1932

Abstract

It is increasingly clear that mechanotransduction pathways play important roles in regulating fundamental cellular functions. Of the basic mechanical functions, the determination of cellular morphology is critical. Cells typically use many mechanosensitive steps and different cell states to achieve a polarized shape through repeated testing of the microenvironment. Indeed, morphology is determined by the microenvironment through periodic activation of motility, mechanotesting, and mechanoresponse functions by hormones, internal clocks, and receptor tyrosine kinases. Patterned substrates and controlled environments with defined rigidities limit the range of cell behavior and influence cell state decisions and are thus very useful for studying these steps. The recently defined rigidity sensing process provides a good example of how cells repeatedly test their microenvironment and is also linked to cancer. In general, aberrant extracellular matrix mechanosensing is associated with numerous conditions, including cardiovascular disease, aging, and fibrosis, that correlate with changes in tissue morphology and matrix composition. Hence, detailed descriptions of the steps involved in sensing and responding to the microenvironment are needed to better understand both the mechanisms of tissue homeostasis and the pathomechanisms of human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021317-121245
2019-02-10
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-021317-121245.html?itemId=/content/journals/10.1146/annurev-physiol-021317-121245&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Taylor DA, Sampaio LC, Ferdous Z, Gobin AS, Taite LJ 2018. Decellularized matrices in regenerative medicine. Acta Biomater 74:74–89
    [Google Scholar]
  2. 2.  Yu Y, Alkhawaji A, Ding Y, Mei J 2016. Decellularized scaffolds in regenerative medicine. Oncotarget 7:58671–83
    [Google Scholar]
  3. 3.  Dorland YL, Huveneers S 2017. Cell–cell junctional mechanotransduction in endothelial remodeling. Cell. Mol. Life Sci. 74:279–92
    [Google Scholar]
  4. 4.  Iskratsch T, Wolfenson H, Sheetz MP 2014. Appreciating force and shape-the rise of mechanotransduction in cell biology. Nat. Rev. Mol. Cell Biol. 15:825–33
    [Google Scholar]
  5. 5.  Roca-Cusachs P, Conte V, Trepat X 2017. Quantifying forces in cell biology. Nat. Cell Biol. 19:742–51
    [Google Scholar]
  6. 6.  Chen L, Vicente-Manzanares M, Potvin-Trottier L, Wiseman PW, Horwitz AR 2012. The integrin-ligand interaction regulates adhesion and migration through a molecular clutch. PLOS ONE 7:e40202
    [Google Scholar]
  7. 7.  Hu X, Margadant F, Yao M, Sheetz M 2017. Molecular stretching modulates mechanosensing pathways. Protein Sci 26:1337–51
    [Google Scholar]
  8. 8.  Sopko R, Perrimon N 2013. Receptor tyrosine kinases in Drosophila development. Cold Spring Harb. Perspect. Biol. 5: https://doi.org/10.1101/cshperspect.a009050
    [Crossref] [Google Scholar]
  9. 9.  Vining KH, Mooney DJ 2017. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18:728–42
    [Google Scholar]
  10. 10.  Bonnans C, Chou J, Werb Z 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:786–801
    [Google Scholar]
  11. 11.  Folkman J, Moscona A 1978. Role of cell shape in growth control. Nature 273:345–49
    [Google Scholar]
  12. 12.  Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE 1997. Geometric control of cell life and death. Science 276:1425–28
    [Google Scholar]
  13. 13.  Watt FM, Jordan PW, O'Neill CH 1988. Cell shape controls terminal differentiation of human epidermal keratinocytes. PNAS 85:5576–80
    [Google Scholar]
