Google Scholar]
  94. Chen L, Wang Y, Pan Y, Zhang L, Shen C. 94.  et al. 2013. Cardiac progenitor–derived exosomes protect ischemic myocardium from acute ischemia/reperfusion injury. Biochem. Biophys. Res. Commun. 431:566–71 [Google Scholar]
  95. Smith RR, Barile L, Cho HC, Leppo MK, Hare JM. 95.  et al. 2007. Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation 115:896–908 [Google Scholar]
  96. Chimenti I, Smith RR, Li T-S, Gerstenblith G, Messina E. 96.  et al. 2010. Relative roles of direct regeneration versus paracrine effects of human cardiosphere–derived cells transplanted into infarcted mice. Circ. Res. 106:971–80 [Google Scholar]
  97. Aghila Rani KG, Kartha CC. 97.  2010. Effects of epidermal growth factor on proliferation and migration of cardiosphere-derived cells expanded from adult human heart. Growth Factors 28:157–65 [Google Scholar]
  98. Gaetani R, Ledda M, Barile L, Chimenti I, De Carlo F. 98.  et al. 2009. Differentiation of human adult cardiac stem cells exposed to extremely low-frequency electromagnetic fields. Cardiovasc. Res. 82:411–20 [Google Scholar]
  99. Mishra R, Vijayan K, Colletti EJ, Harrington DA, Matthiesen TS. 99.  et al. 2011. Characterization and functionality of cardiac progenitor cells in congenital heart patients. Circulation 123:364–73 [Google Scholar]
  100. Takehara N, Tsutsumi Y, Tateishi K, Ogata T, Tanaka H. 100.  et al. 2008. Controlled delivery of basic fibroblast growth factor promotes human cardiosphere–derived cell engraftment to enhance cardiac repair for chronic myocardial infarction. J. Am. Coll. Cardiol. 52:1858–65 [Google Scholar]
  101. Tang YL, Zhu W, Cheng M, Chen L, Zhang J. 101.  et al. 2009. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression. Circ. Res. 104:1209–16 [Google Scholar]
  102. Zakharova L, Mastroeni D, Mutlu N, Molina M, Goldman S. 102.  et al. 2010. Transplantation of cardiac progenitor cell sheet onto infarcted heart promotes cardiogenesis and improves function. Cardiovasc. Res. 87:40–49 [Google Scholar]
  103. Barile L, Lionetti V, Cervio E, Matteucci M, Gherghiceanu M. 103.  et al. 2014. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc. Res. 103:530–41 [Google Scholar]
  104. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE. 104.  et al. 2012. Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904 [Google Scholar]
  105. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E. 105.  et al. 2014. Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (cardiosphere-derived autologous stem cells to reverse ventricular dysfunction). J. Am. Coll. Cardiol. 63:110–22 [Google Scholar]
  106. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B. 106.  2012. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126:551–68 [Google Scholar]
  107. Preda MB, Valen G. 107.  2013. Evaluation of gene and cell-based therapies for cardiac regeneration. Curr. Stem Cell Res. Ther. 8:304–12 [Google Scholar]
  108. Chimenti I, Smith RR, Li TS, Gerstenblith G, Messina E. 108.  et al. 2010. Relative roles of direct regeneration versus paracrine effects of human cardiosphere–derived cells transplanted into infarcted mice. Circ. Res. 106:971–80 [Google Scholar]
  109. Malliaras K, Li TS, Luthringer D, Terrovitis J, Cheng K. 109.  et al. 2012. Safety and efficacy of allogeneic cell therapy in infarcted rats transplanted with mismatched cardiosphere-derived cells. Circulation 125:100–12 [Google Scholar]
  110. Stastna M, Chimenti I, Marban E, Van Eyk JE. 110.  2010. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes. Proteomics 10:245–53 [Google Scholar]
  111. Ibrahim AG, Cheng K, Marban E. 111.  2014. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Rep. 2:606–19 [Google Scholar]
  112. Tseliou E, Fouad J, Reich H, Slipczuk L, de Couto G. 112.  et al. 2015. Fibroblasts rendered antifibrotic, antiapoptotic, and angiogenic by priming with cardiosphere-derived extracellular membrane vesicles. J. Am. Coll. Cardiol. 66:599–611 [Google Scholar]
  113. Mu J, Zhuang X, Wang Q, Jiang H, Deng ZB. 113.  et al. 2014. Interspecies communication between plant and mouse gut host cells through edible plant derived exosome-like nanoparticles. Mol. Nutr. Food Res. 58:1561–73 [Google Scholar]
  114. Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF. 114.  et al. 2014. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat. Commun. 5:5488 [Google Scholar]
  115. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J. 115.  et al. 2013. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4:2980 [Google Scholar]
  116. Gray WD, French KM, Ghosh-Choudhary S, Maxwell JT, Brown ME. 116.  et al. 2015. Identification of therapeutic covariant microRNA clusters in hypoxia-treated cardiac progenitor cell exosomes using systems biology. Circ. Res. 116:255–63 [Google Scholar]
/content/journals/10.1146/annurev-physiol-021115-104929
Loading
/content/journals/10.1146/annurev-physiol-021115-104929
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error