  14. 14.  Tay CY, Yu H, Pal M, Leong WS, Tan NS et al. 2010. Micropatterned matrix directs differentiation of human mesenchymal stem cells towards myocardial lineage. Exp. Cell Res. 316:1159–68
    [Google Scholar]
  15. 15.  McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–95
    [Google Scholar]
  16. 16.  McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF 2013. Modulation of macrophage phenotype by cell shape. PNAS 110:17253–58
    [Google Scholar]
  17. 17.  Théry M, Racine V, Pépin A, Piel M, Chen Y et al 2005. The extracellular matrix guides the orientation of the cell division axis. Nat. Cell Biol. 7:947–53
    [Google Scholar]
  18. 18.  Tseng Q, Duchemin-Pelletier E, Deshiere A, Balland M, Guillou H et al. 2012. Spatial organization of the extracellular matrix regulates cell–cell junction positioning. PNAS 109:1506–11
    [Google Scholar]
  19. 19.  Jain N, Iyer KV, Kumar A, Shivashankar GV 2013. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:11349–54
    [Google Scholar]
  20. 20.  Lee J, Abdeen AA, Tang X, Saif TA, Kilian KA 2015. Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials 69:174–83
    [Google Scholar]
  21. 21.  Roux C, Duperray A, Laurent VM, Michel R, Peschetola V et al. 2016. Prediction of traction forces of motile cells. Interface Focus 6:20160042
    [Google Scholar]
  22. 22.  Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P et al. 2008. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell 133:666–80
    [Google Scholar]
  23. 23.  Rangamani P, Lipshtat A, Azeloglu EU, Calizo RC, Hu M et al. 2013. Decoding information in cell shape. Cell 154:1356–69
    [Google Scholar]
  24. 24.  Lo CM, Wang HB, Dembo M, Wang YL 2000. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79:144–52
    [Google Scholar]
  25. 25.  Sessions AO, Engler AJ 2016. Mechanical regulation of cardiac aging in model systems. Circ. Res. 118:1553–62
    [Google Scholar]
  26. 26.  Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89
    [Google Scholar]
  27. 27.  Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83
    [Google Scholar]
  28. 28.  Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS 2012. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23:781–91
    [Google Scholar]
  29. 29.  Wei SC, Fattet L, Tsai JH, Guo Y, Pai VH et al. 2015. Matrix stiffness drives epithelial-mesenchymal transition and tumour metastasis through a TWIST1-G3BP2 mechanotransduction pathway. Nat. Cell Biol. 17:678–88
    [Google Scholar]
  30. 30.  Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN et al. 2014. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20:360–67
    [Google Scholar]
  31. 31.  Michor F, Weaver VM 2014. Understanding tissue context influences on intratumour heterogeneity. Nat. Cell Biol. 16:301–2
    [Google Scholar]
  32. 32.  Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T et al. 2016. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18:33–42
    [Google Scholar]
  33. 33.  Trichet L, Le Digabel J, Hawkins RJ, Vedula SR, Gupta M et al. 2012. Evidence of a large-scale mechanosensing mechanism for cellular adaptation to substrate stiffness. PNAS 109:6933–38
    [Google Scholar]
  34. 34.  Wolfenson H, Bershadsky A, Henis YI, Geiger B 2011. Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J. Cell Sci. 124:1425–32
    [Google Scholar]
  35. 35.  Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A et al. 2011. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13:1457–65
    [Google Scholar]
  36. 36.  Hamadi A, Bouali M, Dontenwill M, Stoeckel H, Takeda K, Ronde P 2005. Regulation of focal adhesion dynamics and disassembly by phosphorylation of FAK at tyrosine 397. J. Cell Sci. 118:4415–25
    [Google Scholar]
  37. 37.  Vicente-Manzanares M, Zareno J, Whitmore L, Choi CK, Horwitz AF 2007. Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176:573–80
    [Google Scholar]
  38. 38.  Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O et al. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–75
    [Google Scholar]
  39. 39.  Shemesh T, Bershadsky AD, Kozlov MM 2012. Physical model for self-organization of actin cytoskeleton and adhesion complexes at the cell front. Biophys. J. 102:1746–56
    [Google Scholar]
  40. 40.  Tee YH, Shemesh T, Thiagarajan V, Hariadi RF, Anderson KL et al. 2015. Cellular chirality arising from the self-organization of the actin cytoskeleton. Nat. Cell Biol. 17:445–57
    [Google Scholar]
  41. 41.  Dobereiner HG, Dubin-Thaler B, Giannone G, Xenias HS, Sheetz MP 2004. Dynamic phase transitions in cell spreading. Phys. Rev. Lett. 93:108105
    [Google Scholar]
  42. 42.  Wolfenson H, Iskratsch T, Sheetz MP 2014. Early events in cell spreading as a model for quantitative analysis of biomechanical events. Biophys. J. 107:2508–14
    [Google Scholar]
  43. 43.  Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR 2008. Actin and α-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat. Cell Biol. 10:1039–50
    [Google Scholar]
  44. 44.  Yu CH, Law JB, Suryana M, Low HY, Sheetz MP 2011. Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation. PNAS 108:20585–90
    [Google Scholar]
  45. 44a.  Iskratsch T, Yu CH, Mathur A, Liu S, Stevenin V et al. 2013. FHOD1 is needed for directed forces and adhesion maturation during cell spreading and migration. Dev. Cell 27:545–59
    [Google Scholar]
  46. 45.  Yu CH, Rafiq NB, Krishnasamy A, Hartman KL, Jones GE et al. 2013. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5:1456–68
    [Google Scholar]
  47. 46.  Gauthier NC, Fardin MA, Roca-Cusachs P, Sheetz MP 2011. Temporary increase in plasma membrane tension coordinates the activation of exocytosis and contraction during cell spreading. PNAS 108:14467–72
    [Google Scholar]
  48. 47.  Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ et al. 2017. Membrane tension controls adhesion positioning at the leading edge of cells. J. Cell Biol. https://doi.org/10.1083/jcb.201611117
    [Crossref]
  49. 48.  Giannone G, Dubin-Thaler BJ, Dobereiner HG, Kieffer N, Bresnick AR, Sheetz MP 2004. Periodic lamellipodial contractions correlate with rearward actin waves. Cell 116:431–43
    [Google Scholar]
  50. 49.  Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A et al. 2012. Cells test substrate rigidity by local contractions on submicrometer pillars. PNAS 109:5328–33
    [Google Scholar]
  51. 50.  Doyle AD, Kutys ML, Conti MA, Matsumoto K, Adelstein RS, Yamada KM 2012. Micro-environmental control of cell migration–myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125:2244–56
    [Google Scholar]
  52. 51.  Changede R, Xu X, Margadant F, Sheetz MP 2015. Nascent integrin adhesions form on all matrix rigidities after integrin activation. Dev. Cell 35:614–21
    [Google Scholar]
  53. 52.  Meacci G, Wolfenson H, Liu S, Stachowiak MR, Iskratsch T et al. 2016. α-Actinin links extracellular matrix rigidity-sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27:3471–79
    [Google Scholar]
  54. 53.  Saxena M, Liu S, Yang B, Hajal C, Changede R et al. 2017. EGFR and HER2 activate rigidity sensing only on rigid matrices. Nat. Mater. 16:775–81
    [Google Scholar]
  55. 54.  Yang B, Lieu ZZ, Wolfenson H, Hameed FM, Bershadsky AD, Sheetz MP 2016. Mechanosensing controlled directly by tyrosine kinases. Nano Lett 16:5951–61
    [Google Scholar]
  56. 55.  Naumanen P, Lappalainen P, Hotulainen P 2008. Mechanisms of actin stress fibre assembly. J. Microsc. 231:446–54
    [Google Scholar]
  57. 56.  Ivanovska J, Mahadevan V, Schneider-Stock R 2014. DAPK and cytoskeleton-associated functions. Apoptosis 19:329–38
    [Google Scholar]
  58. 57.  Saxena M, Changede R, Hone J, Wolfenson H, Sheetz MP 2017. Force-induced calpain cleavage of talin is critical for growth, adhesion development, and rigidity sensing. Nano Lett 17:7242–51
    [Google Scholar]
  59. 58.  Roca-Cusachs P, del Rio A, Puklin-Faucher E, Gauthier NC, Biais N, Sheetz MP 2013. Integrin-dependent force transmission to the extracellular matrix by α-actinin triggers adhesion maturation. PNAS 110:E1361–70
    [Google Scholar]
  60. 59.  Zamir E, Katz M, Posen Y, Erez N, Yamada KM et al. 2000. Dynamics and segregation of cell-matrix adhesions in cultured fibroblasts. Nat. Cell Biol. 2:191–96
    [Google Scholar]
  61. 60.  Oakes PW, Beckham Y, Stricker J, Gardel ML 2012. Tension is required but not sufficient for focal adhesion maturation without a stress fiber template. J. Cell Biol. 196:363–74
    [Google Scholar]
  62. 61.  Plotnikov SV, Pasapera AM, Sabass B, Waterman CM 2012. Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151:1513–27
    [Google Scholar]
  63. 62.  Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A et al. 2013. In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–77
    [Google Scholar]
  64. 63.  Nakazawa N, Sathe AR, Shivashankar GV, Sheetz MP 2016. Matrix mechanics controls FHL2 movement to the nucleus to activate p21 expression. PNAS 113:E6813–22
    [Google Scholar]
  65. 64.  Schiller HB, Friedel CC, Boulegue C, Fassler R 2011. Quantitative proteomics of the integrin adhesome show a myosin II-dependent recruitment of LIM domain proteins. EMBO Rep 12:259–66
    [Google Scholar]
  66. 65.  Kuo JC, Han X, Hsiao CT, Yates JR 3rd, Waterman CM 2011. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for β-Pix in negative regulation of focal adhesion maturation. Nat. Cell Biol. 13:383–93
    [Google Scholar]
  67. 66.  Byron A, Humphries JD, Craig SE, Knight D, Humphries MJ 2012. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12:2107–14
    [Google Scholar]
  68. 67.  Hu X, Jing C, Xu X, Nakazawa N, Cornish VW et al. 2016. Cooperative vinculin binding to talin mapped by time resolved super resolution microscopy. Nano Lett 16:4062–68
    [Google Scholar]
  69. 68.  Margadant F, Chew LL, Hu X, Yu H, Bate N et al. 2011. Mechanotransduction in vivo by repeated talin stretch-relaxation events depends upon vinculin. PLOS Biol 9:e1001223
    [Google Scholar]
  70. 69.  Sawada Y, Sheetz MP 2002. Force transduction by Triton cytoskeletons. J. Cell Biol. 156:609–15
    [Google Scholar]
  71. 70.  Chan CE, Odde DJ 2008. Traction dynamics of filopodia on compliant substrates. Science 322:1687–91
    [Google Scholar]
  72. 71.  Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C et al. 2016. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18:540–48
    [Google Scholar]
  73. 72.  Discher DE, Mooney DJ, Zandstra PW 2009. Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–77
    [Google Scholar]
  74. 73.  Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104
    [Google Scholar]
  75. 74.  Thievessen I, Fakhri N, Steinwachs J, Kraus V, McIsaac RS et al. 2015. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen. FASEB J 29:4555–67
    [Google Scholar]
  76. 75.  Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66
    [Google Scholar]
  77. 76.  Dumbauld DW, Lee TT, Singh A, Scrimgeour J, Gersbach CA et al. 2013. How vinculin regulates force transmission. PNAS 110:9788–93
    [Google Scholar]
  78. 77.  Garakani K, Shams H, Mofrad MRK 2017. Mechanosensitive conformation of vinculin regulates its binding to MAPK1. Biophys. J. 112:1885–93
    [Google Scholar]
  79. 78.  Katamune C, Koyanagi S, Shiromizu S, Matsunaga N, Shimba S et al. 2016. Different roles of negative and positive components of the circadian clock in oncogene-induced neoplastic transformation. J. Biol. Chem. 291:10541–50
    [Google Scholar]
  80. 79.  Horton ER, Byron A, Askari JA, Ng DH, Millon-Fremillon A et al. 2015. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17:1577–87
    [Google Scholar]
  81. 80.  Nix DA, Beckerle MC 1997. Nuclear–cytoplasmic shuttling of the focal contact protein, zyxin: a potential mechanism for communication between sites of cell adhesion and the nucleus. J. Cell Biol. 138:1139–47
    [Google Scholar]
  82. 81.  Wang X, Wei X, Yuan Y, Sun Q, Zhan J et al. 2018. Src-mediated phosphorylation converts FHL1 from tumor suppressor to tumor promoter. J. Cell Biol. 217:1335–51
    [Google Scholar]
  83. 82.  Schneider IC, Hays CK, Waterman CM 2009. Epidermal growth factor-induced contraction regulates paxillin phosphorylation to temporally separate traction generation from de-adhesion. Mol. Biol. Cell 20:3155–67
    [Google Scholar]
  84. 83.  Gustafsson A, Fritz HKM, Dahlbäck B 2017. Gas6-Axl signaling in presence of Sunitinib is enhanced, diversified and sustained in renal tumor cells, resulting in tumor-progressive advantages. Exp. Cell Res. 355:47–56
    [Google Scholar]
  85. 84.  Zweemer AJM, French CB, Mesfin J, Gordonov S, Meyer AS, Lauffenburger DA 2017. Apoptotic bodies elicit Gas6-mediated migration of AXL-expressing tumor cells. Mol. Cancer Res. 15:1656–66
    [Google Scholar]
  86. 85.  Lee E, Decker AM, Cackowski FC, Kana LA, Yumoto K et al. 2016. Growth arrest-specific 6 (GAS6) promotes prostate cancer survival by G1 arrest/S phase delay and inhibition of apoptosis during chemotherapy in bone marrow. J. Cell Biochem. 117:2815–24
    [Google Scholar]
  87. 86.  Diz-Muñoz A, Fletcher DA, Weiner OD 2013. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23:47–53
    [Google Scholar]
  88. 87.  Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF et al. 2016. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLOS Biol 14:e1002474
    [Google Scholar]
  89. 88.  Lou SS, Diz-Muñoz A, Weiner OD, Fletcher DA, Theriot JA 2015. Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase. J. Cell Biol. 209:275–88
    [Google Scholar]
  90. 89.  Wu Y, Kanchanawong P, Zaidel-Bar R 2015. Actin-delimited adhesion-independent clustering of E-cadherin forms the nanoscale building blocks of adherens junctions. Dev. Cell 32:139–54
    [Google Scholar]
  91. 90.  Strale PO, Duchesne L, Peyret G, Montel L, Nguyen T et al. 2015. The formation of ordered nanoclusters controls cadherin anchoring to actin and cell-cell contact fluidity. J. Cell Biol. 210:333–46
    [Google Scholar]
  92. 91.  Nejsum LN, Nelson WJ 2009. Epithelial cell surface polarity: the early steps. Front. Biosci. 14:1088–98
    [Google Scholar]
  93. 92.  Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N et al. 2014. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:1254211
    [Google Scholar]
  94. 93.  Wu SK, Budnar S, Yap AS, Gomez GA 2014. Pulsatile contractility of actomyosin networks organizes the cellular cortex at lateral cadherin junctions. Eur. J. Cell Biol. 93:396–404
    [Google Scholar]
  95. 94.  Acharya BR, Wu SK, Lieu ZZ, Parton RG, Grill SW et al. 2017. Mammalian diaphanous 1 mediates a pathway for E-cadherin to stabilize epithelial barriers through junctional contractility. Cell Rep 18:2854–67
    [Google Scholar]
  96. 95.  Collins C, Denisin AK, Pruitt BL, Nelson WJ 2017. Changes in E-cadherin rigidity sensing regulate cell adhesion. PNAS 114:E5835–44
    [Google Scholar]
  97. 96.  Benham-Pyle BW, Pruitt BL, Nelson WJ 2015. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and β-catenin activation to drive cell cycle entry. Science 348:1024–27
    [Google Scholar]
  98. 97.  Zaidel-Bar R. 2013. Cadherin adhesome at a glance. J. Cell Sci. 126:373–78
    [Google Scholar]
  99. 98.  Wang HB, Dembo M, Wang YL 2000. Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am. J. Physiol. Cell Physiol. 279:C1345–50
    [Google Scholar]
  100. 99.  Yang B, Wolfenson H, Nakazawa N, Liu S, Hu J, Sheetz M 2018. Stopping transformed growth with cytoskeletal proteins: turning a devil into an angel. bioRxiv 221176. https://doi.org/10.1101/221176
    [Crossref]
  101. 100.  Zaidel-Bar R, Itzkovitz S, Ma'ayan A, Iyengar R, Geiger B 2007. Functional atlas of the integrin adhesome. Nat. Cell Biol. 9:858–67
    [Google Scholar]
  102. 101.  Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R et al. 2012. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7:757–65
    [Google Scholar]
  103. 102.  Acerbi I, Cassereau L, Dean I, Shi Q, Au A et al. 2015. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7:1120–34
    [Google Scholar]
  104. 103.  Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54
    [Google Scholar]
  105. 104.  Ghibaudo M, Saez A, Trichet L, Xayaphoummine A, Browaeys J et al. 2008. Traction forces and rigidity sensing regulate cell functions. Soft Matter 4:1836
    [Google Scholar]
  106. 105.  Mih JD, Marinkovic A, Liu F, Sharif AS, Tschumperlin DJ 2012. Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. J. Cell Sci. 125:5974–83
    [Google Scholar]
  107. 106.  Kong HJ, Polte TR, Alsberg E, Mooney DJ 2005. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. PNAS 102:4300–5
    [Google Scholar]
  108. 107.  Saez A, Ghibaudo M, Buguin A, Silberzan P, Ladoux B 2007. Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. PNAS 104:8281–86
    [Google Scholar]
  109. 108.  Aarabi S, Bhatt KA, Shi Y, Paterno J, Chang EI et al. 2007. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis. FASEB J 21:3250–61
    [Google Scholar]
  110. 109.  Wong VW, Levi K, Akaishi S, Schultz G, Dauskardt RH 2012. Scar zones: region-specific differences in skin tension may determine incisional scar formation. Plast. Reconstr. Surg. 129:1272–76
    [Google Scholar]
  111. 110.  Lagares D, Busnadiego O, Garcia-Fernandez RA, Kapoor M, Liu S et al. 2012. Inhibition of focal adhesion kinase prevents experimental lung fibrosis and myofibroblast formation. Arthritis Rheum 64:1653–64
    [Google Scholar]
  112. 111.  Giannandrea M, Parks WC 2014. Diverse functions of matrix metalloproteinases during fibrosis. Dis. Model Mech. 7:193–203
    [Google Scholar]
  113. 112.  Orr AW, Sanders JM, Bevard M, Coleman E, Sarembock IJ, Schwartz MA 2005. The subendothelial extracellular matrix modulates NF-κB activation by flow: a potential role in atherosclerosis. J. Cell Biol. 169:191–202
    [Google Scholar]
  114. 113.  Kadoglou NP, Moustardas P, Kapelouzou A, Katsimpoulas M, Giagini A et al. 2013. The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur. J. Histochem. 57:e3
    [Google Scholar]
  115. 114.  Yu CH, Rafiq NB, Cao F, Zhou Y, Krishnasamy A et al. 2015. Integrin-β3 clusters recruit clathrin-mediated endocytic machinery in the absence of traction force. Nat. Commun. 6:8672
    [Google Scholar]
  116. 115.  Kilian KA, Bugarija B, Lahn BT, Mrksich M 2010. Geometric cues for directing the differentiation of mesenchymal stem cells. PNAS 107:4872–77
    [Google Scholar]
  117. 116.  Wolfenson H, Lavelin I, Geiger B 2013. Dynamic regulation of the structure and functions of integrin adhesions. Dev. Cell 24:447–58
    [Google Scholar]
  118. 117.  Lavelin I, Wolfenson H, Patla I, Henis YI, Medalia O et al. 2013. Differential effect of actomyosin relaxation on the dynamic properties of focal adhesion proteins. PLOS ONE 8:e73549
    [Google Scholar]
  119. 118.  Zaidel-Bar R, Geiger B 2010. The switchable integrin adhesome. J. Cell Sci. 123:1385–58
    [Google Scholar]
  120. 119.  DeMond AL, Mossman KD, Starr T, Dustin ML, Groves JT 2008. T cell receptor microcluster transport through molecular mazes reveals mechanism of translocation. Biophys. J. 94:3286–92
    [Google Scholar]
  121. 120.  Choquet D, Felsenfeld DP, Sheetz MP 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48
    [Google Scholar]
  122. 121.  Jiang G, Huang AH, Cai Y, Tanase M, Sheetz MP 2006. Rigidity sensing at the leading edge through αvβ3 integrins and RPTPα. Biophys. J. 90:1804–9
    [Google Scholar]
  123. 122.  Giannone G, Sheetz MP 2006. Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16:213–23
    [Google Scholar]
  124. 123.  Harris AK, Wild P, Stopak D 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208:177–79
    [Google Scholar]
  125. 124.  Oliver T, Dembo M, Jacobson K 1995. Traction forces in locomoting cells. Cell Motil. Cytoskelet. 31:225–40
    [Google Scholar]
  126. 125.  Pelham RJ Jr., Wang Y 1997. Cell locomotion and focal adhesions are regulated by substrate flexibility. PNAS 94:13661–65
    [Google Scholar]
  127. 126.  Tan JL, Tien J, Pirone DM, Gray DS, Bhadriraju K, Chen CS 2003. Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS 100:1484–89
    [Google Scholar]
  128. 127.  del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41
    [Google Scholar]
  129. 128.  Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE 1997. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276:1109–12
    [Google Scholar]
  130. 129.  Chen LJ, Wei SY, Chiu JJ 2013. Mechanical regulation of epigenetics in vascular biology and pathobiology. J. Cell. Mol. Med. 17:437–48
    [Google Scholar]
  131. 130.  Cui Y, Hameed FM, Yang B, Lee K, Pan CQ et al. 2015. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6:6333
    [Google Scholar]
  132. 131.  Baeyens N, Bandyopadhyay C, Coon BG, Yun S, Schwartz MA 2016. Endothelial fluid shear stress sensing in vascular health and disease. J. Clin. Investig. 126:821–28
    [Google Scholar]
  133. 132.  Greiner AM, Chen H, Spatz JP, Kemkemer R 2013. Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells. PLOS ONE 8:e77328
    [Google Scholar]
  134. 133.  Heil P, Spatz JP 2010. Lateral shear forces applied to cells with single elastic micropillars to influence focal adhesion dynamics. J. Phys. Condens. Matter 22:194108
    [Google Scholar]
  135. 134.  Goldyn AM, Kaiser P, Spatz JP, Ballestrem C, Kemkemer R 2010. The kinetics of force-induced cell reorganization depend on microtubules and actin. Cytoskeleton 67:241–50
    [Google Scholar]
  136. 135.  Jungbauer S, Gao H, Spatz JP, Kemkemer R 2008. Two characteristic regimes in frequency-dependent dynamic reorientation of fibroblasts on cyclically stretched substrates. Biophys. J. 95:3470–78
    [Google Scholar]
  137. 136.  Livne A, Geiger B 2016. The inner workings of stress fibers—from contractile machinery to focal adhesions and back. J. Cell Sci. 129:1293–304
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021317-121245
Loading
/content/journals/10.1146/annurev-physiol-021317-121245
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error